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Abstract

Purpose of review—Environmental toxicants are increasingly implicated in the global decline 

in metabolic health. Focusing on diabetes, herein the molecular and cellular mechanisms by which 

metabolism disrupting chemicals (MDCs) impair energy homeostasis are discussed.

Recent findings—Emerging data implicate MDC perturbations in a variety of pathways as 

contributors to metabolic disease pathogenesis, with effects in diverse tissues regulating fuel 

utilization. Potentiation of traditional metabolic risk factors, such as caloric excess, and emerging 

threats to metabolism, such as disruptions in circadian rhythms, are important areas of current and 

future MDC research. Increasing evidence also implicates deleterious effects of MDCs on 

metabolic programming that occur during vulnerable developmental windows, such as in utero and 

early post-natal life as well as pregnancy.

Summary—Recent insights into the mechanisms by which MDCs alter energy homeostasis will 

advance the field’s ability to predict interactions with classical metabolic disease risk factors and 

empower studies utilizing targeted therapeutics to treat MDC-mediated diabetes.
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Introduction

Diabetes and obesity rates have risen exponentially over the last several decades, and the 

impact of this on individual morbidity and societal costs are significant. In addition to the 

burden of disease in adults, metabolic disease in children has risen dramatically [1], and the 

impact of diabetes across the lifespan has been further compounded by increased rates of 

gestational diabetes mellitus (GDM) in pregnant women [2]. Indeed, GDM has tripled in the 

past 20 years, affecting 9% of pregnancies in the United States [2], which is critical because 

GDM is linked to adverse pregnancy outcomes for both mother and child [3]. While 

traditional metabolic risk factors such as reduced physical activity, increased caloric intake, 

aging, and sleep deficits are undoubted contributors to this phenomenon, they insufficiently 

account for this upsurge. Indeed, for a given level of activity and caloric intake, individuals 

in today’s society weigh more than they did 20–30 years ago [4••]. Consequently, other 

factors are implicated in the global deterioration of metabolic health, including exposure to 

environmental factors that drive or facilitate metabolic dysfunction [5••. Over the last 

decade, abundant epidemiologic evidence has emerged linking an increasing number of 

endocrine disrupting chemicals (EDCs) to the development of metabolic disease; however, 

our understanding of the mechanisms by which these exposures promote metabolic 

dysregulation remains relatively rudimentary. This report will integrate the current molecular 

and cellular evidence by which EDCs act as metabolism disrupting chemicals (MDCs) to 

dysregulate glucose homeostasis and increase diabetes risk (Table 1, Supplemental Table 1) 

in order to provide direction for future research aimed at mitigating the deleterious impact of 

environmental exposures on human metabolic health.

Afflicting 415 million individuals globally with 642 million projected to suffer from the 

disease by 2040 [6], diabetes is a common, heterogeneous disorder defined by 

hyperglycemia arising from inadequate insulin production, impaired insulin action, or a 

combination of the two. Traditionally, type 2 diabetes (T2DM), the most common form of 

the disease, is thought to originate from the development of insulin resistance, which 

increases synthetic demand for insulin that eventually becomes unsustainable as pancreatic 

β-cells begin to decompensate, ultimately leading to overt T2DM [7]. In contrast, type 1 

diabetes (T1DM) classically arises from the primary destruction of β-cells. Thus, factors that 

potentiate insulin resistance or promote β-cell failure augment diabetes risk. Importantly, 

mounting evidence demonstrates that MDCs affect multiple levels of glucose regulation 

from β-cell insulin secretion to insulin signaling in metabolically active tissues such as the 

liver, muscle, adipose, brain, and gastrointestinal (GI) tract (Figure 1).

MDC Disruption of β-Cell Function

Classically, increased extracellular glucose concentrations increase glucose uptake into β-

cells via glucose transporter 2 (GLUT2), followed by entry into glycolysis, oxidative 

phosphorylation, and ATP generation. Increases in the ATP/ADP ratio promote ATP-

sensitive K+-channel (KATP) closure, membrane depolarization, and calcium influx. 

Increased intracellular calcium induces cytoskeletal rearrangements that result in transport 

and release of insulin-containing vesicles [8]. Defects in insulin secretion are central to 

diabetes pathogenesis [9]. Insulin secretion is also regulated by incretin hormones, such as 
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glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP), as well as 

estrogens, which modulate intracellular calcium flux and potentiate insulin secretion via a 

cAMP-mediated pathway (reviewed in [10]). Post-prandial incretin release from the GI tract 

augments insulin response, an effect that is attenuated in diabetes [10]. Importantly, multiple 

EDCs have been shown to disrupt β-cell function at various points in these pathways.

Triphenyltin (TPT) is a persistent organotin compound historically used as an antifouling 

agent. Islets from TPT-exposed hamsters exhibited impaired intracellular calcium flux and 

insulin secretion in response to known β-cell stimuli, including acetylcholine, GIP, and 

glucose [11]; and TPT exposure of primary islets in culture reduced NAD(P)H and ATP 

production [12]. These findings are consistent with TPT interference in β-cell function 

upstream of KATP channel closure, possibly via impaired mitochondrial ATP production 

[12]. Additionally, TPT reduced GIP and GLP-1 induced insulin release in a protein kinase 

A (PKA)-dependent manner [13], a pathway central to β-cell function.

A number of studies demonstrated that arsenic also impairs insulin secretion [14–17]. 

Arsenic is a ubiquitous environmental pollutant that contaminates drinking water above the 

current WHO safety standard of 10 μg/L for over 150 million individuals globally [18]. In a 

rat β-cell line, while high levels of arsenic reduced insulin gene expression [17], low 

micromolar concentrations impaired calpain-10 mediated proteolysis and activation of 

SNAP-25, a key step in insulin granule exocytosis [16]. The insulin exocytic machinery is 

similarly disrupted by phenolic compounds, widely used in adhesives and detergents. 

Exposure to low levels of phenolic estrogens reduced mRNA expression of Snap25 and 

Rab27a in rodent islets [19]. In contrast, polychlorinated biphenyl (PCB) treatment 

increased calcium influx and insulin secretion in a calcium/calmodulin-dependent protein 

kinase II (CaMKII)-dependent fashion [20]. Thus, MDCs can affect β-cell function both 

directly through altering calcium flux, and via modulation of downstream signaling.

Sex steroids play an important role in glucose homeostasis, regulating β-cell insulin 

secretion in both cGMP-dependent and -independent ways [21,22]. Physiologic fluctuations 

in estrogen balance are associated with increased vulnerability to metabolic stress [23]. 

Importantly, multiple EDCs have been shown to alter estrogen signaling, including PCBs, 

bisphenol A (BPA), phthalates, phytoestrogens, and polycyclic aromatic hydrocarbons 

(PAHs) [5], making this pathway a likely target of metabolic disruption by exogenous 

chemicals (discussed in [24,25]).

Endoplasmic Reticulum and Oxidative Stress in MDC Action

Under conditions of hyperglycemia, insulin biosynthesis accelerates and can account for half 

of all β-cell protein synthesis [26]. This high synthetic demand coupled with their relatively 

small size renders β-cells uniquely vulnerable to both endoplasmic reticulum (ER) and 

oxidative stress, and thus to chemicals that induce these reactions. Indeed, recent studies 

have implicated oxidative and ER stress as significant contributors to diabetes pathogenesis 

(reviewed in [27,28]). Mitochondria are critical regulators of the cellular redox balance, 

responsible for both ROS and antioxidant production; thus perturbations to mitochondrial 

integrity leads to increased cellular stress. Several MDCs promote oxidative stress in β-cells, 
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including BPA [19,29], arsenic [30,31], and diethylhexylphthalate (DEHP) [32]. For 

example, rat islets exposed to the phenolic compounds octylphenol, nonylphenol, and BPA 

exhibited disruptions in islet mitochondrial architecture with alterations in mitochondrial 

gene expression [19]. Micromolar concentrations of BPA also induced reactive oxygen 

species (ROS) in INS-1 cells, causing glutathione depletion, DNA damage, and p53 

induction, which was partially rescued by pretreatment with the antioxidant N-acetylcysteine 

(NAC) [29]. In INS-1 cells treatment with 0.25-1 μM sodium arsenite for 96 hours reduced 

thioredoxin reductase activity, increased pro-apoptotic gene expression, and reduced 

viability, possibly via a c-Jun-N-terminal kinase (JNK)-mediated pathway [31]. Importantly, 

arsenic toxicity was also attenuated by pretreatment with NAC [30], suggesting oxidative 

stress as a mechanism of toxicity and supporting trials of NAC as a potential treatment for 

arsenic-induced diabetes. Exposure to other heavy metals such as cadmium [33,34] and 

mercury [35,36] also impair insulin secretion and induce β-cell toxicity, although the 

epidemiologic evidence on a role for those metals in diabetes is inconsistent [37]. These 

effects have been presumed to occur via oxidative stress; however, the precise mechanisms 

by which these toxicants induce β-cell dysfunction require further study.

The role of ROS in β-cell function is complex as ROS also regulate insulin release [38]. 

Although arsenic has a well-documented ability to induce oxidative damage in multiple 

contexts, arsenic exposure has also been shown to reduce glucose-stimulated ROS 

generation [15]. This decrease in ROS coincides with a robust induction of an endogenous 

Nrf2-mediated antioxidant pathway, raising the hypothesis that chronic exposure to low 

levels of arsenic leads to an adaptive antioxidant response that indirectly dampens GSIS 

[15]. Taken together, these data indicate that MDCs may perturb insulin secretion through 

bidirectional alterations in β-cell ROS handling.

Increased cellular stress and resultant inflammation in β-cells have been implicated in the 

pathogenesis of T1DM as well [9], and are hallmarks of EDC toxicity. Chronic exposure to 

BPA accelerated spontaneous insulinitis in non-obese diabetic (NOD) mice, a model of 

immune-mediated diabetes [39]. In addition, NOD mice exposed to BPA in utero exhibited 

more severe insulinitis at 11 weeks of age and increased diabetes prevalence at 20 weeks 

[40•], suggesting that BPA may also play a role in accelerating the decline of β-cell reserve 

by promoting immune disruption of pancreatic islets, implicating MDCs as possible 

contributors to increasing T1DM prevalence.

MDC Disruption of Insulin Action

Insulin functions primarily in myocytes and adipocytes to promote glucose uptake, and in 

hepatocytes to promote glucose storage as glycogen. On a molecular level, insulin binds to 

its receptor triggering autophosphorylation and recruitment of the insulin receptor substrate 

(IRS) scaffolding proteins. This is followed by a series of iterative phosphorylation events 

that recruit and activate phosphatidylinositol-3-kinase (PI3-K), generate phosphatidylinositol 

triphosphate (PIP3), and activate phosphoinositide- dependent kinase 1 (PDK1), ultimately 

resulting in phosphorylation and activation of Akt/protein kinase B. Akt mediates many of 

the metabolic actions of insulin, including glucose uptake by promoting GLUT4 

translocation to the plasma membrane, lipid biogenesis, hepatic glycogen synthesis, and 
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suppression of gluconeogenesis [41]. Impairments in insulin action promote diabetes 

pathogenesis when insulin resistance outstrips the β-cell’s capacity for insulin secretion [7]. 

Global insulin resistance associated with MDC exposure is supported by epidemiologic, 

animal, and molecular studies [5]. Human exposures to a wide variety of chemicals have 

been associated with insulin resistance, including BPA [42,43], particulate matter (PM) [44], 

2,3,7,8-tetrachlorodibenzo dioxin (TCDD) [45], and phthalates [46,47]. The precise 

mechanisms by which these chemicals promote insulin resistance are discussed below.

Multiple MDCs can disrupt insulin action in target tissues by altering the expression or 

activity of insulin signaling intermediates including the insulin receptor [48], IRS-1 [49], 

PDK-1 [50], and Akt [48–53]. For example, rodents exposed to BPA exhibit global insulin 

resistance associated with defects in phosphorylation of both the insulin receptor [48] and 

Akt [48,52]. The phenylsulfamide fungicide tolylfluanid (TF) impaired insulin-stimulated 

Akt phosphorylation in primary rodent and human adipocytes, likely via down-regulation of 

IRS-1 expression and protein destabilization [49]. Similarly, insulin-stimulated Akt 

phosphorylation was attenuated and glucose uptake reduced following arsenite exposure in 

3T3-L1 adipocytes [53]. Independent studies in this model showed that 4 hour exposure to 

either 50 μM arsenite or 2 μM methylarsonous acid also reduces Akt phosphorylation, 

inhibits PDK-1 activity, and prevents membrane GLUT4 translocation [50], the primary 

glucose transporter in adipocytes and myocytes. Dysregulation of GLUT proteins has been 

observed following exposure to multiple MDCs, including TCDD [54,55], DEHP [56-58], 

cadmium [59], and arsenic [53]. For example, mice injected with a single high dose of 

TCDD exhibited reduced GLUT4 and GLUT1 expression in adipose and neuronal tissue, 

respectively [55]. Similarly, DEHP exposure in L6 myotubes downregulated GLUT4 with 

concomitant impaired glucose utilization [56]. Importantly, while skeletal muscle is 

responsible for the majority of glucose disposal following nutrient intake [60], few studies 

have directly addressed MDC effects on muscle; further work on MDC-mediated alterations 

in skeletal muscle metabolism may illuminate the potential for exercise to antagonize MDC-

associated diabetes risk.

In addition to skeletal muscle disruptions, understanding MDC effects on hepatic function is 

critical for predicting metabolic risk, a fact underscored by the liver’s dual role in energy 

and xenobiotic metabolism as well as the recent rise in non-alcoholic fatty liver disease 

(NAFLD) [61••]. Multiple MDCs can disrupt hepatic function, leading to toxicity, altered 

gluconeogenesis, and impaired glycogen storage, including POPs [62], BPA [63,64], PCBs 

[65], perfluorooctanoic acid (PFOA) [66], atrazine [67], arsenic [68], and DEHP [69]. For 

example, rats exposed to lipophilic POPs contained in dietary fish oil exhibited insulin 

resistance, abdominal obesity, and hepatosteatosis [62]. Exposure of rodents to BPA led to 

impaired glucose oxidation and significantly reduced glycogen stores in primary hepatocytes 

[64]. Similarly, PCB 126 inhibited hepatic glycogen metabolism, cAMP-mediated 

gluconeogenesis, and expression of a key enzyme in this pathway, phosphoenolpyruvate 

carboxykinase (PEPCK), in an aryl hydrocarbon receptor (AhR)-dependent fashion [65]. 

AhR is an orphan receptor that regulates hepatic detoxification of xenobiotic substances via 

controlling the activity of cytochrome P450 enzymes [70]. It has several known exogenous 

ligands including PAH, dioxin-like compounds (e.g. TCDD), and polyphenols [70]; thus, it 

is a likely mediator of MDC toxicity. Interestingly, RNA-Seq analysis of human hepatocytes 
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exposed to PFOA and PFOS demonstrate altered expression of lipid metabolism genes, 

possibly by direct interference with and downregulation of hepatocyte nuclear factor 4α 
(HNF4α), a master regulator of hepatocyte development and metabolism [66]. Mutations in 

HNF4α also cause a form of familial diabetes, maturity onset diabetes of the young type 1 

(MODY1), which is uniquely responsive to the insulin augmenting class of sulfonylurea 

drugs. Thus, MDC disruption of HNF4α may have effects on both β-cell and hepatocyte 

physiology. Integrating understanding of the genetic and environmental causes of metabolic 

disease may thus inform future therapy decisions. Collectively, these data demonstrate that 

disruption in hepatic energy metabolism is emerging as an important consequence of MDC 

exposure [61••].

Context-Dependent MDC Action

The impact of MDCs may be context-dependent. For example, TCDD [71–74], organotins 

[75,76], and BPA [48,51,64,77,78] differentially affect insulin levels and action depending 

on the experimental model. Acute TCDD exposure induces a wasting syndrome 

characterized by weight loss, adipose derangements, hyperlipidemia, ectopic lipid 

deposition, and hypoinsulinemia [79]. Conversely, multiple epidemiologic studies link 

TCDD to diabetes and hyperinsulinemia [80,81]. In β-cell models, TCDD effects are 

similarly conflicting. TCDD impaired GSIS in primary rodent islets [71] and INS-1 cells 

[72], and caused AhR-dependent reductions in second-phase insulin secretion in intact 

animals [74]; however, other studies using INS-1 cells exhibited persistently increased 
intracellular calcium levels and basal insulin secretion, an effect antagonized by calcium 

channel blockade [73]. Similarly, hamsters exposed to the organotin tributyltin (TBT) for 45 

days exhibited hyperinsulinemia and insulin resistance [76]; however, continuing exposure 

to 60 days promoted β-cell apoptosis with concomitant reduction in insulin levels [75]. 

These findings suggest a model whereby acute MDC exposure may augment insulin 

secretion at the expense of subsequent β-cell exhaustion and diminished metabolic reserve 

later in life; however, this hypothesis requires further interrogation.

Adipose Disruption and Global Metabolic Dysfunction

Adipose tissue is an important regulator of metabolic health, as increased adiposity is a well-

recognized risk factor for insulin resistance and diabetes, and impairments in adipose 

development and function are also associated with metabolic disease [82]. Adipose tissue 

performs several important functions for metabolic homeostasis, including controlling the 

storage and redistribution of lipids as well as secreting adipokines (e.g. leptin and 

adiponectin) that regulate food intake, insulin sensitivity, and β-cell health. Due to the 

lipophilic nature of many MDCs, adipose tissue is a toxicant depot and may determine their 

chemical persistence in vivo. MDCs that affect adipose function, termed obesogens, have 

been tied to alterations in adipocyte differentiation, insulin action, and nutrient handling 

(reviewed in [83]). The transcription factor peroxisome proliferator activated receptor-γ 
(PPARγ) is a key regulator of normal adipocyte development (reviewed in [82]). PPARγ 
null mice lack adipose tissue, and PPARγ ablation leads to adipocyte death within days. 

PPARγ also influences glucose homeostasis by controlling expression of GLUT4, 

adiponectin, leptin, TNFα, and resistin [82]. Humans with heterozygous loss of function 
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PPARγ mutations have lipodystrophy and insulin resistance [84]. Thus, disruption of 

PPARγ activity has multiple negative consequences on adipocyte development and function. 

Several MDCs disrupt PPARγ signaling, including organotins and phthalates [85]. 

Importantly, the classical obesogen TBT, has been shown to promote adipogenesis in 

multiple model systems via PPARγ activation [86], while generating a dysfunctional 

adipocyte with reduced expression of the beneficial adipokine adiponectin [87]. In addition 

to MDCs that modulate PPARγ activity, several MDCs alter adipogenesis through other key 

regulatory pathways such as the glucocorticoid receptor (GR) and sex steroid nuclear 

receptor pathways. For example, TF promotes adipogenesis in 3T3-L1 cells [88], likely by 

activating GR signaling, as treatment of primary mouse adipocytes with TF led to GR 

activation, nuclear translocation, and enrichment at GR response elements in target genes 

[89]. Moreover, rodents exposed to TF developed increased visceral adiposity, impaired 

glucose tolerance, and reduced adiponectin levels [90•], mimicking the pathologic features 

of glucocorticoid excess in humans [91]. Disruptions in the balance of estrogens and 

androgens also impair adipocyte differentiation. Human adipocyte stem cells exposed to 

BPA demonstrated increased adipogenesis in an ER-dependent fashion [92]. Interestingly, 

prolonged exposure of 3T3-L1 preadipocytes to BPA led to development of a compromised 

adipocyte with increased lipid accumulation, impaired glucose utilization, and increased 

expression of inflammatory cytokines [93•]. Importantly, while many studies have 

emphasized the adipogenesis-promoting capacity of MDCs, more attention is required to 

understand the potential dysfunctional state of MDC-generated adipocytes. Moreover, 

MDCs that inhibit adipogenesis are likely to promote metabolic dysfunction since impaired 

adipose expansion shifts lipid storage to muscle and liver, resulting in metabolic 

dysregulation in these vital tissues, as seen in lipodystrophies [82].

Inflammation in MDC Action

In the obese state, adipocytes enlarge owing to increased triglyceride accumulation; this is 

accompanied by an increase in inflammatory markers, macrophage infiltration, and release 

of cytokines such as TNFα and IL-1β that further recruit immune cells and propagate the 

inflammatory cascade. Multiple molecular signaling pathways have been implicated in the 

pathogenesis of obesity-induced inflammation, including nuclear factor kappa-light-chain-

enhancer of activated B cells (NFκB), mitogen-activated protein kinase (MAPK), and JNK; 

conversely, targeted loss-of-function mutations in key pathway members is protective [82]. 

Increased inflammation shifts adipocytes away from lipogenesis and toward lipolysis, 

increasing circulating free fatty acids and promoting deleterious ectopic lipid deposition in 

muscle, liver, and β-cells [94]. Furthermore, inflammatory cytokines directly impair insulin 

action by exerting inhibitory effects on IRS proteins [95], and downregulating insulin 

receptor, IRS-1, and GLUT4 expression [96]. Many MDCs induce inflammation. For 

example, BPA treatment of 3T3-L1 cells increased IL-6 and IFNγ release in association 

with reduced glucose uptake [51]. Exposure of mice to particulate matter (PM) increased 

systemic inflammation with concomitant insulin resistance, impaired hepatic glycogen 

storage, and increased visceral adiposity [97•,98]. Thus, inflammation may mechanistically 

link poor air quality with diabetes and obesity [99]. TCDD also increased TNFα expression 

with an associated downregulation of insulin signaling intermediates, an effect partially 
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rescued by disruption of key inflammatory mediators, including AhR, ERK, and JNK [54], 

highlighting their role in the negative metabolic effects of TCDD. Interestingly, microarray 

analysis of human adipose-derived stem cells treated with TCDD or PCB-126 identified 

genes regulating inflammation as the principal molecular alterations induced by these 

chemicals [100]. Collectively, these studies demonstrate that inflammation is a likely inducer 

of MDC-associated metabolic disease, and therapies directed at inflammatory responses 

should be investigated as potential interventions.

Developmental Origins of Metabolic Disease

Increasing evidence suggests that environmental exposures during key developmental 

windows program metabolic disease risk later in life; this includes the in utero and early 

post-natal period. For example, six-month old male offspring of dams exposed to BPA 

exhibited impairments in glucose tolerance, insulin sensitivity, and insulin secretion [101]. 

Earlier interrogation showed that these mice exhibited increased β-cell mass and 

hyperinsulinemia that preceded a subsequent decline in both parameters. This suggests that 

in utero BPA exposure may promote insulin-induced insulin resistance that is detrimental to 

long-term β-cell function [102••]. Additionally, the consequences of BPA exposure may 

synergize with traditional metabolic risk factors such as a high fat diet [63]. The metabolic 

disruptions in these offspring were associated with altered expression of genes regulating 

fatty acid metabolism, including the sterol regulatory element-binding protein 1, PPARα, 

and carnitine palmitoyltransferase [63], suggesting potential molecular disruptions in lipid 

handling. In utero exposures to several EDCs disrupts glucose homeostasis, including TCDD 

[103], arsenic [104], DEHP [58,105], PFOA [106], and PFOS [107]; however, the precise 

molecular defects remain largely undefined. In one study, however, in utero DEHP exposure 

induced inhibitory chromatin modifications at the GLUT4 promoter with reduced GLUT4 

expression [58], suggesting that site-specific epigenetic alterations may mechanistically 

define links between early life stressors and later life metabolic disease; however, significant 

additional work is required to define the relevant mechanisms in this area.

In addition to being a sensitive period of development for the fetus, pregnancy is also a 

window of susceptibility for mothers. For example, pregnant mice exposed to BPA exhibit 

hyperinsulinemia [101] similar to women with GDM before the onset of overt diabetes [3]. 

Pregnant dams exposed to BPA exhibited increased weight, impaired glucose tolerance, and 

insulin resistance [108••], effects likely arising from defects in adipocyte and β-cell function 

as these mice exhibited increased periuterine fat mass as well as reduced β-cell mass 

resulting from both decreased proliferation and increased apoptosis [108••]. Importantly, β-

cells from BPA-exposed dams exhibited persistent reductions in the expression of 

proliferative genes [cyclin D2 and cyclin-dependent kinase-4 (CDK4)] and increased 

expression of cell cycle inhibitors [p16 and p53] months after delivery [108••]. Collectively, 

these data suggest that MDC exposures during pregnancy may increase the risk of GDM 

while also predisposing to later life metabolic insults that augment diabetes risk (reviewed in 

[109]). To understand the impact of MDCs on metabolic risk in mothers and their offspring, 

further work into the underlying mechanisms responsible for these alterations are required, 

including efforts to precisely define causal epigenetic changes (e.g. DNA methylation and 

histone modifications) linked to energy physiology.
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MDCs and Classical Metabolic Risk

Central to understanding how MDCs threaten metabolic health is a need to appreciate how 

this emerging metabolic risk intersects with traditional diabetes and obesity risk factors (e.g. 

caloric excess, physical inactivity, sleep disruption, and aging). Current evidence indicates 

that MDCs potentiate these risks. For example, in C57BL/6 mice, high fat diet-induced 

glucose intolerance and insulin resistance were exacerbated by BPA exposure [52]. 

Similarly, perinatal BPA exposure impaired glucose tolerance and promoted 

hyperinsulinemia, effects amplified with high fat feeding [110]. Particulate matter [111] and 

the herbicide atrazine [112] also promoted insulin resistance in rodents on high fat but not a 

standard chow diet. However, this potentiation of metabolic risk is not uniform. Offspring of 

CD-1 mice exposed to BPA did not exhibit glucose intolerance or increased adiposity when 

fed either normal chow or a high fat diet [113]. Furthermore, while high fat feeding 

worsened glucose tolerance in arsenic-exposed C57BL/6 mice, these animals also exhibited 

reduced fat mass, improved fasting blood glucose, and may have had enhanced insulin 

sensitivity [114]. Thus, there are likely toxicant- and strain-specific differences that impact 

metabolic outcomes. Importantly, exploring these differences as well as interactions with 

specific dietary components may illuminate the underlying biological mechanisms by which 

MDCs promote disease risk.

Recently, disruptions in circadian rhythms have emerged as novel metabolic risk factors. In 

human and mouse models, impaired sleep and disruptions in normal circadian patterns of 

food intake impair metabolic health [115], and MDCs are emerging as novel contributors to 

disease risk in this area. For example, TF was shown to deleteriously alter normal circadian 

feeding patterns in mice [90•]. Additionally, population studies have associated higher 

urinary BPA levels with shorter sleep duration [116]; a finding supported by studies in male 

zebrafish demonstrating BPA-induced alterations in circadian activity [117]. Exposure to 

estradiol, tamoxifen, BPA, and 4-tert-octylphenol in mangrove killifish also altered 

expression of circadian clock genes [118•]. A mechanistic basis for these associations is 

supported by genetic analysis of these circadian genes demonstrating conserved promoter 

binding sites for estrogen, the AhR, and the xenobiotic response element [118•], factors 

implicated in various MDC responses.

Conclusions: From Mechanisms to Interventions

As our mechanistic understanding of MDC action improves, a central challenge moving 

forward is translating this knowledge into interventions to improve human health. Clearly, 

preventing exposures and rapid remediation of environmental contaminants is critical to 

address MDC-induced metabolic dysfunction. Indeed, there may be promise in this as one 

study demonstrated that arsenic’s β-cell toxicity in cultured islets could be reversed by 

incubation in arsenic-free media, providing evidence for islet recovery [14]. Where exposure 

reduction is not possible or the effects of exposures are irreversible, employing mechanism-

based therapeutics will be essential for improving human metabolic health. For those MDCs 

that interfere with β-cell insulin production, studies from neonatal diabetes may illuminate 

therapeutic approaches. The most common form of neonatal diabetes results from a 

heterozygous activating mutation in KCNJ11 that prevents closure of the KATP channel 
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[119]. In these patients, sulfonylureas are highly effective. Several MDCs affect β-cell KATP 

channel function, suggesting that sulfonylureas may be beneficial in these contexts as 

suggested by one study of TPT’s metabolic effects [12]. Conversely, several MDCs promote 

insulin resistance that impairs insulin action in peripheral tissues and stresses β-cells by 

increasing synthetic demand for insulin. While insulin is a mainstay of diabetes treatment, 

newer therapies that reduce the glycemic burden such as the sodium-glucose cotransporter-2 

(SGLT-2) inhibitors, or that promote a more physiologic insulin release from the pancreas, 

such as dipeptidyl peptidase-4 (DPP4) inhibitors and glucagon-like peptide-1 (GLP-1) 

receptor agonists may be beneficial in treating MDC-mediated diabetes. Because of the 

central role of adipose tissue in regulating global energy metabolism and evidence that many 

MDCs target adipocyte function, another class of anti-diabetic therapies of interest are the 

thiazolidinediones (TZDs), which target PPARγ and inhibit hepatic gluconeogenesis, 

improve adipose function, reduce inflammation, and increase insulin sensitivity [120–123]. 

Where oxidative stress is implicated in MDC action, investigations into the utility of 

antioxidants are warranted. This approach is supported by studies showing that pre-treatment 

with NAC mitigates some of the β-cell toxicity induced by arsenic [30,124] and BPA [29]. 

As our appreciation of MDCs as metabolic risk factors increases, future work mandates 

investigations into the specific disease-promoting mechanisms by which these toxicants 

work in order to devise targeted interventions to stem the global tide of metabolic 

deterioration.
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Abbreviations

EDCs endocrine disrupting chemicals

GDM gestational diabetes mellitus

MDCs metabolism disrupting chemicals

T1DM type 1 diabetes mellitus

T2DM type 2 diabetes mellitus

GI gastrointestinal

ATP adenosine triphosphate

ADP adenosine diphosphate

KATP potassium sensitive ATP channel
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TPT triphenyltin

GLP- 1 glucagon-like peptide-1

GIP gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide

cAMP cyclic AMP, NAD(P)H, Nicotinamide adenine dinucleotide phosphate

SNAP-25 Synaptosome Associated Protein 25kDa

GPCR G-protein coupled receptor

TBT tributyltin

PKA protein kinase A

PCB polychlorinated biphenyl

CamKII calcium/calmodulin-dependent protein kinase II

BPA bisphenol A

GSIS glucose-stimulated insulin secretion

PAH polycyclic aromatic hydrocarbon

ncmER non-classical membrane estrogen receptor

ER-β estrogen receptor beta

CREB cAMP-response element binding

ERα estrogen receptor alpha

ERK extracellular signal–regulated kinase

ER endoplasmic reticulum

DEHP diethylhexylphthalate

ROS reactive oxygen species

DNA deoxyribonucleic acid

NAC N-acetyl cysteine

JNK c-Jun-N-terminal kinase

NOD non-obese diabetic

IRS insulin receptor substrate

PI3-K phosphatidylinositol 3 kinase

PIP3 phosphatidylinositol triphosphate

PDK1 phosphoinositide-dependent kinase 1
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PKB Protein Kinase B

PM particulate matter

TCDD 2,3,7,8-tetrachlorodibenzo dioxin

TF tolylfluanid

POP persistent organic pollutant

PFOA perfluorooctanoic acid

PEPCK phosphoenolpyruvate carboxykinase

AhR aryl hydrocarbon receptor

PFOS perfluorooctanesulfonic acid

HNF4-α hepatocyte nuclear factor 4 alpha

PPARγ peroxisome proliferator activated receptor gamma

TNFα tumor necrosis factor alpha

AMPK 5' adenosine monophosphate-activated protein kinase

IL-1β interleukin 1 beta

NFκB nuclear factor kappa-light-chain-enhancer of activated B cells

MAPK mitogen-activated protein kinases

IL-6 interleukin 6

NEFA non-esterified fatty acids

Srebpc1 sterol regulatory element-binding proteins 1

PPARα peroxisome proliferator activated receptor alpha

Cpt1b carnitine palmitoyltransferase 1B

CDK4 cyclin-dependent kinase-4

SGLT-1 sodium-glucose cotransporter-2

DPP4 dipeptidyl peptidase 4

GLP-1 glucagon-like peptide-1
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Figure 1. 
Overview of the molecular mechanisms by which MDCs disrupt energy homeostasis in the 

β-cell, myocyte, hepatocyte, and adipocyte.

Mimoto et al. Page 23

Curr Environ Health Rep. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mimoto et al. Page 24

Ta
b

le
 1

Su
m

m
ar

y 
of

 c
el

lu
la

r 
an

d 
m

ol
ec

ul
ar

 e
ff

ec
ts

 o
f 

M
D

C
s 

w
ith

 c
om

m
on

 r
ou

te
s 

of
 e

xp
os

ur
e,

 n
at

io
na

lly
 r

ec
om

m
en

de
d 

sa
fe

 e
xp

os
ur

e 
le

ve
ls

, a
nd

 e
st

im
at

ed
 

el
im

in
at

io
n 

ha
lf

-l
iv

es
 in

 h
um

an
s

C
om

po
un

d
U

se
s 

an
d 

C
om

m
on

 
R

ou
te

s 
of

 E
xp

os
ur

e
R

ec
om

m
en

de
d 

Sa
fe

 
E

xp
os

ur
e 

L
ev

el
 in

 
H

um
an

s

C
el

lu
la

r/
M

ol
ec

ul
ar

 M
et

ab
ol

ic
 E

ff
ec

ts
E

lim
in

at
io

n 
H

al
f-

lif
e 

in
 H

um
an

s
R

ef
er

en
ce

s

O
rg

an
ot

in
s 

(T
PT

, T
B

T
)

*B
io

ci
de

 in
 m

ar
in

e 
pa

in
ts

, 
fu

ng
ic

id
e,

 w
oo

d 
pr

es
er

va
tiv

e,
 P

V
C

 
st

ab
ili

ze
r

*D
ri

nk
in

g 
w

at
er

, s
ea

fo
od

, 
PV

C
 p

ro
du

ct
s

0.
1 

m
g/

m
3  

ai
r 

(O
SH

A
/N

I 
O

SH
)

G
en

er
al

 m
ec

ha
ni

sm
s:

 A
ct

iv
at

es
 P

PA
R
γ 

an
d 

R
X

R
W

ho
le

 a
ni

m
al

s:
 I

nc
re

as
ed

 w
ei

gh
t, 

in
cr

ea
se

d/
re

du
ce

d 
in

su
lin

 le
ve

ls
, l

ep
tin

, h
ep

at
ic

 s
te

at
os

is
 β

-c
el

ls
: R

ed
uc

ed
 

G
SI

S,
 im

pa
ir

ed
 C

a2
+

 s
ig

na
lin

g,
 r

ed
uc

ed
 N

A
D

(P
)H

 a
nd

 
A

T
P,

 a
nd

 P
K

A
 le

ve
ls

In
su

lin
 ta

rg
et

 c
el

ls
: I

nc
re

as
ed

 a
di

po
ge

ne
si

s

Se
ru

m
 h

al
f-

lif
e 

3 
da

ys
 (

PO
P)

[1
1–

13
,7

5,
 7

6,
87

,1
03

, 1
25

]

A
rs

en
ic

*P
es

tic
id

es
, s

m
el

tin
g,

 
in

du
st

ri
al

 w
as

te
*D

ri
nk

in
g 

w
at

er
, s

oi
l, 

se
af

oo
d,

 r
ic

e,
 m

us
hr

oo
m

s,
 

po
ul

tr
y

10
 p

pb
 (

w
at

er
; E

PA
)

G
en

er
al

 m
ec

ha
ni

sm
s:

 O
xi

da
tiv

e 
st

re
ss

/U
nk

no
w

n
W

ho
le

 a
ni

m
al

s:
 G

lu
co

se
 in

to
le

ra
nc

e
G

es
ta

tio
na

l e
xp

os
ur

e:
 G

lu
co

se
 in

to
le

ra
nc

e,
 o

be
si

ty
 in

 
da

m
s 
β-

ce
lls

: R
ed

uc
ed

 G
SI

S,
 in

cr
ea

se
d 

R
O

S,
 im

pa
ir

ed
 

C
a2+

 s
ig

na
lin

g,
 in

su
lin

 g
ra

nu
le

 e
xo

cy
to

si
s,

 in
su

lin
 g

en
e 

ex
pr

es
si

on
. I

nd
uc

ed
 a

ut
op

ha
gy

, a
po

pt
os

is
.

In
su

lin
 ta

rg
et

 c
el

ls
: R

ed
uc

ed
 in

su
lin

 s
ig

na
lin

g,
 R

O
S,

 
re

du
ce

d 
he

pa
tic

 g
ly

co
ge

n

4–
6 

ho
ur

s;
 2

0–
30

 
ho

ur
s 

(m
et

hy
l a

te
d)

[1
4–

17
,3

0,
 3

1,
50

,5
3,

 
68

,1
04

,1
26

 ]

C
ad

m
iu

m
*B

yp
ro

du
ct

 o
f 

m
in

in
g,

 
co

m
bu

st
io

n,
 w

as
te

 
in

ci
ne

ra
tio

n
*S

oi
l, 

w
at

er
, a

ir
; l

ea
fy

 
ve

ge
ta

bl
es

, p
ea

nu
ts

, 
so

yb
ea

ns
, s

un
fl

ow
er

 s
ee

ds
; 

in
ha

la
tio

n

0.
00

5 
m

g/
L

 (
w

at
er

; E
PA

);
 

5 
μg

/m
3  

pe
r 

da
y 

(a
ir

; 
O

SH
A

)

G
en

er
al

 m
ec

ha
ni

sm
s:

 O
xi

da
tiv

e 
st

re
ss

/U
nk

no
w

n
W

ho
le

 a
ni

m
al

s:
 I

ns
ul

in
 r

es
is

ta
nc

e,
 in

cr
ea

se
d 

in
su

lin
 

le
ve

ls
β-

ce
lls

: R
ed

uc
ed

 G
SI

S,
 in

cr
ea

se
d 

R
O

S,
 m

ito
ch

on
dr

ia
l 

dy
sf

un
ct

io
n,

 a
po

pt
os

is
, m

ed
ia

te
d 

by
 J

N
K

In
su

lin
 ta

rg
et

 c
el

ls
: R

ed
uc

ed
 G

L
U

T
4

4–
38

 y
ea

rs
[3

3,
34

,5
9,

1–
27

]

M
er

cu
ry

*M
in

in
g,

 w
as

te
 

in
ci

ne
ra

tio
n,

 
m

an
uf

ac
tu

ri
ng

*F
is

h,
 s

he
llf

is
h,

 
m

ed
ic

al
/d

en
ta

l 
pr

oc
ed

ur
es

2 
pp

b 
(w

at
er

; E
PA

);
 1

 p
pm

 
(f

oo
d;

 F
D

A
);

 0
.1

 m
g/

m
3 

(a
ir

; O
SH

A
)

G
en

er
al

 m
ec

ha
ni

sm
s:

 O
xi

da
tiv

e 
st

re
ss

/U
nk

no
w

n
β-

ce
lls

: R
ed

uc
ed

 G
SI

S,
 in

cr
ea

se
d 

R
O

S,
 P

I3
 k

in
as

e 
an

d 
A

kt
, i

nd
uc

ed
 a

po
pt

os
is

 a
nd

 n
ec

ro
si

s.

1–
3 

w
ee

ks
 to

 1
–3

 
m

on
th

s 
(d

ep
en

d 
s 

on
 r

ou
te

 o
f 

ex
po

su
r 

e,
 c

hr
on

ic
it 

y)

[3
5,

36
]

A
lk

yl
ph

en
ol

i c
 C

om
po

un
ds

 
(e

.g
. O

ct
yl

ph
en

ol
, 

N
on

yl
ph

en
ol

 )

*S
ur

fa
ct

an
ts

, 
de

te
rg

en
ts

, e
m

ul
si

fi
er

s
*F

is
h,

 d
ri

nk
in

g 
w

at
er

, 
pe

rs
on

al
 c

ar
e 

pr
od

uc
ts

U
nd

et
er

m
i n

ed
G

en
er

al
 m

ec
ha

ni
sm

s:
 M

od
ul

at
es

 e
st

ro
ge

n 
si

gn
al

in
g

β-
ce

lls
: R

ed
uc

ed
 G

SI
S,

 im
pa

ir
ed

 m
ito

ch
on

dr
ia

l s
tr

uc
tu

re
 

an
d 

fu
nc

tio
n.

In
su

lin
 ta

rg
et

 c
el

ls
: I

m
pa

ir
ed

 F
A

 m
et

ab
ol

is
m

, r
ed

uc
ed

 
lip

og
en

es
is

2–
3 

ho
ur

s 
(P

O
P)

[1
9,

12
8]

B
PA

*F
oo

d 
pa

ck
ag

in
g,

 to
ys

, 
ca

nn
ed

 f
oo

d 
lin

er
s

*U
bi

qu
ito

us
 e

xp
os

ur
e

50
 m

cg
/k

g/
da

 y
 (

FD
A

) 
4 

m
cg

/k
g/

da
 y

 (
E

ur
op

ea
n 

Fo
od

 S
af

et
y 

A
ut

ho
ri

ty
)

G
en

er
al

 m
ec

ha
ni

sm
s:

 M
od

ul
at

es
 e

st
ro

ge
n 

si
gn

al
in

g
W

ho
le

 a
ni

m
al

s:
 G

lu
co

se
 in

to
le

ra
nc

e
G

es
ta

tio
na

l e
xp

os
ur

e:
 G

lu
co

se
 in

to
le

ra
nc

e,
 in

cr
ea

se
d 

w
ei

gh
t i

n 
bo

th
 d

am
s 

an
d 

of
fs

pr
in

g.
β-

ce
lls

: R
ed

uc
ed

 G
SI

S,
 d

is
ru

pt
ed

 m
ito

ch
on

dr
ia

l s
tr

uc
tu

re
 

an
d 

fu
nc

tio
n,

 in
cr

ea
se

d 
R

O
S

In
su

lin
 ta

rg
et

 c
el

ls
: R

ed
uc

ed
 in

su
lin

 a
ct

io
n 

an
d 

si
gn

al
in

g 
in

te
rm

ed
ia

te
s,

 in
cr

ea
se

d 
ad

ip
os

e 
in

fl
am

m
at

io
n 

(J
N

K
, 

N
Fκ

B
)

4–
5 

ho
ur

s
[1

9,
29

,4
0,

4–
8,

 5
1,

52
,7

7,
7–

8,
 9

2,
93

,1
01

, 1
02

, 1
08

]

Curr Environ Health Rep. Author manuscript; available in PMC 2018 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mimoto et al. Page 25

C
om

po
un

d
U

se
s 

an
d 

C
om

m
on

 
R

ou
te

s 
of

 E
xp

os
ur

e
R

ec
om

m
en

de
d 

Sa
fe

 
E

xp
os

ur
e 

L
ev

el
 in

 
H

um
an

s

C
el

lu
la

r/
M

ol
ec

ul
ar

 M
et

ab
ol

ic
 E

ff
ec

ts
E

lim
in

at
io

n 
H

al
f-

lif
e 

in
 H

um
an

s
R

ef
er

en
ce

s

Ph
th

al
at

es
/P

 h
th

al
at

e 
es

te
rs

 
(e

.g
. D

E
H

P,
 M

E
H

P)
*L

iq
ui

d 
pl

as
tic

iz
er

s;
 

L
en

d 
fl

ex
ib

ili
ty

 to
 

pl
as

tic
s 

(e
.g

. P
V

C
);

 
lu

br
ic

an
ts

, p
er

fu
m

es
, 

co
sm

et
ic

s,
 m

ed
ic

al
 

tu
bi

ng
, w

oo
d 

fi
ni

sh
es

, 
ad

he
si

ve
s,

 p
ai

nt
s,

 to
ys

, 
em

ul
si

fi
er

s 
in

 f
oo

d.
*U

bi
qu

ito
us

 e
xp

os
ur

e

D
E

H
P:

 6
pp

b 
(w

at
er

; E
PA

);
 

5m
g/

m
3 /

8 
ho

ur
 d

ay
 

(O
SH

A
)

G
en

er
al

 m
ec

ha
ni

sm
s:

 A
ct

iv
at

es
 P

PA
R
γ 

si
gn

al
in

g
W

ho
le

 a
ni

m
al

s:
 I

ns
ul

in
 r

es
is

ta
nc

e,
 r

ed
uc

ed
 h

ep
at

ic
 

gl
yc

og
en

, i
nc

re
as

ed
 R

O
S.

G
es

ta
tio

na
l e

xp
os

ur
e:

 in
cr

ea
se

d 
sy

st
em

ic
 in

fl
am

m
at

io
n 

an
d 

al
te

re
d 

ad
ip

os
e 

de
ve

lo
pm

en
t i

n 
of

fs
pr

in
g

β–
ce

lls
: R

ed
uc

ed
 G

SI
S,

 in
su

lin
 c

on
te

nt
, i

nc
re

as
ed

 R
O

S
In

su
lin

 ta
rg

et
 c

el
ls

: R
ed

uc
ed

 in
su

lin
 s

ig
na

lin
g,

 g
lu

co
se

 
ox

id
at

io
n,

 in
cr

ea
se

d 
R

O
S 

in
 m

us
cl

e

12
 h

ou
rs

[3
2,

56
,5

7,
6–

9,
 1

05
]

PC
B

s 
(m

ix
 o

f 
>

20
0 

co
ng

en
er

s)
*P

la
st

ic
iz

er
s,

 in
 r

es
in

s,
 

ca
rb

on
le

ss
 c

op
y 

pa
pe

r, 
ad

he
si

ve
s,

 p
ai

nt
s,

 in
ks

 
(b

an
ne

d 
19

79
)

*H
ig

h 
fa

t f
oo

d 
(d

ai
ry

, 
m

ea
t, 

fi
sh

)

0.
00

05
 p

pm
 (

w
at

er
; E

PA
) 

0.
2–

3.
0 

pp
m

 (
fo

od
; F

D
A

);
 

0.
5–

 1
.0

 m
g/

m
3  

(a
ir

; 
O

SH
A

);
 6

.0
 u

g/
kg

/d
 (

to
ta

l)

G
en

er
al

 m
ec

ha
ni

sm
s:

U
nk

no
w

n/
V

ar
ie

d
W

ho
le

 a
ni

m
al

s:
 G

lu
co

se
 in

to
le

ra
nc

e
β-

ce
lls

: i
nc

re
as

ed
 in

su
lin

 s
ec

re
tio

n 
an

d 
C

a2+
 s

ig
na

lin
g

6 
m

on
th

s 
- 

>
10

0 
ye

ar
s 

(v
ar

ie
s 

by
 

ex
po

su
r 

e;
 P

O
P)

[2
0,

12
9,

13
0]

D
io

xi
ns

 (
e.

g.
 T

C
D

D
, 

PC
B

12
6)

*B
yp

ro
du

ct
s 

of
 

sm
el

tin
g,

 p
ap

er
 

m
an

uf
ac

tu
re

, 
he

rb
ic

id
es

 a
nd

 
pe

st
ic

id
es

, h
os

pi
ta

l 
w

as
te

.
*S

oi
l, 

da
ir

y,
 m

ea
t, 

se
af

oo
d.

0.
01

- 
1n

g/
L

/d
ay

 p
g/

kg
/d

 
(w

at
er

; E
PA

)
G

en
er

al
 m

ec
ha

ni
sm

s:
 A

ct
iv

at
es

 A
hR

 s
ig

na
lin

g,
 in

du
ce

s 
in

fl
am

m
at

io
n

W
ho

le
 a

ni
m

al
s:

 G
lu

co
se

 in
to

le
ra

nc
e

β-
ce

lls
: R

ed
uc

ed
 G

SI
S,

 in
su

lin
 c

on
te

nt
; i

nc
re

as
ed

 b
as

al
 

in
su

lin
 s

ec
re

tio
n,

 [
C

a2+
] I

C

In
su

lin
 ta

rg
et

 c
el

ls
: R

ed
uc

ed
 in

su
lin

 s
ig

na
lin

g,
 in

cr
ea

se
d 

in
fl

am
m

at
io

n 
(J

N
K

, E
R

K
1/

2)
, r

ed
uc

ed
 h

ep
at

ic
 g

ly
co

ge
n

7–
11

ye
ar

s 
(P

O
P)

[5
4,

55
,6

5,
 7

1–
74

]

Pe
rf

lu
or

oa
lk

 y
l s

ub
st

an
ce

s 
(e

.g
. P

FO
A

, P
FO

S)
*S

ta
in

 r
es

is
ta

nt
 c

oa
tin

g 
in

 c
lo

th
in

g,
 c

oo
kw

ar
e,

 
up

ho
ls

te
ry

; f
oo

d 
pa

ck
ag

in
g

*F
oo

d,
 d

ri
nk

in
g 

w
at

er

70
 p

pt
 (

w
at

er
; E

PA
)

G
en

er
al

 m
ec

ha
ni

sm
s:

 M
od

ul
at

es
 e

st
ro

ge
n 

si
gn

al
in

g,
 

ac
tiv

at
es

 P
PA

R
α

 s
ig

na
lin

g
W

ho
le

 a
ni

m
al

s:
 A

lte
re

d 
lip

id
 m

et
ab

ol
is

m
, s

te
at

os
is

G
es

ta
tio

na
l e

xp
os

ur
e:

 in
cr

ea
se

d 
w

ei
gh

t, 
le

pt
in

, i
ns

ul
in

 
le

ve
ls

, g
lu

co
se

 in
to

le
ra

nc
e

In
su

lin
 ta

rg
et

 c
el

ls
: I

nc
re

as
ed

 in
su

lin
 s

ig
na

lin
g/

se
ns

iti
vi

ty
, 

re
du

ce
d 

he
pa

tic
 g

ly
co

ge
n 

sy
nt

he
si

s

3–
5 

ye
ar

s
[6

6,
10

6,
10

7,
13

1]

To
ly

lf
lu

an
id

*A
gr

ic
ul

tu
ra

l 
fu

ng
ic

id
e,

 b
io

ci
de

 o
n 

sh
ip

s,
 p

ai
nt

s
*F

oo
d,

 w
at

er
; 

oc
cu

pa
tio

na
l e

xp
os

ur
es

 
in

 s
hi

pp
in

g 
an

d 
ag

ri
cu

ltu
re

0.
1 

m
g/

kg
/d

ay
 (

FD
A

)
G

en
er

al
 m

ec
ha

ni
sm

: A
ct

iv
at

es
 G

R
 s

ig
na

lin
g

W
ho

le
 a

ni
m

al
s:

 in
cr

ea
se

d 
w

ei
gh

t, 
ad

ip
os

ity
, i

ns
ul

in
 

re
si

st
an

ce
, g

lu
co

se
 in

to
le

ra
nc

e,
 a

lte
re

d 
ci

rc
ad

ia
n 

fe
ed

in
g 

pa
tte

rn
s.

In
su

lin
 ta

rg
et

 c
el

ls
: r

ed
uc

ed
 in

su
lin

 s
ig

na
lin

g

ho
ur

s 
- 

da
ys

[4
9,

88
,9

0]

A
tr

az
in

e
*M

os
t w

id
el

y 
us

ed
 

he
rb

ic
id

e 
in

 th
e 

U
.S

.; 
us

ed
 o

n 
co

rn
, s

or
gh

um
, 

su
ga

r 
ca

ne
, C

hr
is

tm
as

 
tr

ee
s,

 g
ol

f 
co

ur
se

s
*F

oo
d,

 d
ri

nk
in

g 
w

at
er

3 
μg

/L
 (

w
at

er
; E

PA
),

 5
 

m
g/

m
3 /

sh
if

 t 
(O

SH
A

)
G

en
er

al
 m

ec
ha

ni
sm

s:
 U

nk
no

w
n

W
ho

le
 a

ni
m

al
s:

 I
nc

re
as

ed
 w

ei
gh

t, 
in

su
lin

 r
es

is
ta

nc
e

In
su

lin
 ta

rg
et

 c
el

ls
: R

ed
uc

ed
 in

su
lin

 s
ig

na
lin

g,
 

m
ito

ch
on

dr
ia

l t
ox

ic
ity

, i
m

pa
ir

ed
 F

A
 o

xi
da

tio
n 

in
 li

ve
r

10
–1

1 
ho

ur
s

[6
7,

11
2]

Pa
rt

ic
ul

at
e 

M
at

te
r

*A
er

os
ol

 p
ar

tic
le

s 
w

ith
 

di
am

et
er

 le
ss

 th
an

 2
.5

 
μm

; c
om

bu
st

io
n 

as
so

ci
at

ed
 w

ith
 tr

af
fi

c,
 

35
 μ

g/
m

3 
ai

r 
da

ily
 a

ve
ra

ge
; 

15
 μ

g/
m

3 
an

nu
al

 a
ve

ra
ge

.
G

en
er

al
 m

ec
ha

ni
sm

s:
 I

nf
la

m
m

at
io

n/
U

nk
no

w
n

W
ho

le
 a

ni
m

al
s:

 I
nc

re
as

ed
 v

is
ce

ra
l a

di
po

si
ty

, i
ns

ul
in

 
re

si
st

an
ce

U
nk

no
w

 n
[9

7,
98

,1
11

]

Curr Environ Health Rep. Author manuscript; available in PMC 2018 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mimoto et al. Page 26

C
om

po
un

d
U

se
s 

an
d 

C
om

m
on

 
R

ou
te

s 
of

 E
xp

os
ur

e
R

ec
om

m
en

de
d 

Sa
fe

 
E

xp
os

ur
e 

L
ev

el
 in

 
H

um
an

s

C
el

lu
la

r/
M

ol
ec

ul
ar

 M
et

ab
ol

ic
 E

ff
ec

ts
E

lim
in

at
io

n 
H

al
f-

lif
e 

in
 H

um
an

s
R

ef
er

en
ce

s

m
in

in
g,

 b
ur

ni
ng

 c
oa

l, 
oi

l, 
w

oo
d

*U
bi

qu
ito

us
; 

In
ha

la
tio

n

In
su

lin
 ta

rg
et

 c
el

ls
: R

ed
uc

ed
 in

su
lin

 s
ig

na
lin

g,
 P

K
C

 
ac

tiv
ity

, i
nc

re
as

ed
 in

fl
am

m
at

io
n,

 R
O

S,
 N

A
SH

, r
ed

uc
ed

 
gl

yc
og

en
.

Curr Environ Health Rep. Author manuscript; available in PMC 2018 June 01.


	Abstract
	Introduction
	MDC Disruption of β-Cell Function
	Endoplasmic Reticulum and Oxidative Stress in MDC Action
	MDC Disruption of Insulin Action
	Context-Dependent MDC Action
	Adipose Disruption and Global Metabolic Dysfunction
	Inflammation in MDC Action
	Developmental Origins of Metabolic Disease
	MDCs and Classical Metabolic Risk
	Conclusions: From Mechanisms to Interventions
	References
	Figure 1
	Table 1

