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Abstract

Background: HIV has the most serious effects in Sub-Saharan African countries as compared to countries in other
parts of the world. As part of these countries, Ethiopia has been affected significantly by the disease, and the
burden of the disease has become worst in the Amhara Region, one of the eleven regions of the country. Being a
defaulter or dropout of HIV patients from the treatment plays a significant role in treatment failure. The current
research was conducted with the objective of comparing the performance of the joint and the separate modelling
approaches in determining important factors that affect HIV patients’ longitudinal CD4 cell count change and time
to default from treatment.

Methods: Longitudinal data was obtained from the records of 792 HIV adult patients at Felege-Hiwot Teaching and
Specialized Hospital in Ethiopia. Two alternative approaches, namely separate and joint modeling data analyses,
were conducted in the current study. Joint modeling was conducted for an analysis of the change of CD4 cell
count and the time to default in the treatment. In the joint model, a generalized linear mixed effects model and
Weibul survival sub-models were combined together for the repetitive measures of the CD4 cell count change and
the number of follow-ups in which patients wait in the treatment. Finally, the two models were linked through
their shared unobserved random effects using a shared parameter model.

Results: Both separate and joint modeling approach revealed a consistent result. However, the joint modeling
approach was more parsimonious and fitted the given data well as compared to the separate one. Age, baseline
CD4 cell count, marital status, sex, ownership of cell phone, adherence to HAART, disclosure of the disease and the
number of follow-ups were important predictors for both the fluctuation of CD4 cell count and the time-to default
from treatment. The inclusion of patient-specific variations in the analyses of the two outcomes improved the
model significantly.

Conclusion: Certain groups of patients were identified in the current investigation. The groups already identified
had high fluctuation in the number of CD4 cell count and defaulted from HAART without any convincing reasons.
Such patients need high intervention to adhere to the prescribed medication.
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Background
HIV is more prevalent in Sub-Saharan African countries
like Ethiopia, and accounted for approximately 71% of
world total of HIV infected people in 2013 [1, 2]. In
Ethiopia the incidence rate was 1.5% [3, 4]. As other re-
gions in Ethiopia, the Amhara region, the study area, is
highly affected by the disease [5].
Highly Active Antiretroviral Therapy (HAART) is a life

time treatment therapy given to HIV infected individuals.
The therapy is given as a combination of different medica-
tion drugs based on the mechanism of treating the viruses
[6], and the usual measure of success or failure of the ther-
apy is the patient’s CD4 cell count. Other factors that can
affect the CD4 cell count of patients on HAART are: age
(aged patients have lower CD4 count responses to
HAART [7–9]); sex (females have higher CD4 count re-
sponses to HAART [10]); and residential area (rural pa-
tients have lower CD4 cell count responses to HAART
[11]). Some earlier scholars also showed that WHO HIV
stages are a self-determining indicator for the variation or
fluctuation of CD4 cell count change at the starting time
of HAART [12]. Another study reported that there is a
positive correlation between baseline CD4 cell count
change and the CD4 cell count after the commencement
of HAART [13, 14].
Earlier studies were conducted on the joint modeling

of CD4 cell count change and time to default from the
treatment considered that the CD4 cell count change as
continuous variable [15] but the distribution of the CD4
count change, whatever it is, is discrete. This means the
formal statistical results of [15] maybe invalid because of
regarding discrete response CD4 cell count change as
continuous. Furthermore, previous joint models were
conventional linear mixed effect models with the as-
sumption of constant within subject variance [16] a re-
strictive assumption which if violated by the data
renders statistical analysis results invalid. The above
mentioned shortcomings on what has been done on the
joint modeling suggested considering the more flexible
generalized linear mixed effect models in conjunction
with parametric and semi parametric survival time
models for the joint and separate modeling of CD4 cell
count change and time to default from HAART to deter-
mine predictors of these patients’ responses. As far as
we are aware of the literature, no other such investiga-
tion has been conducted.

Methods
Source of data
The longitudinal data used in this study consists of re-
cords of 792 HIV infected adult patients (at least 18 years
old) enrolled at Felege Hiwot Teaching and Specialized
Hospital, Amhara region, northwest Ethiopia. The hos-
pital started the free HAART program in 2005 when

there was limited ART service in public health institu-
tions. However, the data consists of a record of patients
with at least two follow-up visits as from September
2008 to August 2012 of the study period. Before starting
HAART, patients were given health and HAART related
education. Patients visited the Teaching and Specialized
Hospital monthly for the first six months for HAART
and thereafter quarterly for the remaining study period
to get HAART medication for the subsequent months
and for the review of the progression of their CD4 cell
count change. An administrative permission was given
by respective ethical committee of two universities
namely Bahir Dar University Ethical approval committee
(which belongs to Bahir Dar University), Ethiopia with
Ref≠ RCS/1412/2006 and School of Science Research
Ethics Review Committee (which belongs to University
of South Africa, South Africa, Ref#2015 − SSR − ERC_
006, to use secondary data for current research. We can
attach the written ethical statements up on request. The
quality of data was controlled by the ART section of the
hospital.

Response variables in the data
The response variable of interest, CD4 cell count
change, was calculated from the laboratory determined
CD4 cell counts of the patients at follow-up visits as:

Δyij ¼ yij−yij−1 ð1Þ

where yij and yij − 1are the respective measured CD4 cell
counts of patient i at the jth and (j-1)th follow-up visits.
The other response variable of interest was the time to
default from HAART or equivalently the number of
follow-up visits to default from HAART.

Predictor variables in the data
The time invariant predictors were: sex (Male, Female);
residential area (Urban, Rural); level of education (No
education, Primary, Secondary and Tertiary); marital sta-
tus (Living with partner, Living without partner); level of
income (Low, Middle and High); WHO stages of HIV
(Stage1, Stage2, Stage3 and Stage4); ownership of cell
phone (Yes, No), whether or not the patient disclosed
the disease (Yes, No); age in years; and baseline CD4 cell
count in cells/mm3. Descriptive statistics of these vari-
ables are in the RESULTS section of this paper.

The generalized linear mixed effects model
Let yij (i = 1,2,…,n; j = 1,2,…,ni) be the CD4 count change

of patient i at follow up visit time j; Yi = ðyi1; yi2;…:yiniÞT
;XT

i1 be an ni × p design matrix of fixed effects for patient
i that is associated with the p-dimensional vector β1 of
fixed effects; and ZT

i1 be an ni × q design matrix of ran-
dom effects for patient i that is associated with the q-
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dimensional vector νi of patient specific random effects.
Then, if the conditional distribution of Yi given νi is
from the exponential family, the generalized linear
mixed effects model for Yi can be written as:

g Y ið Þ ¼ X i1
Tβ1 þ ZT

i1νi þ εi ð2Þ

where g(.) is the link function that is completely specified
by specifying the conditional of Yi in the exponential fam-
ily. For example, g (.) = log (.) if the distribution is Poisson
as is possibly the case with the CD4 cell count change.
Usually, νi is assumed to be multivariate normally distrib-
uted with mean vector zero and covariance matrix, νi, and
εi assumed to be multivariate normally distributed with
mean vector zero and covariance matrix Iσ2ε : The term
ZT
i1νi in model (2) accounts for patient level variation in

CD4 cell count change. Model (2) was fitted to the data
using Proc glimmix in SAS Version 9.2.

Survival time models
Let tj (j = 1,2,…,n) be the time to default from HAART for
patient i; and XT

i2 = (x12, x22, …xk2) be a p-dimensional
fixed effects vector of covariates for patient i that is associ-
ated with the p-dimensional vector β2 of fixed effects.
Then both the parametric and the semi parametric models
for tj have hazard functions at the time t of the form:

hi tð Þ ¼ h0 tð Þ exp X i2
Tβ2

� � ð3Þ

with the difference that parametric models specify the
baseline hazard function h0(t) (or equivalently the distri-
bution of tj). The usual specified distributions include
the Weibull, the Exponential, the Log logistic and the
Log normal. For example, when the distribution is
Weibull model (2) becomes the parametric model:

hi tð Þ ¼ ∅ρtρ−1 exp X i2
Tβ2

� � ð4Þ

where ∅ is the dispersion parameter and ρ is the shape
parameter of the distribution. The semi-parametric
model (unspecified to h0 (t)) is the widely used Cox
Proportional Hazards (PH) model [17]. The parametric
and semi-parametric models were fitted to the data
using Proc glimmix in SAS Version 9.2.
In this study, the direct formulation of joint modeling

of both CD4 cell count change and time to default from
HAART with the introduction of Bayesian perspective
within Markov Chain Monte Carlo (MCMC) structures
[18] was adopted. The generalized linear mixed model
for CD4 cell count change becomes:

g Y ið Þ ¼ X i1
Tβ1 þ ZT

i1νi þ εi ð5Þ

as in model (2) but with the assumption that εi~ N(0, biI)
and log(bi)~ N(0, σ2b ) [19]. Here, bi denotes for the actual

variability for specific- patients which follows a log-normal
distribution with mean 0 and variance σ2b [20].
The corresponding survival time model is expressed as:

hi tð Þ ¼ h0 tð Þ exp X i2
Tβ2

� �þW i2

where W i2¼νTi τþτqþ1 logbi þ νqþ1 (with νi and bi as
defined in model (5), (τT, τq + 1) a vector of parameters,
and νq + 1~ N(0, σ2ν ), a frailty effect is an added
heterogeneity term to model (3) in order to account for
communal and patient specific random effects. In this
context model (4) becomes:

hi tð Þ ¼ ∅ρtρ−1 exp XT
i2β2

� �þWi2 ð6Þ
Thus, the models for CD4 cell count change and time

to default from HAART are correlated through the ran-
dom effect models:

Wi1 ¼ ZT
i1νi ð7Þ

and

W i2¼νTi τþτqþ1 logbi þ νiqþ1 ð8Þ
In this study, νi = (νi0)T is the random of patient i’s

effect and ν02 is the random fraility term.

Joint model selection
The specific nature of random effect models (7) and (8)
is selected using the Deviance Information Criterion
(DIC) [15, 21] which is a hierarchical form of common
Akaike Information Criteria (AIC) [22]. As with the
AIC, a model with the smallest DIC is preferred.

Results
The data was analyzed using SAS Version 9.2. Table 1
displays the summary statistics of the predictor variables
in the data. Among the sample of 792 patients: 40.9%
were rural residents; 50.6% were females; 44.8% were
living with their partner; 72.6% of them disclosed their
disease; 50.5% were owners of cell phone; and 68.2% of
the patients had good adherence to HAART.
A decision had to be made on whether or not the con-

ditional distribution of the CD4 cell count change was
standard Poisson, quasi-Poisson or negative Binomial.
Figure 1 displays the graph of the average CD4 cell count

change versus the corresponding standard deviation at each
follow-up visit time. The graph shows that at each visiting
time, the variance was greater than the mean which sug-
gested that the distribution of the CD4 cell count change
was over dispersed, and hence could be either be negative
Binomial or quasi-Poisson. The quasi-Poisson model was
preferred, because the average CD4 cell count change was
greater than the cut-off point [14], and because the com-
parison of the negative Binomial and the quasi-Poisson
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model using the information criteria statistics (the smaller is
the better) in Table 2 favored the quasi-Poisson model.
To fit the survival model, the parametric (Weibul

models) and semi-parametric (Cox proportional hazard
Model) models were take in to consideration and the two
models were compared using AIC. As usual, the goodness
of fit of the Weibul and Cox Proportional models were
compared using a test statistics such as the Akakai infor-
mation criteria (AIC) and Bayesian information criteria
(BIC) and Pearson Chi-square divided by degree of free-
dom, assuming the smaller value as the better one. The
comparison between survival models (Weibul and Cox
proportional models) is shown in Table 3.
Table 3 indicates that Weibul has smaller Pearson chi-

square/d.f, AIC and BIC. Hence Weibul was in favor of
Cox proportional hazards model and it fitted the data
well as compared to proportional hazards model.

Models (2) and (5) were fitted to the data using Proc
glimmix in SAS Version 9.2. The two models are shown
in Table 4, and are not very different from each. However,
model (5) fitted the data better because model (5) has
smaller posterior estimates for many of the predictors.
Estimation of parameter in both the full Weibull and

exponential models were similar to each other, but the esti-
mated Weibull shape parameter, ρ was 0.763 with 95% CI
(0.484, 0.990) which is less than 1 and indicates that default
rate decreased as the number of follow-ups increased.
In view of the fact that results and conclusions of this

study will be most valid and reliable if the missing obser-
vations (due to patient dropouts/defaulters) are missing
completely at random (MCAR), the data was analyzed as
described in Table 4 to assess the data missing mechan-
ism. A logistic regression model with 0 = missing and
1 = not missing responses was fitted to the data to obtain

Table 1 Descriptive statistics of potential predictor variables of CD4 cell count change and time to default from HAART in the data
sample size 792

Variable Average No (%)

Weight (kg) 62 (58, 70) –

Baseline CD4 count cells/ mm3 150 (113, 198) –

Age (years) 36 (28, 48) –

First month / initial CD4 cell count change/mm3 15.9 (12-26) –

Sex Male 391 (49.4)

Female 401 (50.6)

Educational status no education 160 (20.2)

Primary 205 (25.9)

Secondary 273 (34.5)

Tertiary 154 (19.4)

Residential area Urban 468 (59.1)

Rural 324 (40.9)

Marital status Living with partner 355 (44.8)

Living without Partner 437 (55.2)

Level of Income Low income (< 500 ETB per month) 355 (44.8)

Middle income (5001-999 ETB per month) 346 (43.7)

High income (≥1000ETB per month) 91 (11.5)

WHO HIV Stage Stage I 101 (12.8)

Stage II 258 (32.6)

Stage III 199 (25.1)

Stage IV 234 (29.5)

Disclosure Yes 575 (72.6)

No 217 (27.4)

Cell ownership Yes 400 (50.5)

No 392 (49.5)

First month HAART adherence Good 540 (68.2)

Fair 160 (20.2)

Poor 92 (11.6)
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Table 5. All the effects are insignificant which suggests
that MCAR was the data missing mechanism.

Joint model results
First the separate data analyses were conducted and then
two joint models with different latent process were con-
ducted for the fluctuation of repetitive CD4 cell count. The
first were joint models with homogeneous variance as-
sumptions using (1) and the other was joint models with
heterogeneous variance of CD4 count change for each indi-
vidual (5). Hence, the longitudinal sub model was described
by both the common/conventional generalized linear mixed
effects model and by the generalized linear mixed effects
model including patient-explicit variances. Alternatively,
the time to default from the HAART sub-model was fitted
using a full Weibul distribution and the two sub-models
were related applying communal covariates.
Based on the baseline variables, the longitudinal sub

models were constructed using the usual generalized lin-
ear mixed effect model with the assumption of homoge-
neous patient specific CD4 cell count change and log
likelihood function was reduced as it was done in the
joint models with inclusion of different random effects
and different forms of latent processes W1 (t) and W2

(t). In constructing joint models, the simple joint model
(model, (2)) with no random effect in the two sub model
was conducted. Next, joint models with random inter-
cept v0 and a frailty term v3 were constructed succes-
sively. The inclusion of a frailty term, v3 in the time to
default sub-model, leads for improvement of the model.
Hence, DIC decreased as frailty terms included in the
time-to default sub model W2(t).
The correlation between W1(t) and W2(t) was intro-

duced using communal random intercept, v0 and this
indicates that the DIC further decreased. In addition
to the random intercept, the random slope was also
included in the longitudinal data analysis. The inclu-
sion of random slope also reduced the DIC. The re-
sult of this subsequent reduction of DIC is indicated
in Table 6.
Table 6 indicates that the inclusion of random inter-

cept as well as random intercept and slopes substantially
reduced the DIC.
On the other hand, the generalized linear mixed

effect model with the inclusion of subject-explicit
CD4 cell count change variability in longitudinal
data analysis was conducted. These joint models re-
late the variability existed in CD4 cell count changes

Fig. 1 The average CD4 cell count change versus the corresponding standard deviation at each follow-up visits

Table 2 Comparison of quasi-Poisson and negative Binomial
models using information criteria

Criterion quasi-Poisson negative-Binomial

Value d.f Value/d.f Value d.f Value/d.f

Pearson Chi-square 1309 773 1.693 1530 773 1.98

Log likelihood − 2159 − 2658

AIC 4355 5354

BIC 4444 5443

Table 3 Comparison of Weibul and Cox regression models
using information criteria

Criterion Weibul model Cox regression model

Value d.f Value/d.f Value d.f Value/d.f

Pearson Chi-square 1409 773 1.83 1630 773 2.11

Log likelihood − 2059 −2658

AIC 4255 5454

BIC 4544 5543
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to the follow-up visits defaulting from HAART. This
relation shows that fluctuation(ups and downs) of
the longitudinal outcome (CD4 cell count change)
can be quantified as hazard ratio [23]. Hence, the in-
clusion of patient/subject specific CD4 cell count
fluctuation in joint model improves the model to fit
the data well. The selected model indicates that pa-
tient’s survival was related to the increase of rate of

CD4 cell count and decrease of its fluctuation/vari-
ability of CD4 cell count which further indicates that
the increase of CD4 count change for a particular
patient leads to better health status and such patient
has less likely in defaulting from treatment. While,
patients with high variability of CD4 cell count
change leads to poor health conditions and has more
likelihood in defaulting from HAART.

Table 4 Posterior means and correspondence p-values for parameter estimation with inclusion and exclusion of patient specific
variance

Effect Model (2): With homogeneity of variance for patients Model (5): With patient specific variance/heterogeneity

Posterior estimate p-value Posterior estimate p-value

Intercept 4.350 0.004 4.130 0.002

Age −0.006 0.003 − 0.036 0.005

Weight 0.001 0.082 0.001 0.082

Baseline CD4 0.005 0.008 0.002 0.008

Area (Reference = Urban)

Rural −0.002 0.064 −0.003 0.003

Marital Status (Reference = without partner)

With partner 0.007 0.003 0.005 0.003

Sex (Reference =male)

Female 0.034 0.004 0.023 0.003

Level of education (Reference = Tertiary)

No educationl 0.001 0.076 0.001 0.076

Primary education 0.017 0.044 0.017 0.034

Secondary education 0.020 0.028 0.010 0.038

Level of Income (Reference = High income)

Low income −0.010 0.074 −0.020 0.064

Middle income −0.006 0.062 −0.016 0.052

Owner of Cell phone (Reference =With phone)

Without cell phone −0.001 0.004 −0.001 0.004

Level of adherence (Reference = Good adherence)

Poor adhere −0.523 0.004 −0.483 0.002

Fair adhere −0.452 0.001 −0.552 0.002

Level of disclosure the disease (Reference = yes)

No - 0.00195 0.0031 −0.1020 0.0031

WHO stages (Reference = Stage IV)

Stage I 0.1511 0.0021 0.2511 0.0021

Stage II 0.1567 0.0321 0.1567 0.0321

Stage III 0.1381 0.2311 0.4381 0.0311

Time 0.0210 0.0013 0.1210 0.0213

Var (νi0) 0.8820 0.8620

Var (νi1) 0.0210 0.0110

Cov (νi0, νi1) - 0.0542 - 0.0642

Corr (νi0, νi1) −0.8214 −0.7314

DIC 234,763 212,393

νi0 is the random of patient i effect and νi1 is the random fraility term
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Separate and joint model comparisons
Considering the final selected joint model, the results ob-
tained from this model was compared to the separated
models (without latent association introduced by W2). The
models with subject specific CD4 cell count change vari-
ability had smaller DIC as compared to models without
subject specific CD4 cell count variability. To compare the
joint and separate models, first subject specific CD4 cell
count change incorporated the variability to both models
were considered. The comparison of the two approaches
was indicated in Table 7. During comparison, only signifi-
cant predictors at separate models were considered.
Table 7 indicates that, the posterior estimates of the cor-

related parameters at joint model analysis were consider-
ably different from zero and this is an indication of the
correlation between the two sub models. The estimate of
the shape parameter in the CD4 cell count fluctuation is
negative (τ1= − 2.324) which indicates that the increase in
the fluctuation of the CD4 cell count change was nega-
tively associated with the number of follow-up visits in
HAART. The positive value of association for parameters
in the CD4 cell count change variability indicates that
there is a direct proportionality between the CD4 cell
count change fluctuation and the hazard of defaulting
from HAART. Hence, as the CD4 cell count change vari-
ability increased, the hazard of defaulting also increased.

The convergence of the final joint models was checked
with time series of iterations. There was a higher degree
of randomness between successive iterations and this in-
dicates that the value converged to a particular target
density. The estimated hazard ratio and 95% credible in-
tervals for the joint survival and CD4 cell count change
data were indicated in Table 8.
As presented in Table 8, some covariates such as age,

baseline CD4 cell count, marital status, cell phone owner-
ship, adherence level, disclosure’s level of disease and the
number of follow-ups of patients had significant effect on
both the repetitive measures of the CD4 cell count fluctu-
ation and the number of followed-up visits required to de-
fault from HAART. Hence, as age of a patient increased,
the CD4 cell count change as well as its waiting time in the
HAART decreased. However, whenever a patient started
his/her HAART with a relatively high baseline CD4 cell
count, the number of CD4 cell count and waiting time in
the HAART also increased. Patients without the ownership
of cell phone had decreased by 0.01 (e−0.006) his/her
improvement of CD4 cell count change as compared to
patients who owned cell phone. Fair adherent patients had
33% less probability to have improvement in their CD4 cell
count as compared to good adherent patients. Similarly,
poor adherent patients had 41% less likelihood to have
improved their CD4 cell count as compared to good
adherent patients. Such poor adherent patients had a short
waiting time in the HAART. As the visiting times/ the
number of follow-ups visits of a patient increased by one
unit, the improvement of his/her CD4 cell count increased
by 2.1%, keeping the other variables constant. Female pa-
tients had 3.4% improvement in their CD4 cell count
change as compared to males.

Discussions
The study was conducted using a Bayesian approach to
jointly model the CD4 cell count change and the time to
default from HAART. The results of the current study
indicate that the joint model was in favor of separate
models for determining the predictors of CD4 cell count
change and time to default. This outcome is comple-
mented by the results of previous research [15] . An-
other study stated that joint models showed a significant
difference between treatment groups that was not identi-
fied by the separate model data analyses [18]. Since the
correlated parameters in the communal random effect

Table 5 Posterior effects of the predictor variables from modeling
CD4 cell count change with models (2) (no patient specific
variance) and (5) (with patient specific variance)

Parameters Estimate Standard error P-values

Intercept 1.808 0.910 0.470

Age − 0.658 0.145 0.831

Follow up times 0.047 0.052 0.058

Previous CD4 cell count (ref=yj ≤ yj − 1) or Ii = 0

Ii = 1 (yj > yj − 1) 0.072 0.320 0.650

Gender (ref = female)

Male 0.003 0.084 0.976

Residence area (ref = Urban)

Rural −0.380 0.083 0.648

Marital status(ref = living without partner)

Living with partner 0.109 0.086 0.208

where yj is the CD4 cell count at the jth follow-up visit; yj − 1 is the CD4 cell
count at the (j-1)th follow-up visit

Table 6 Model selection for joint data analysis using generalized linear mixed effect for longitudinal data and Weibul Survival
models for survival data

Random Effects W1(t) W2(t) DIC

Only fixed effect 0 0 3547

Fixed effect +random intercepts only v0 0 3506

Fixed effect +Random intercept+ random intercepts and slopes v0+v1(t) τ0v0+τ1v1+v3 3481
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Table 7 A separate and joint model comparison for longitudinal CD4 cell count change and time to default from HAART

parameter Separate models Joint models

Posterior mean p-value Posterior mean p-value

Longitudinal sub models

Intercept 4.350 0.004 4.130 0.002

Age −0.006 0.003 − 0.036 0.005

Weight 0.001 0.082 0.001 0.082

Baseline CD4 0.004 0.008 0.002 0.008

Marital Status (Reference = without partner)

With partner 0.007 0.003 0.005 0.003

Sex (Reference =male)

Female 0.034 0.004 0.023 0.003

Ownership of cell phone (Reference =With phone)

Without cell phone −0.001 0.004 −0.001 0.004

Level of adherence (Reference = Good adherence)

Poor adherence − 0.523 0.004 − 0.483 0.002

Fair adherence −0.452 0.001 −0.552 0.002

Level of disclosure of the disease (Reference = yes)

No −0.002 0.003 −0.102 0.003

WHO stages (Reference = Stage IV)

Stage I 0.151 0.002 0.251 0.002

Stage II 0.1567 0.032 0.157 0.032

Stage III 0.1381 0.231 0.438 0.031

Time 0.021 0.001 0.121 0.021

Var (V0i) 0.882 0.032 0.862 0.023

Var (V1i) 0.021 0.043 0.011 0.005

Cov (V0i, V1i) - 0.054 0.032 - 0.064 0.006

Corr (V0i, V1i) −0.821 0.021 −0.731 0.001

Survival sub models

Intercept 1.202 0.003 1.402 0.004

Age −0.006 0.003 −0.036 0.005

Baseline CD4 0.004 0.008 0.002 0.008

Marital Status (Reference = without partner)

With partner 0.007 0.003 0.005 0.003

Sex (Reference =male)

Female 0.034 0.004 0.023 0.003

Without cell phone −0.001 0.004 − 0.001 0.004

Level of adherence (Reference = Good adherence)

Poor adherence − 0.523 0.004 − 0.483 0.002

Fair adherence −0.452 0.001 −0.552 0.002

Level of disclosure the disease (Reference = yes)

No − 0.002 0.003 − 0.102 0.003

WHO stages (Reference = Stage IV)

Stage I 0.151 0.002 0.251 0.002

Stage II 0.157 0.032 0.157 0.032

Stage III 0.138 0.231 0.438 0.031
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models measure the link between the two sub models,
the associated information or common predictors of the
repetitive outcomes and the time to default from
HAART can be identified easily. The joint model had a
smaller posterior mean as compared to the separate
models and this indicates that the joint model fits the
data well as compared to the separate models. The in-
clusion of subject specific variability in longitudinal CD4
cell count change improved the model significantly.
Elder patients had higher CD4 cell count change fluctu-
ation as compared to youngsters and this indicates that
elders had low CD4 cell count change improvement and
had short waiting time in HAART. This might be related
to the case that elders are non-adherent as compared to

youngsters [24]. On the other hand, it is known that as
patient’s age increased, his/her CD4 cell count decreased
and such a patient might be defaulted because of death
and other reasons. Previous research indicates that CD4
cell count change had been affected by sex, clinical
stages and educational levels [15]. Females had a better
CD4 cell change improvement as compared to males;
this might be the reason that females have good experi-
ence in prenatal and postnatal healthcare follow-ups as
compared to males. Females also had experience in tak-
ing pills for family planning. This experience made fe-
male patients to be adherent to the prescribed
medication properly and to have long waiting time in
HAART program as compared to males. As the number

Table 7 A separate and joint model comparison for longitudinal CD4 cell count change and time to default from HAART
(Continued)

parameter Separate models Joint models

Posterior mean p-value Posterior mean p-value

Time(visiting time) 0.021 0.001 0.121 0.021

τ1 −2.324 0.005

τ3 0.051 0.003

ρ 0.654 0.004 0.864 0.003

Table 8 Average fluctuation of CD4 cell count and Hazard Ratio estimates for final selected joint models

parameter Parameter estimate Hazard Ratio (HR) estimate.

Average fluctuation 95% Credible interval HR 95% Credible intervals

Intercept −4.350 (−7.435, −2.856) 0.1295 (0.082, 0.454)

Age −0.006 (−0.003, −0.019) 0.0362 (0.009, 0.052)

Weight 0.001 (−0.008, 0.002) 0.0056 (0.001,0.008)

Baseline CD4 count 0.004 (0.001, 0.025) 0.0015 (0.001,0.002)

Marital Status (Reference = without partner)

With partner 0.007 (0.003, 0.009) 0.005 (0.003, 0.008)

Sex (Reference =male)

Female 0.034 (0.004,0.067) 0.023 (0.003,0.075)

Ownership of cell phone (Reference =With phone)

Without cell phone −0.006 (−0.004, − 0.024) 0.007 (0.004, 0.009)

Level of adherence (Reference = Good adherence)

Poor adherence −0.523 (− 0.644, − 0.235) 0.483 (0.002, 0.621)

Fair adherence −0.452 (− 0.671, − 0.253) 0.552 (0.092,0.831)

Level of disclosure of the disease (Reference = yes)

No −0.002 (− 0.073, − 0.001) 0.1020 (0.003,0.324)

WHO stages (Reference = Stage IV)

Stage I 0.151 (− 0.002, 0.246) 0.2511 (0.081, 0.452)

Stage II 0.157 (0.032, 0.224) 0.1567 (0.092, 0.421)

Stage III 0.138 (−0.231, 0.231) 0.4381 (0.231, 0.643)

Time 0.021 (0.001, 0.064) 0.1209 (0.091, 0.241)

τ1 −2.965 (−4.547, −1.234) 0.0341 (0.010, 0.067)

τ3 0.653 (0.254, 0.923) 1.7342 (1.234, 1.966)
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of follow-ups for patients increased, the defaulting rate
of patients from the HAART program decreased. This
might be happen since patients with long visiting time
acquire more experience to adhere to the medication
and this leads to improve their CD4 cell count progres-
sion and such patients might have long waiting time
(greater number of follow-ups) in the HAART program.
Patients with ownership of cell phone had a better CD4
cell count progress (growth) as compared to those with-
out cell phone. Patients who used cell phone as memory
aid had a better CD4 cell count progress/low CD4 cell
count fluctuation. This memory aid helps to take pills
on time and this has its own impact on the progress of
the CD4 cell count and on the longevity of patients in
the HAART program.

Conclusion
Certain groups that require intervention had been identi-
fied in the current research and these groups need special
attention for the longevity of their life within HAART. An
integrated intervention becomes effective for the patients
to survive for long period of time with in the treatment.
Ministry of Health or health staff should advise the pa-
tients to adhere to the prescribed medication properly to
improve their CD4 cell count change/progress and to have
a long time to default from HAART program. Health edu-
cation should be given to patients who are living in rural
areas, and who came after a declined number of CD4 cell
count for diagnosis. Medical advice should also been given
to patients to disclose the disease to get social support
from families and communities and to have longer waiting
time within the treatment.
The current research had limitations that the results ob-

tained using a Bayesian approach may be different if likeli-
hood approaches would be included and triangulated. This
gap might be considered as potential area for future re-
searchers. The data had been taken from one treatment
site. If such data would be collected from different health
institutions, the results may be different. The results of the
current investigation are useful to make integrated inter-
vention in providing health education to the patients, and
would help to guide the policy and management of
HAART. Further studies are recommended with additional
predictors such as nutrition, religion, and consumption of
substances on CD4 cell count change. The quality of health
service provision which is not included under this study
may have direct or indirect effects on patients’ CD4 cell
count change and this also needs further investigation in
for future researches.
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