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Abstract

Meditation practice as a non-pharmacological intervention to provide health related benefits has 

generated much neuroscientific interest in its effects on brain activity. Electroencephalogram 

(EEG), an imaging modality known for its inexpensive procedure and excellent temporal 

resolution, is often utilized to investigate the neuroplastic effects of meditation under various 

experimental conditions. In these studies, EEG signals are routinely mapped on a topographic 

layout of channels to visualize variations in spectral powers within certain frequency ranges. 

Topological data analysis (TDA) of the topographic power maps modeled as graphs can provide 

different insight to EEG signals than standard statistical methods. A highly effective TDA 

technique is persistent homology, which reveals topological characteristics of a power map by 

tracking feature changes throughout a filtration process on the graph structure of the map. In this 

paper, we propose a novel inference procedure based on filtrations induced by sublevel sets of the 

power maps of high-density EEG signals. We apply the pipeline to simulated and real data, where 

we compare the persistent homological features of topographic maps of spectral powers in high-

frequency bands of EEG signals recorded on long-term meditators and meditation-naive 

practitioners.

1 Introduction

Meditation is a set of mental training regimes widely practiced for its claimed benefits to 

physical and mental health. Over the past decade, neuroscientific research has been 

accumulating evidence of meditation practice shaping up neuroplasticity, and the 

investigation of spontaneous brain activity, at rest or during practice, is a sensitive approach 

to identify neuroplastic changes [3].

Electroencephalogram (EEG) is an important imaging modality for exploring spontaneous 

human brain activity. EEG signals can be recorded in high temporal resolution on animal or 

human subjects as a response to an external or internal stimuli. The signals are typically 

decomposed into frequency components by Fourier transform, and the strengths of the 

frequency components within a certain range are measured by integrating the power spectral 

density (PSD) [11]. In practice, PSDs integrated over a frequency range are summarized on 

a topographic power map of EEG channels to visualize significant changes in spatial 

patterns of brain activity within the range [10,5]. A practical approach to compare two 

groups of EEG topographic power maps is to conduct two-sample t-tests at each channel and 

solve the multiple testing problem by the maximum t-statistic (single-threshold) or cluster-

based inference (multi-threshold) methods [9]. These methods depend on the amplitudes of 
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power maps, which do not necessarily correspond to topological difference between the 

maps. We are thus motivated to develop an inference procedure invariant to continuous 

amplitude transformations. A promising approach is topological data analysis (TDA) that 

exploits the robustness of topology [1]. A key TDA technique is persistent homology - an 

online algorithm tracking topological features through a dynamic thresholding scheme.

In this paper, we develop an inference framework for comparing the persistent homological 

features of two groups of EEG topographic power maps. Each EEG power map is first 

modeled as an undirected graph with weights defined from frequency powers on its vertices. 

We filter through the weights to obtain a sequence of combinatorial structures of vertices, 

edges and triangles on a triangulation of the graph. The persistent homological features of 

the filtering process are then incorporated in a permutation test for group difference between 

the maps. Simulation studies show evidence that the proposed framework is robust to scaling 

and translation and sensitive to tearing of amplitudes in a power map. The proposed 

framework is also applied to compare the topographic power maps of long-term meditators 

and meditation naive practitioners.

2 Background

Suppose v1,…,vp are p affinely independent points forming a graph in the Euclidean space 

ℝ3. Then each of the vertices vi,i = 1,…, p, is a 0-simplex. A (s − 1)-simplex Δ is the convex 

hull of a subset vi1
, …, vis

 of the p vertices, e.g. an edge joining two vertices is a 1-simplex, 

and a triangle formed by three edges is a 2-simplex, and a tetrahedron formed by four 

triangles is a 3-simplex. A face of Δ is the convex hull of a nonempty subset of vi1
, …, vis

, 

e.g. the faces of a tetrahedron are its vertices, edges and triangles. A simplicial complex 𝒦
on {v1,…,vp} is built by attaching its simplices in a certain way: a simplex joins 𝒦 when all 

of its faces have joined and the intersection of two simplices in the complex 𝒦 must be a 

face to each of the simplices. A subcomplex of 𝒦 consists of a subcollection of its simplices 

attached in the same way.

Suppose we have a real-valued monotone function g:𝒦 ℝ. The monotonicity of g means 

that g(τ1) ≤ g(τ2) when τ1 is a face of τ2. It implies that the sublevel set g−1(( − ∞, λ]) for an 

arbitrary λ ∈ ℝ is a subcomplex of 𝒦. So the sublevel sets 𝒦i = g−1(( − ∞, λi]) with respect 

to λ1 ≤ ⋯ ≤ λm form a nested sequence of subcomplexes of 𝒦:𝒦1 ⊂ ⋯ ⊂ 𝒦m, which is 

called a filtration of 𝒦 and the λi are filtration values. The filtration induces a 

homomorphism chain for each dimension k:Hk(𝒦1) ⋯ Hk(𝒦m), where each arrow 

indicates a homomorphism Hk
i, j between the respective k-dimensional homology groups 

Hk(𝒦i) and Hk(𝒦 j) of 𝒦i and 𝒦 j. The k-dimensional persistent homology group is the 

image of the homomorphism Hk
i, j for 1 ≤ i ≤ j ≤ m. If a kth homological feature or hole (k = 

0: cluster; k =1: loop; k = 2: tunnel, etc.) is born at 𝒦i and dies at 𝒦 j, then λj − λi is called 

the persistence of the feature. A feature that is born at a finite time and never dies is said to 
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have infinite persistence. Longer persistence indicates a more prominent feature and shorter 

persistence likely corresponds to noise. The k-dimensional Betti number is defined as 

βk
i, j = rank Hk

i, j , which counts the number of distinct k-dimensional holes that are born 

before or at 𝒦i and die after 𝒦 j [6]. In this paper we define the kth Betti function at 

λ1 ≤ ⋯ ≤ λm as the sequence of k-dimensional Betti numbers βk
1, 1, …, βk

m, m .

3 Methods

We first compute the power spectral density (PSD) estimation procedure on signals at each 

EEG channel. The estimated PSDs at all EEG channels are summarized on a spatial map of 

the channel layout. We denoise the power map with the discrete version of a heat kernel 

estimator derived from a graph Laplacian L on 𝒢, and then obtain PH features of a filtration 

constructed on the denoised power map.

Power spectral density estimation

The PSD of an EEG signal can be estimated by the periodogram through discrete Fourier 

transform of the signal. We estimate the PSD of the EEG signal at each channel by Welch’s 

method of modified periodogram: divide a signal into overlapping segments and then 

average the modified periodograms computed on all the segments to obtain a PSD estimate 

with reduced variance than the usual periodogram [11].

Denoising procedure via graph Laplacian

We then spatially filter out noise in the topographic power map f = (f1,…, fc) of each subject 

at a particular frequency band, where c is the number of EEG channels. Each power map is 

modeled as a graph 𝒢 = 𝒱, ℰ  with the edge set ℰ from the Delaunay triangulation 𝒯 built 

on the vertex set 𝒱 of EEG channels. We denote the vertex set as 𝒱 = v1, v2, ⋯, vc Two 

vertices vi and vj joined by an edge is denoted vi ~ vj. Here we use the most common form 

of graph Laplacian [2]:

li j =

−wi j, vi ∼ v j

∑i ≠ jwi j, vi = v j
0, otherwise

with edge weights taken from the adjacency matrix W = (wij). There are up to c unique 

eigenvectors ψ1, ψ2, ⋯, ψc satisfying

Lψ j = γ jψ j (1)

with 0 ≤ γ1 ≤ γ2 ≤ … ≤ γc. The eigenvectors are orthonormal, i.e., ψ i′ψ j = δi j- the 

Kroneker’s delta. The first eigenvector is trivial: ψ1 = 1/ c 1, …, 1 ′. All other eigenvalues 

and eigenvectors are analytically unknown and need to be numerically computed. Once we 
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obtain eigenvectors ψj satisfying (1) on the Delaunay triangulation 𝒯, the heat kernel 

estimate for the power map f is given by

f = Kσ ∗ f = ∑
j = 1

c
e

−γ
jσζ jψ j, (2)

where Kσ = ∑ j = 1
c e

−γ
jσψ jψ j′, is the discrete heat kernel and ζ j = f ′ψ j = ψ j′ f , j = 1, …, c, are 

the Fourier coefficients with respect to the basis {ψ1,…, ψ}. The parameter σ is the heat 

kernel bandwidth and it modulates the extent of denoising. In this paper, we use σ = 0.5 for 

denoising power maps.

Building a sublevel-set filtration on a denoised power map

We now characterize the topology of the denoised power map f  by filtering a simplicial 

complex 𝒦 defined on the Delaunay triangulation 𝒯 of the vertex set 𝒱. The weights on 𝒦
are defined through an extension g:𝒦 ℝ of f :𝒱 ℝ: each vertex vi on 𝒯 has the weight 

f i, an edge connecting two adjacent vertices vi1
, vi2

 on 𝒯 in 𝒦 is assigned the weight max 

f i1
, f i2

, and a triangle in 𝒦 determined by three pairwise adjacent vertices vi1
, vi2

, vi3
 on 

𝒯 takes the weight max f i1
, f i2

, f i3
. It follows that the function g is monotone, i.e. g(τ1) ≤ 

g(τ2) whenever τ1 is a face of τ2.

Now we filter 𝒦 through the ordered vertex weights of g:

λ1 = f (1) ≤ ⋯ ≤ λi = f (i) ≤ ⋯ ≤ λc = f (c) .

An arbitrary λ < λ1 induces an empty subcomplex of 𝒦:𝒦0 = g−1(( − ∞, λ]) = Ø . We then 

hit the λi, i = 1,…, c, in sequence from the minimum λ1 up to the maximum λc. When we 

hit a λi, the subcomplex of 𝒦 is updated to

𝒦i = g−1(( − ∞, λi]), (3)

which contains all vertices v ∈ 𝒯 with g(v) ≤ λi, all edges whose vertices are in 𝒦i and all 

triangles whose edges are in 𝒦i We thus obtain the following filtration of 𝒦:

Ø = 𝒦0 ⊂ 𝒦1 ⊂ 𝒦2 ⊂ ⋯ ⊂ 𝒦c = 𝒦, (4)

which we call the sublevel-set filtration. Homological features or holes emerge and merge in 

the filtration by the Elder Rule: older features live on at a merging junction [6].
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We illustrate the filtration (4) on a 6-channel EEG layout in the international 10–20 system 

(Figure 1). We first build up the Delaunay triangulation over the 6-channel layout (Figure 1 

(a)). Then a simplicial complex is built on the triangulation and weights of the simplices are 

defined via vertex values. We then filter the simplicial complex with respect to the filtration 

values λ = −1, 0, 0.5, 1, 2, 3 (Figure 1 (b)). The connectedness of clusters change as λ 
increases. The 0th Betti function corresponding to the λ values is (1,1,2,1,1,1).

Inference on two groups of sublevel-set filtrations

Utilizing topological information in the data, we test the the null hypothesis that there is no 

difference between the respective mean 0th Betti functions β0
1 and β0

2 of the sublevel-set 

filtrations of denoised power maps in Group 1 and Group 2:

H0: β0
1(λ) = β0

2(λ), H1: β0
1(λ) ≠ β0

2(λ), (5)

at fixed m filtration values λ = λi1
, …, λim

. To test the null hypothesis (5), we first compute 

the ℓ2 distance

ℓ2 β0
1, β0

2 = (β0
1 λi1

− β0
2 λi1

2
+ ⋯ + β0

1 λim
− β0

2 λim

2
, (6)

between the respective means

β0
1 = β0

1 λi1
, …, β0

1 λim
andβ0

2 = β0
2 λi1

, …, β0
2 λim

of the 0th Betti functions of the sublevel-set filtrations characterizing the denoised power 

maps in Group 1 and 2. Then the labels of the two groups undergo repeated random 

exchanges. At each label exchange, the ℓ2 distance between the respective mean Betti 

functions

β0
1′ = β0

1′ λi1
, …, β0

1′ λim
andβ0

2′ = β0
2′ λi1

, …, β0
2′ λim

of the relabeled power maps is calculated at the same fixed m filtration values:

ℓ2 β0
1′, β0

2′ = β0
1′ λi1

− β0
2′ λi1

2
+ ⋯ + β0

1′ λim
− β0

2′ λim

2
(7)

We take the proportion of the distances ℓ2 β0
1′, β0

2′  exceeding that of the observed distance 

ℓ2 β0
1, β0

2  is taken as the p-value for the permutation test.
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4 Simulations

Topology is stable under continuous deformations [7]. It motivates us to test the robustness 

of the proposed topological inference procedure on a topographic power map undergoing 

continuous transformations on the amplitude. We are also interested in the sensitivity of the 

proposed procedure to topology-altering transformations on the amplitude. In other words, 

we want to control the rate of ’topological false positives’ while maintaining the rate 

of ’topological true positives’.

We define the power map

zi = 3(1 − xi)
2e

−(xi
2 + yi

2)
+ 3e

−((xi − 2)2 + yi
2)

, i = 1, …, 100, (8)

with (x1,y1),…, (x100,y100) evenly simulated from the four quadrants of the [−3,3] × [−3,3] 

grid. We then add independent Gaussian noises N(0, 0.1) to create 5 noisy samples {z1,…, 

z5: zj = (zj1,…, zj100)} of the map (8) and 5 noisy samples z1′ , …, z5′ : z j′ = z j1′ , …, z j100′  of 

each of the following transformation of (8):

1. (scaling) zi′ = 2zi, scaling preserves the map topology;

2. (translation) zi′ = zi + 5 , translation preserves the map topology;

3. (tearing) zi′ = zi ± 5  (+ for 1 ≤ i ≤ 50 and − for 51 ≤ i ≤ 100), which translates 

two halves of the map in opposite directions, causing discontinuities or 

topological tears on the map.

Under each setting, this simulation procedure is repeated 100 times; for each simulation, the 

null hypothesis (5) is tested on the 2 groups of 5 samples through the proposed inference 

method with 5000 permutations. We reject the null when a p-value falls below 0.05. The 

rejection rates are 5%, 4% and 100% in each setting. The results provide numerical evidence 

that the proposed procedure for testing the difference between topographic maps stays robust 

under some topology-preserving transformations (scaling and translation) and meanwhile is 

sensitive to some topology-altering transformations (tearing).

5 Real data application

The aim of this application is to compare topological difference between frequency 

variations in the EEG signals of 24 meditation-naïve participatns (MNPs) and 24 long-term 

meditators (LTMs) of Buddhist meditation practices (approximately 8700 mean hours of life 

practice) during whole-night non-rapid eye movement (NREM) sleep. The EEG signals 

were recorded with a 256-channel hdEEG system (Electrical Geodesics Inc., Eugene, OR). 

Data were bandpass filtered (1–50 Hz), and independent component analysis was used to 

remove ocular and muscle artifacts in the signals. Channels with most of the recording 

affected by artifacts were removed and spherically interpolated. Data was downsampled to 

128Hz and split into six-second epochs with each epoch divided into 8 segments with 50% 
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overlapping for the method of Welch’s averaged modified periodogram with a Hamming 

window function for PSD estimation at each channel. The participants under 3 sessions of 

recording: a baseline session, and one session each after two days of Vipassana 

(mindfulness) and Metta (compassion) meditations. We focused on analyzing the baseline 

session for unconfounded effect of long-term meditation practice. Also, since existing 

studies suggested increased parietal-occipital gamma activity during sleep in the LTMs 

compared to MNPs [4], we only focused on the high-frequency bands of the EEGs.

After heat kernel denoising, we normalized each power map by a z-score transformation 

across all channels. We then compared the normalized denoised power maps of the LTMs 

and MNPs in the high-frequency β (15–25 Hz) and γ (25–40 Hz) bands by the proposed 

permutation test. The sublevel-set filtrations of the average normalized maps in both groups 

are shown in Figure 2; note the faster closure of clusters in the LTM map as λ increases. The 

table of p-values in Figure 2 provides comparison between results of the proposed and 

maximum t-statistic permutation test. The only place where the proposed test shows 

significant topological difference is the β band in sleep cycle 1, whereas the maximum t-
statistic test shows significant difference between LTM and MNP in four out of six 

categories. It is possible that the maximum t-statistic approach is too sensitive to non-

topological differences between two groups of power maps.

6 Discussion

In this paper, EEG topographic power maps are modeled as graphs with weights defined 

through the spectral powers on their vertices. The topology of these graphs is studied 

through persistent homology. A related approach is graph filtration devised to capture the 

shape of a brain network modeled as graph by filtering a dissimilarity measure between its 

vertices [8]. The purpose of the two filtration approaches differ in that the former reveals the 

functional connectivity between channels, whereas the latter aims to reveal the underlying 

geometric pattern of the power map through topological changes in its sublevel sets.
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Fig. 1. 
An example of the filtration (4) on 6 weighted EEG channels in the international 10–20 

system, (a) The 6-channel layout with the corresponding Delaunay triangulation indicated 

by dashed lines. A simplicial complex is defined with respect to the triangulation; vertex 

weights are the weights of the channels and an edge weight is the larger of the weights of the 

two vertices joined by the edge, (b) At each filtration value λ, we include the vertices and 

edges with weights less than or equal to λ.
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Fig. 2. 
Left: Filtrations of mean normalized power maps in the beta band in sleep cycle 1 under the 

baseline condition. Right top: Group mean β0 functions with the p-value from the β0 

permutation test. Right bottom: The p-values of β0 and maximum t-statistic permutation 

tests comparing MNPs and LTMs in the baseline session. The p-values below the 

Bonferonni threshold 0.05/6=0.0083 corrected over 2 (frequency bands) × 3 (sleep cycles) = 

6 tests for each method are shaded in gray.
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