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Abstract

The abundance and cross-linking of intramuscular connective tissue contributes to the background 

toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by 

intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool 

of progenitor cells during the early embryonic development. It appears that multipotent 

mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-

myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal 

muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-

myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation 

during muscle development, strengthening progenitor proliferation enhances the potential for both 

intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and 

connective tissue content in the resulting meat product. Furthermore, given the bipotent 

developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces 

fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular 

adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by 

the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, 

extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment 

for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid 

progress, many questions remain in the role of extracellular matrix on muscle development, and 

factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which 

warrant further studies.
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Implications

Intramuscular connective tissue contributes to the background toughness of meat, which is 

mainly synthesized by intramuscular fibroblasts. Recent studies show that adipocytes and 

fibroblasts are derived from a common pool of mesenchymal progenitor cells during the 

early embryonic development. Due to the bipotent developmental potential of these 

progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which 

provides an opportunity to improve marbling and tenderness of meat, thus the overall 

palatability.

Introduction

Meat quality is determined by flavor, tenderness, juiciness, color, nutritional value and 

others. Tender meat, which contains more intramuscular fat and less connective tissue is 

demanded by consumers. Meat tenderness is determined by both the myofibrillar effects and 

the presence and cross-linking of connective tissue. Myofibrillar contribution to toughness 

can be partially addressed by aging carcasses, which results in the fragmentation of 

myofibrils primarily due to proteolysis by calpains (Koohmaraie and Geesink, 2006). On the 

other hand, postmortem aging is ineffective in improving the tenderness of a meat with high 

collagen content, due to the resistance of collagen to proteolysis. Thus, meat toughness due 

to connective tissue is called the ‘background toughness’ of meat (Nishimura, 2010). 

Consistently, the longissimus muscle in beef cattle contains low collagen and is tenderer 

while beef from limb muscles possesses higher collagen content and is tougher 

(McCormick, 1999; Dubost et al., 2013a). In addition, the cross-linking of collagen has even 

greater influence on meat toughness (McCormick, 1994). Because during cooking, collagen 

is gelatinized, which is hampered due to the presence of cross-linking, contributing to the 

toughness of meat from old animals (Dubost et al., 2013b). The detailed effects of 

connective tissue structure, collagen cross-linking, and their impacts on meat tenderness 

have been previous reviewed (Purslow, 2014).

Intramuscular connective tissue is mainly derived from fibroblasts, which are generated 

through fibrogenesis, a process referring to the generation of fibroblasts and their synthesis 

of proteins and other components composing the connective tissue. Fibrogenesis is active 

during the whole life of animals, particularly during the early developmental stage in utero; 

connective tissues synthesized inside fetal muscle form primordial perimysium and 

epimysium of muscle bundles at late gestation (Du et al., 2010). In humans, fibrosis refers to 

a state of excessive deposition of collagen and other extracellular matrix proteins, which is 

often elicited by a pathological condition and becomes noticeable during the recovery period 

(Liu and Pravia, 2010). Lysyl oxidase is a rate limiting enzyme catalyzing cross-linking of 

collagen fibrils (Borg et al., 1985; Huang et al., 2012b). Available studies demonstrated that 

the content and cross-linking of collagen are frequently correlated to each other, but the 

turnover of collagen reduces cross-linking (Archile-Contreras et al., 2010), a process 

increasing tenderness (Hill, 1967; Archile-Contreras et al., 2011; Purslow et al., 2012).

Intramuscular fat is considered part of the intramuscular connective tissue, and 

intramuscular adipogenesis is inseparable from fibrogenesis due to closely related 
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developmental origins. However, knowledge regarding regulatory mechanisms, or specific 

and effective manipulations to augment progenitor cell differentiation to a particular lineage, 

such as adipogenesis, remains poorly defined. The intent of this review is to provide an 

overview of current knowledge regarding intramuscular collagen deposition and associated 

marbling development, and discuss possible mechanisms regulating mesenchymal 

progenitor cell differentiation focusing on fibrogenesis, and their impacts on muscle growth 

and meat quality.

Intramuscular connective tissue structure

Organization of intramuscular connective tissue

All connective tissues (cartilage, bone, blood and interstitial tissue) possess three common 

components: cells, fibers and ground substance. Extracellular matrix tissue refers to a major 

portion of intramuscular connective tissues surrounding muscle fibers and other cells, which 

is composed of collagen, elastin, fibronectin, proteoglycans, and other ground substance 

components (Purslow, 2014). Embedded in extracellular matrix and connective tissue, there 

are abundant fibroblasts, adipocytes, immune cells, preadipocytes, mesenchymal progenitor 

cells, and other stromal vascular cells. Connective tissue and associated proteins organize 

muscle structure, connect muscle fibers to the bone for locomotion, and also mediate muscle 

growth and development (Sanes, 2003; Jenniskens et al., 2006). The connective tissues 

surrounding each muscle fiber, termed endomysium, comprised two layers. The inner layer, 

termed basal lamina, is a 50 to 100 nm thick layer surrounding the sarcolemma, which 

connects muscle fibers to extracellular niche environment and regulates myogenesis (Wang 

et al., 2014), and muscle growth (Velleman, 1999). Outside of the endomysium, a thin layer 

of connective tissue, which integrates into thicker layers between muscle bundles, termed 

perimysium, and surrounding each muscle, termed epimysium. These connective tissues 

connect muscle fibers and bundles together, and maintain muscle integrity. Intramuscular 

adipocytes, blood vessels and nerves are integrated into the connective tissue matrix of the 

muscle.

Connective tissue structure

Collagen is the major component of connective tissue. There are a number of different types 

of collagens, which are derived from more than 30 genes (Myllyharju and Kivirikko, 2004; 

Veit et al., 2006; Soderhall et al., 2007). However, in muscle, types I and III collagen are 

dominant (Light et al., 1985). The ratio of type I to III may be altered depending on muscle 

types, locations and animal ages (Listrat et al., 1999). In mature bovine muscles, type I 

collagen is more abundant in perimysium, but type III collagen levels are enriched in the 

endomysium (Mayne and Sanderson, 1985). In rats, during aging, the proportion of type I 

collagen increased, while type III collagen decreased (Kovanen and Suominen, 1989); an 

increase in type I collagen was also observed in the intramuscular connective tissue of beef 

cattle at around 6 months of age (Listrat et al., 1999). Up to now, most studies about 

connective tissue in muscle have been focused on types I and III collagens (Sato et al., 1994; 

Sato et al., 1997; Duarte et al., 2013).
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Each collagen molecule contains three helical polypeptide chains, which are interwined. At 

both ends, however, non-helical regions termed telopeptide regions are found. Lysyl oxidase 

is a critical enzyme regulating collagen cross-linking (Siegel and Fu, 1976; Siegel et al., 
1976). Lysyl oxidase oxidizes lysine or hydroxylysine in the non-helical portions of collagen 

molecules to aldehydes, which then react with neighboring collagen molecules to form 

divalent bonds. Therefore, the presence of lysine and hydroxylysine in the non-helical 

regions is critical in determining cross-linking development (Robins, 2007). The degree of 

collagen cross-linking differs in animals of different breeds. In our study with Wagyu and 

Angus cattle, we found that the collagen content and cross-linking are higher in Wagyu, 

which correlates with less soluble collagen content (Duarte et al., 2013). We also observed 

that early nutrition affects collagen content and cross-linking in sheep (Huang et al., 2010). 

In addition, collagens of different muscle types have various degrees of cross-linking, with 

the collagen in longissimus muscle having less cross-linking than biceps muscle (Dubost et 
al., 2013a), correlated with meat tenderness. Collagen cross-linking is a slow process, which 

increases as animals age, and the high degree of cross-linking is one of the primary reasons 

for the toughness of meat from old animals. On the other hand, collagens undergo consistent 

turnover, albeit slower than other proteins. Because newly synthesized collagens do not 

contain cross-linking, factors that enhance collagen turnover, reduce cross-linking and 

improve meat tenderness (Purslow, 2014). Indeed, cross-linking was reduced and soluble 

collagen content was raised in compensatory growing pigs (Kristensen et al., 2002). 

Collagen turnover, or remodeling, is regulated by metallo-proteinases (Woessner, 1991; 

Murphy, 2010). The expression of metalloproteinases and their inhibitors, the tissue 

inhibitors of metalloproteinases, are regulated by a number of factors (Clark et al., 2008), 

such as inflammation and oxidative stress, which affect cross-linking and meat tenderness 

(Purslow, 2014).

Development of connective tissue

Fibrogenic cells and adipocytes share common progenitor cells

During early skeletal muscle development, mesenchymal stem cells first diverge to either 

myogenic or non-myogenic lineages. Myogenic progenitors further develop into muscle 

fibers and satellite cells, whereas non-myogenic progenitor cells develop into the stromal-

vascular fraction of mature skeletal muscle in which resides adipocytes, fibroblasts and 

resident mesenchymal progenitor cells (Du et al., 2013). These non-myogenic progenitors 

have adipogenic and fibrogenic capacity, as well as osteogenic and chondrogenic potential 

(Joe et al., 2010; Wosczyna et al., 2012). These cells are mainly located in the stromal-

vascular fraction of skeletal muscle and are distinct from satellite cells (Joe et al., 2010; 

Uezumi et al., 2010). Platelet-derived growth factor receptor α (PDGFRα) is a reliable 

marker for separating these cells, and Sca-1+CD34+ appears to label the same cell 

population (Joe et al., 2010; Uezumi et al., 2010, 2011 and 2014).

The notion that mesenchymal progenitor cells as the common sources of adipogenic and 

fibrogenic cells are further proven by the co-expression of PDGFRα with fibrogenic markers 

(Murphy et al., 2011), or PDGFRα with adipogenic markers (Yang et al., 2013). 

Transcription factor 4 (TCF4), also known as transcription factor 7-like 2 (Tcf7l2), was first 
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found to be related with limb development by interacting with Wnt signaling pathway (Cho 

and Dressler, 1998). Subsequent studies demonstrate TCF4 as a fibrogenic marker (Kardon 

et al., 2003; Mathew et al., 2011). A portion of TCF4+ fibroblasts also express PDGFRα 
(Murphy et al., 2011), showing the intrinsic relationship between mesenchymal progenitor 

cells and TCF4+ fibroblasts. Similarly, in our previous studies, we detected the co-

expression of PDGFRα with ZFP423, a marker of adipogenic commitment (Yang et al., 
2013). The lack of TCF4 + and ZFP423 co-expressed cells show the divergence of the 

fibrogenic and adipogenic lineages during progenitor differentiation.

Mechanisms regulating fibrogenesis

Transforming growth factor (TGF)-β is the most important profibrogenic cytokine (Liu and 

Pravia, 2010). TGF superfamily contains several structurally related subfamilies, including 

TGF-β, bone morphogenetic proteins and activin. Three isoforms of TGF-β have been 

identified, which are TGF-β1, TGF-β2 and TGF-β3. The TGF-β1 isoform is primarily 

expressed in endothelial cells, fibroblasts, hematopoietic cells and smooth muscle cells; 

TGF-β2 mainly exists in epithelial cells and neurons; and TGF-β3 is specifically expressed 

in mesenchymal cells (Ghosh et al., 2005). All TGF-β isoforms activate down-stream 

SMAD signaling (Attisano and Wrana, 1996; Letterio and Roberts, 1998). The SMAD 

family contains five receptor-regulated SMAD (R-SMAD 1, 2, 3, 5 and 8), a common 

SMAD (Co-SMAD 4), and two inhibitor SMAD (I-SMAD 6 and 7) (Moustakas et al., 
2001). The ligand, TGF-β, first binds to TGF-β receptor II (TβRII), which then recruits and 

activates TβRI. Then SMAD2 and SMAD3 are phosphorylated and subsequently bind to 

SMAD4 (Suwanabol et al., 2011), and the resulting SMAD complex is translocated into the 

nucleus where it binds to SMAD-specific binding elements of target genes, thereby 

activating the expression of fibrogenic genes including procollagen and enzymes catalyzing 

collagen cross-linking (Massague and Chen, 2000). As an anti-inflammatory cytokine, TGF-

β signaling is enhanced by inflammation (Bhatnagar et al., 2010; Voloshenyuk et al., 2011), 

while inhibited by anti-inflammatory factors (Wang et al., 2012).

Connective tissue growth factor (CTGF) is a crucial switch to regulate downstream fibrotic 

progress (Grotendorst, 1997; Leask et al., 2004). CTGF is a member of CCN family, which 

are cysteine rich proteins. CTGF gene expression is induced by TGF-β-activated Smad3 

binding to its promoter region (Denton and Abraham, 2001; Holmes et al., 2001). Then, 

CTGF directly stimulates fibroblast proliferation and ECM deposition (Shi-Wen et al., 2008; 

Morales et al., 2011). Wingless/int (Wnt) signaling pathway plays a crucial role in cell fate 

commitment (Dorsky et al., 1998; Ross et al., 2000), and synergizes with TGF-β signaling to 

promote connective tissue synthesis and fibrosis (Brack et al., 2007; Zhou et al., 2012; 

Cisternas et al., 2014).

Ski/sno family includes ski and sno, which has four distinct isoforms SnoN, SnoN2, SnoA 

and Snol (Nomura et al., 1989; Pearson-White, 1993; Pelzer et al., 1996). Ski/sno family 

acts as negative regulators of TGF-β1 pathway by functioning on the downstream signal 

molecules R-smad/Co-smad complex (Luo, 2004; Deheuninck and Luo, 2009; Jahchan and 

Luo, 2010), thus reducing connective tissue deposition.
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MicroRNAs regulate cell differentiation through inhibiting the expression of target genes. 

MiR-101a inhibits fibrosis by targeting the TβRI on cardiac fibroblasts (Zhao et al., 2015). 

High glucose increases the activity of transcriptional co-activator p300, which subsequently 

enhances the activity of TGFβ pathway by inducing Smad2 acetylation (Bugyei-Twum et 
al., 2014). Besides, ERK5, one of the MAPK family members, is a critical regulator in TGF-

β1-induced lung fibrosis by enhancing Smad3 acetylation (Kim et al., 2013). A number of 

cytokines and growth factors, which are involved in the regulation of fibrogenesis are listed 

in Table 1.

Antagonistic effects of adipogenesis on fibrogenesis

Because fibrogenesis and adipogenesis are considered as a competitive process, enhancing 

adipogenesis reduces fibrogenesis. Adipogenesis can be separated into two steps, the 

commitment of progenitors to preadipocytes, and the differentiation of preadipocytes to 

mature adipocytes. Quite recently, Zfp423 was identified as the key regulator committing 

progenitors to preadipocytes; in addition, Zfp423 promotes the expression of peroxisome 

proliferator-activated receptor γ, the crucial transcription factor inducing the conversion of 

preadipocytes to adipocytes (Gupta et al., 2010; Gupta et al., 2012). Importantly, in cattle 

mesenchymal progenitor cells, the expression of Zfp423 is negatively correlated with TGF-

β1 expression, indicating the mutual exclusion of adipogenesis and fibrogenesis (Huang et 
al., 2012a).

Connective tissue and muscle development

Satellite cells are critical for muscle growth and regeneration. They are wedged between the 

basal lamina and the plasma membrane (sarcolemma) of skeletal muscle fibers. Extra-

cellular matrix together with growth factors and cytokines sequestered inside and those 

secreted by interstitial cells, forms the niche environment needed for satellite cell 

quiescence, activation, migration, myogenic differentiation and muscle development 

(Rhoads et al., 2009; Dodson et al., 2010; Murphy et al., 2011; Urciuolo et al., 2013).

Muscle regeneration involves extensive proliferation and myogenic differentiation of 

satellite cells. Shortly after muscle injury, both satellite cells and non-myogenic progenitor 

cells are activated and proliferate; non-myogenic progenitor cells stimulate satellite cell 

proliferation and facilitate muscle regeneration (Joe et al., 2010; Murphy et al., 2011). In 

addition, intramuscular fibroblasts particularly promote slow myogenesis, thus affecting 

muscle fiber type composition and overall maturation during muscle development (Mathew 

et al., 2011). Extracellular component, collagen VI, regulates satellite cell self-renewal and 

differentiation (Urciuolo et al., 2013). Besides, other components of extracellular matrix, 

such as proteoglycan, regulate proliferation and differentiation of satellite cells (Zhang et al., 
2007). Decorin, a small leucine-rich proteoglycan, traps TGFβ to regulate satellite cell 

activation and muscle growth (Li et al., 2006 and 2008).

Extracellular matrix also interacts with a number of growth factors, including TGFβ, 

hepatocyte growth factor, fibroblast growth factor 2, myostatin and others to either promote 

or inhibit muscle growth (Yamaguchi et al., 1990; Rapraeger et al., 1991; Allen et al., 1995; 
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Miura et al., 2006; Kishioka et al., 2008). Table 2 lists selected growth factors known to 

interact with extracellular matrix and regulate muscle growth.

Conclusions

Intramuscular connective tissue regulates muscle growth and development, and also is the 

site for intramuscular fat (marbling) deposition. The abundance and cross-linking of 

intramuscular connective tissue contribute to the background toughness of meat. Connective 

tissue is mainly synthesized by intramuscular fibroblasts. Non-myogenic mesenchymal 

progenitor cells are the common source of fibroblasts and adipocytes. Strengthening 

progenitor cell formation and proliferation enhances both intramuscular adipogenesis and 

fibrogenesis, while enhancing progenitor differentiation to adipogenesis reduces 

fibrogenesis, resulting in the overall improvement of marbling and tenderness of meat. 

Fibrogenesis is mainly regulated by the TGFβ signaling pathway, and a number of factors 

affect connective tissue deposition via altering TGFβ signaling. Extracellular matrix, a part 

of the intramuscular connective tissue, provides a niche environment to regulate myogenic 

differentiation of satellite cells and muscle growth. Despite rapid progress in our 

understanding of mechanisms regulating fibrogenesis, many questions remain on the 

synthesis of intramuscular connective tissue and the role of extracellular matrix in muscle 

development, which warrants further studies.
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Table 1

Factors enhancing and decreasing intramuscular fibrogenesis

Name Fibrogenesis Summary References

TGFβ Up A key pathway driving fibrogenesis through Smad 
signaling

Poncelet and Schnaper (2001); Liu 
and Pravia (2010)

Inflammatory cytokines Up Inflammatory cytokines, such as TNFα, IL-1α, IL-1β 
and others, promote fibrogenesis through enhancing 
TGFβ expression

Bhatnagar et al. (2010); Voloshenyuk 
et al. (2011)

Wnts Up Wnt signaling synergizes with TGFβ signaling to 
promote fibrogenesis

Zhou et al. (2012); Cisternas et al. 
(2014)

FGF-2 Up Promotes the proliferation of fibroblasts and fibro/
adipogenic progenitor cells

Iannaccone et al. (1995); Virag et al. 
2007

CTGF Up Promotes fibroblast proliferation and fibrogenic protein 
deposition

Shi-Wen et al. (2008); Morales et al. 
(2011)

PDGF Up Stimulates proliferation of fibroblasts and enhances 
TGFβ signaling

Zhao et al., (2013); Makihara et al. 
(2015)

Anti-inflammatory factors Down Anti-inflammatory factors down-regulate TGFβ 
signaling through inhibiting inflammation

Wang et al. (2012)

Ski/SnoN Down Ski/SnoN family of oncoproteins bind to Smad proteins 
to inhibit the expression of TGFβ responsive genes, 
including fibrogenic genes

Liu et al. (2001)

Zfp423 Down Zfp423 promotes adipogenic differentiation of adipo/
fibrogenic progenitor cells, which reduce fibrogenesis

Huang et al. (2012a)

MMPs Down Catalyze connective tissue degradation and promote 
extracellular tissue remodeling

Balcerzak et al. (2001)

TIMPs Up Inhibits MMPs and connective tissue remodeling Balcerzak et al. (2001)

CTGF = connective tissue growth factor; FGF-2 = basic fibroblast growth factor; MMPs = matrix metablloproteinase; PDGF = platelet-derived 
growth factor; TGFβ = tumor growth factor β; TIMP = tissue inhibitor of metalloproteinase; Wnts = wingless and ints.
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Table 2

Growth factors associated with extracellular matrix and associated cells to regulate activation of satellite cells

Name Summary References

HGF/SF Binds to ECM. It is released during ECM degradation to promote 
satellite cell activation and proliferation

Poncelet and Schnaper (2001), Liu and Pravia (2010)

FGF-2 Is secreted by fibroblasts, which stimulates satellite cell 
proliferation

Sheehan and Allen, (1999), Velleman (2007), Zhang et al. 
(2008)

IGF-1, IGF-2 Promotes satellite cell proliferation and muscle anabolism McFarland et al. (1993), Haugk et al. (1995)

PDGF-BB Promotes satellite cell proliferation Doumit et al. (1993)

TGFβ Antagonizes FGF-2 to inhibit satellite cell proliferation Shi-Wen et al. (2008), Morales et al. (2011)

SDF-1 Promotes satellite cell activation, proliferation and myogenesis Brzoska et al. (2012)

EGF Promotes satellite cell proliferation and protein synthesis Roe et al. (1989), Mau et al. (2008)

EGF = epithelial growth factor; FGF-2 = fibroblast growth factor-2; HGF/SF = hepatocyte growth factor/scatter factor; IGF = insulin growth factor; 
PDGF-BB = platelet-derived growth factor-BB; SDF-1 = stromal-derived factor-1; TGFβ = transforming growth factor β.
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