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Abstract

Our aims were to quantify and map the plant sub regions of the the Caatinga, that covers

844,453 km2 and is the largest block of seasonally dry forest in South America. We per-

formed spatial analyses of the largest dataset of woody plant distributions in this region

assembled to date (of 2,666 shrub and tree species; 260 localities), compared these distri-

butions with the current phytogeographic regionalizations, and investigated the potential

environmental drivers of the floristic patterns in these sub regions. Phytogeographical

regions were identified using quantitative analyses of species turnover calculated as Simp-

son dissimilarity index. We applied an interpolation method to map NMDS axes of composi-

tional variation over the entire extent of the Caatinga, and then classified the compositional

dissimilarity according to the number of biogeographical sub regions identified a priori using

k-means analysis. We used multinomial logistic regression models to investigate the influ-

ence of contemporary climatic productivity, topographic complexity, soil characteristics, cli-

mate stability since the last glacial maximum, and the human footprint in explaining the

identified sub regions. We identified nine spatially cohesive biogeographical sub regions.

Current productivity, as indicated by an aridity index, was the only explanatory variable

retained in the best model, explaining nearly half of the floristic variability between sub

regions. The highest rates of endemism within the Caatinga were in the Core and Periphery

Chapada Diamantina sub regions. Our findings suggest that the topographic complexity,

soil variation, and human footprint in the Caatinga act on woody plant distributions at local

scales and not as determinants of broad floristic patterns. The lack of effect of climatic stabil-

ity since the last glacial maximum probably results from the fact that a single measure of cli-

matic stability does not adequately capture the highly dynamic climatic shifts the region

suffered during the Pleistocene. There was limited overlap between our results and previous

Caatinga classifications.
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Introduction

Delineating biogeographical regions is an important step in understanding spatial organiza-

tion of biological diversity and has been involved in both generating and testing hypotheses

since the 19th century [1–3]. Indeed, in order to test the mechanisms driving regional diversity,

we need to define the biotic regions and quantify the diversity within them [4]. For example,

identifying spatially distinct assemblages bound by environmental conditions has led to novel

ecological interpretations of the fossil record [5], including greater determinism or inertia of

long-term community dynamics than predicted by neutral expectations [5,6]. Likewise, bio-

geographical regions imply predictable species associations, therefore, define sets of species

with either similar ecological requirements or non-neutral interactions [7]. Bioregionalization

is also a prerequisite for producing stratified random samples, as it allows relatively homoge-

neous biotas to be compared in a reproducible way [8]. For example, bioregionalization makes

it possible to determine whether differences in species abundance are due to real change rather

than background noise. Additionally, bioregionalization is often an essential first step in con-

servation planning and management [9,10]. For example, bioregionalization can be used to

choose priority areas for conservation within delineated biogeographical regions, which could

optimize the conservation of unique biotas, and assess the effects of prioritizing species rich-

ness or endemism in conservation planning [11]. Clearly recognizing plant biogeographical

regions is also important due to their role as habitat templates for animal species distribution

and life-history evolution [8,12–14]. Increased data availability and the development of new

analytical methods have allowed the recognition of biogeographical regions at distinct spatial

scales with precision that was unimaginable a few decades ago [3,10]. For instance, the WWF

Ecoregions [9] have been regarded as prominent global schemes based on the principle of bio-

geographic representation [11], but the internal structure of most of their units have not yet

been established for different taxa.

Several non-exclusive hypotheses have been proposed to explain the current distribution of

species and whole biotas. From an evolutionary point of view, the geographic size and the

unique evolutionary history of each region may explain current compositional patterns better

than contemporary environmental factors [15,16]. Such idiosyncratic and broad-scale effects

have been called region effects and have been found to be important determinants of local spe-

cies richness and composition [17–19]. The Neotropics have accumulated more species than

tropical Africa and Asia due to higher speciation and extinction rates since the Eocene (ca. 60

million years BP, [20]). Many extant dry forest species originated in a continual manner since

the late Eocene/early Oligocene until the Pleistocene [21,22]. The Tertiary speciation was

mainly driven by paleogeographic reorganizations linked to continental drift such as the

Andean orogeny, the closure of the Panama Isthmus, and the flooding of the Orinoco and

Amazon basins by epicontinental seas [21,23]. From the Pleistocene on, vicariance has been

mediated by disturbance, due to the alternation of glacial and inter-glacial periods that pro-

duced oscillating climatic cooling and warming. These cycles seem to have caused downward

altitudinal migrations and the spread of cool-adapted species during glacial phases, as well as

fragmentation and isolation of populations of species in warm inter-glacial phases, resulting in

adaptive radiation and allopatric/parapatric speciation [22–24].

During Pleistocene glacial periods, dry forests may have formed a continuous expanse

across much of the South America’s ‘dry diagonal’ of open vegetation, including the dry vege-

tation of the north-eastern Caatinga, the Cerrado savannas, the Chaco ecoregions, and even

the Amazon region [25,26]. Pleistocene expansion-retraction-fragmentation dynamics not

only promoted a great portion of current taxon diversity [21,22], but also widespread genetic

and compositional structure between current dry forest populations, communities, and
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ecoregions [24,27–30]. In north-eastern South America, large tracks of the Caatinga region

remained as nuclei of stable dry forest since the last glacial maximum [25,26,31]. However, in

contrast to the more general increased aridity recognized in most other lowland areas of Brazil

during the last glacial maximum, wetter conditions characterized glacial maxima of the now

semiarid north-eastern Brazil, which was a contact zone between the Amazon and Atlantic

rain forests [31–33]. This happened because distant climatic anomalies displaced the Inter-

tropical Convergence Zone rain belt southwards several times during the late Pleistocene [34].

These wet intervals were dynamic and recent. In the last ~18,000 years several distinct climatic

changes occurred, including cooler and wetter phases in which species from neighbouring

Cerrado savannas and Amazon/Atlantic rain forests occupied the region [32,33,35]. The cur-

rent semiarid conditions only established within the last 4,500 years [33]. Such conditions still

promote evolutionary radiations in xeric plant lineages [36], the range expansion of dry forest

species from xeric refugia [29,30,32], and the formation of forest refugia in wetter mountain

ranges [35]. Herein, we refer to the historical rationale for regional floristic patterns as the His-

torical Stability Hypothesis.

Despite the importance of historical events for speciation events, their relative importance

for current community assembly at local and regional scales remains uncertain, and a model

combining annual energy input with water supply and topographic complexity has been able

to predict the distribution of global centres of plant richness [19]. Some of the main ecological

determinants of the past and present species distribution include current habitat productivity,

climatic stability throughout millennia, mountain ranges, and the impact of human activities.

Increased habitat productivity and the temporal stability of productivity, mainly due to ther-

mal and rainfall regimes, are both positively related to species richness [17,19]. This is because

the more energy available within a region allows species to maintain larger population sizes,

increasing their speciation and reducing their extinction probabilities [4,12]. In dry forest eco-

systems, small variations in productivity due to changes in rainfall, temperature, or soil nutri-

tion—a known mediator of drought sensitivity in plants—can lead to significant changes in

species composition [37–40] and ecological strategies [41–44]. In the tropics, ridges and

mountain ranges promote productivity because they attenuate the effects of reduced rainfall

due to their reduced temperatures [19]. Mountain ranges have also been recognized as promo-

tors of evolutionary divergence among populations due to gene flow reduction in rough topog-

raphies, the creation of different soil and climatic gradients on their surface that favour

adaptive divergence, and regional effects on climate (i.e. rain shadows) [22,30,45,46]. In tropi-

cal regions, relatively small tropical mountains may act as allopatric barriers for lowland popu-

lations due to the lack of adaptations of tropical species to colder seasonal temperatures [47].

These effects seem to have been amplified during phases of climatic change, when mountain

ranges acted as refuges for lineages adapted to cooler or wetter conditions [19,22,45,48].

Finally, disturbances produced by humans in dry forest ecosystems (i.e. fire, cattle grazing,

and fragmentation) are known to impact distributions and community structure of dry forest

species [40,49,50] and may heavily distort patterns observed in biogeographical data [51]. We

refer to these contemporary rationales for regional floristic patterns as the Current Productiv-

ity, Mountain Ranges, and Human Footprint Hypotheses.

Despite growing efforts to uncover the historical and geographical assembly of different

biotic regions, Europe and North America are still the most studied continents, while more

diverse tropical regions are highly underrepresented, and studies with a small grain but cover-

ing a large spatial extent are extremely scarce [19,51,52]. In this paper we focus on the Caa-

tinga, which covers 11% of the Brazilian territory (844,453 km2) in north-eastern South

America. The Caatinga is the largest unit of seasonally dry forest biome in the Neotropics, and

is distributed in fragments from Mexico to Argentina throughout the Caribbean [53]. These
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disjunct areas occur on fertile soils and suffer severe dry seasons in the winter or strong sum-

mer droughts for at least 5 months [37,54,55]. They vary in physiognomy and floristic compo-

sition, but share many common species and genera [55]. In South America, the Caatinga is the

largest area of seasonally dry forest and has remained relatively isolated at the north-eastern

part of the ‘dry diagonal’ of open vegetation [39]. The Caatinga is highly diverse, harbouring

4,657 seed plant species, of which 913 (19.7%) are endemic species [56] mainly concentrated

in the Diamantina and Araripe mountain ranges [57,58]. It has the highest number of endemic

genera amongst the Neotropical seasonally dry forest and woodlands [39]. The Caatinga and

the south-western Bolivia, Paraguay, and northern Argentina region comprise the most exten-

sive area of contiguous dry forest worldwide [59], but between 1990 and 2010 the Caatinga has

lost 37,068 Km2 of tree and scrub cover [60]. Conservation parks currently make up only ca.

1% of the Caatinga [61]. Given their high biodiversity and exposure to threats including cli-

mate change, fragmentation, deforestation, and degradation through fire and grazing, these

forests have been regarded as priority areas of conservation. Fish, amphibian, and lizard distri-

bution maps or bioregions have been proposed for the region [62], but natural plant biore-

gions are still lacking. Furthermore, increasing the network of protected areas in the Caatinga

has been urgently advised [59,63], as well as efforts to increase scientific knowledge on biodi-

versity distribution [63].

Since the von Martius expedition of 1824, the Caatinga has been recognized as a distinct

biogeographic unit through physiognomic, floristic, or zoological criteria of at least 15 classifi-

cation schemes (reviews in [54,64,65]). Broad-scale biogeographic units frequently contain

substantial internal structure, and plant regions tend to display finer structure than animal

ones [16]. Internal structures have been proposed for the Caatinga based on drought severity

[64,66], floristic distinctiveness [54,66], and congruence of soil, geomorphology, plant, and

animal species [67]. Eisenlohr & Oliveira-Filho [68] suggested that a purely physiognomic clas-

sification captured most of the floristic variation in large regions and Fernandes [66] proposed

a physiognomic classification as a proxy for floristic variation in the Caatinga. However, these

proposals are qualitative [64,66,69] or based on subjective expert opinion [67,69]. They depend

on the experience and judgement of the proponents and rely upon the user’s intuition in inter-

preting observed patterns on the basis of personal experience, and are thus not reproducible

nor amenable to scientific inference [8]. The only quantitative cluster analysis was carried out

by Moro et al. [54]. However, their work did not aim to establish plant biogeographical

regions, but searched for broad relationships between vegetation physiognomies. The floristic

clusters they found were subjectively delimited, cohesive regions were not delimited, and they

did not evaluate hypotheses involving environmental determinants.

Our aims were to quantify and map the plant sub regions of the Caatinga by spatially ana-

lysing the largest dataset of woody plant distributions in this region assembled to date, com-

pare these distributions with the current phytogeographic regionalizations, and investigate the

potential environmental drivers of the floristic patterns in these sub regions. Specifically, we

tested the 1) Historical Stability, 2) Current Productivity, 3) Mountain Ranges, and 4) Human

Footprint non-exclusive hypotheses regarding drivers of floristic sub regions.

Materials and methods

Study area

The Caatinga is located in north-eastern South America (Olson et al. [9], Fig 1) and lies on top

of Pre-Cambrian granitic and gneissic basement exposed by erosion, that during the Tertiary

formed nutrient-rich but stony and shallow soils referred to as crystalline terrains (reviews in

[54] and [39]). Topography is relatively uniform with altitudes varying around 400 m. The
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main mountain ranges are the Borborema, Ibiapaba, Araripe, with altitudes that reach over

800 m and Chapada Diamantina (capped by horizontal strata of sandstone), with altitudes that

reach over 1200 m (Supporting information Fig A in S1 Text). Temperatures are constant and

high (ca. 28˚C) in the northern and eastern parts of the domain and lower (ca. 19˚C) and

more seasonal to the south. The Caatinga limits mostly match the 1000 mm rainfall isohyet

[70]. Annual rainfall varies greatly between years [71], and is higher in the northwest transition

of Cerrado savannah and Amazon rainforest and on the windward slopes of the main moun-

tain chains, but is less than 400 mm in the driest regions. The most arid areas form a north-

eastern-southwestern belt through the region. According to Köppen, most of the domain is ’s

semi-arid (Bs) or tropical with dry summer (As) climate type. Peripheral areas display tropical

climates with dry winter (Aw) and a mosaic of humid subtropical with dry winter (Cw) with

no dry season (Cf), and Aw climates in the Chapada Diamantina highlands [72]. Although the

Caatinga has been labelled the largest area of seasonally tropical dry forest in South America

[73], most plant species are shrubs and herbs [39,54,56]. The physiognomy is highly variable,

including shrublands, open savannas, bushy grasslands, as well as both broadleaved and stiff-

leaved deciduous and semideciduous forests and dwarf forests ([53,74], Fig B in S1 Text), and

is better labelled as a seasonally dry tropical forest and woodland [39].

Floristic and environmental data

We obtained woody floristic data from 260 locations using both literature and herbarium spec-

imens (Table A in S1 Text). Data from the literature included 174 floristic surveys and ecologi-

cal inventories published in journal articles, books, technical reports, and theses. Herbarium

data was obtained using the SpeciesLink tool [75] by entering the names of all north-eastern

Fig 1. The distribution of 260 studied localities. The limits of the Caatinga dry vegetation, the Cerrado savannah, the Amazon and the Atlantic Forest

dominions are shown. The inset map shows the location of the location of the studied region in South America. Note that a few studied localities were

located just outside the Caatinga limits. They were included in the analyzes due to small-scale uncertainties regarding the exact location of the Caatinga

limits ([67], for instance, adopt somewhat distinct southern and north-western limits), and because they shared the typical thorn dry forest

physiognomy and seasonally dry climate that predominate in most of the Caatinga dominion. Their exclusion did not alter the results significantly (data

not shown).

https://doi.org/10.1371/journal.pone.0196130.g001
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Brazilian states and recording localities with coordinates inside the Caatinga limits that had at

least 30 specimens. We excluded specimens lacking species identifications, as well as culti-

vated, herbaceous, epiphytic, parasitic, liana, and fern species. We did not consider any infra-

specific taxa in the data set. Localities with less than five species were not included in the data-

set. Coordinates of the 86 records were refined using Google Earth™ [76] to improve the geo-

graphical reference and increase the precision and accuracy of the maps. The Taxonomic

Name Resolution Service v1.1 (http://tnrs.iplantcollaborative.org) was used to revise family,

genus, and species names. Accepted species names and synonyms followed the most recently

updated taxonomic resources found in the Flora do Brasil project (http://floradobrasil.jbrj.gov.

br/). Synonymous species were merged with the accepted species and invalid species were dis-

carded, totaling 571 name corrections, fusions, or exclusions. We used a high resolution to

keep spatial data structure. Each site in the final data set represented woody plant assemblages

at the resolution of 2.5 arc-min (ca. 5 km2).

Environmental data included variables representing current and historical climates, soil,

and human impact. Data regarding current climate were obtained from the World-Clim proj-

ect v. 1.4 at a 30@ (~ 1 km2) spatial resolution (Hijmans et al. [77], http://www.worldclim.org/).

We defined aridity as the long-term water deficit produced by the imbalance between rainfall

and temperature-driven evapotranspiration, which is more relevant to our understanding of

plant ecology than either rainfall or temperature alone [78]. Due to this we calculated the Köp-

pen aridity index (AI = MAP/(MAT + 33), where MAP is mean annual precipitation and

MAT is mean annual temperature), and used it instead of temperature and rainfall variables as

a more accurate and precise measurement of water availability and proxy to local productivity

[79]. We measured historical variation in climate using three variables (Fig C in S1 Text). The

first of these variables was the historical difference in the Köppen aridity index (HAI, mea-

sured as the difference in the aridity index between current climate and climate during the last

glacial maximum). This variable indicated the historical change in aridity, i.e., conjoint change

in water availability and energy input. The current and historical aridity indices showed signif-

icant but weak negative correlation (r = -0.37, P< 0.05). Two other variables accounted for

historical variation in overall hydric and thermal conditions. The first was historical variation

in hydric conditions. It captured the variation in the overall ‘hydric envelope’ in a region, and

included annual precipitation, precipitation seasonality, and precipitation across wettest/dri-

est/warmest/coldest seasons. The second was the historical variation in thermal conditions,

which captured the overall variation in the ‘thermal envelope’ and included changes in annual

mean temperature, isothermality, temperature seasonality, and temperature across warmest/

coldest/wettest/driest seasons. We measured these two variables as the multivariate distance

from each grid cell to the origin of the multidimensional ordination space, representing the

covariation between all hydric or thermal variables. For this, we first calculated the difference

between current and last glacial maximum conditions for each one of the 19 bioclimatic vari-

ables available at the WorldClim database, generating 19 ‘Δ-bioclimatic’ variables. These 19 ‘Δ-

bioclimatic’ variables were separated into one group containing 11 ‘Δ-bioclimatic’ variables

related to temperature (Bio1 to Bio11), and a second group including eight ‘Δ-bioclimatic’ var-

iables related to precipitation (Bio12 to Bio19). For each group of ‘Δ-bioclimatic’ variables, we

performed a principal component analysis (PCA) and extracted the PCA scores for each grid

cell in each PCA axis. The Euclidean distance from each grid cell to the multidimensional ordi-

nation space origin was used as a measure of the ‘Δ-bioclimatic’ value in that cell and, there-

fore, was the overall hydric or thermal change in the last 21,000 years. To account for

uncertainties in the estimation of historic climate conditions, we calculated four measure-

ments of historical variation in climate (historical difference in rainfall and temperature, and

the overall difference in hydric and thermal conditions) using three general circulation models
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for the last glacial maximum (CCSM4, MIROC-ESM, and MPI-ESM-P). We obtained final

consensus values for each variable by averaging the historical variables obtained for each circu-

lation model (Fig C in S1 Text).

Soil variables relevant to plant growth were downloaded from www.soilgrids.org [80] in

250 m2 resolution and were upscaled to match bioclimatic variables. We used average values of

soil variables for the 0, 5, and 15 cm depths (Fig A in S1 Text). We used the revised Human

Footprint map [81] to measure human impact across the Caatinga domain. The map conveys

a standardized human footprint index in which data from the extent of built environments,

crop land, pasture land, human population density, night-time lights, railways, roads, and nav-

igable waterways were weighed according to estimates of their relative levels (Fig A in S1

Text). Variables were tested for multicollinearity by examining Pearson correlations based on

260 localities. Only one variable from any pair of highly cross-correlated variables (r> 0.75)

was included in further analyses based on the potential biological relevance to floristic patterns

and ease of interpretation. In total, 11 variables were retained for analyses, including elevation,

three current climate variables, four historic climate variables, two soil variables, and the

human footprint (Table B in S1 Text).

Data analysis

Biogeographical regionalization. Recent biogeographical regionalization approaches are

based on regular and continuous grids containing species-by-site data, which are subjected to

hierarchical cluster analyses and generate spatially cohesive biogeographical regions [2]. Alter-

natively, clusters may be identified among discontinuous sample sites, while no cohesive bio-

geographical regions are established (e.g., [82]). Since we aimed to identify and map cohesive

biogeographical regions, we followed the analytical framework proposed by Rueda et al. [13]

and Moura et al. [3] to produce a spatially contiguous estimation of floristic dissimilarity and

then performed regionalization based on this contiguous surface, as summarized below.

Interpolation procedure. This step was based on unconstrained community-level model-

ling of the compositional dissimilarity [83,84]. We applied an interpolation technique to

model the compositional dissimilarity of unsurveyed sites and obtained a spatially contiguous

representation of floristic compositional dissimilarity across the Caatinga domain. All calcula-

tions were performed in R 3.3.2 (R Core Team 2016). We first used the recluster.dist function

of the ‘recluster’ package [85] to produce a dissimilarity matrix with the Simpson index. This

index is recommended for biogeographical regionalization purposes [2,82] due to its indepen-

dence of richness variation [86]. We then represented this dissimilarity matrix into a few

dimensions, which produces colour-ramp maps that represent compositional variation [2,84].

We did this by using the metaMDS function in the ‘vegan’ package [87] to perform a three-

dimension non-metric multidimensional scaling (NMDS) on the Simpson dissimilarity

matrix, which reduced dimensionality while retaining as much information as possible about

floristic relationships among sites. We used the NMDS scores of each site to interpolate floris-

tic dissimilarities over the entire extent of the Caatinga. This was achieved using the inverse

distance weighting technique, after examining the NMDS axes for spatial autocorrelation with

Moran correlograms (see S1 Text for further details, Figs D and E in S1 Text).

We used colour combinations to visualize floristic similarities between interpolated cells.

Each cell’s position on the NMDS axes was translated into an RGB colour by assigning cell

positions for each of the three ordination axes to intensities of red, green, and blue [88]. We

applied the same translation of axis position to colour intensity to all axes simultaneously, so

that the variation shown by each of the colours was proportional to the variation explained by

its respective axis. We combined the red, green, and blue components of each cell to create
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RGB colours that we then mapped. This method of mapping community composition allows a

greater portion of community variation to be depicted, as compared to displaying each ordina-

tion axis at a time.

Regionalization procedure. We used K-means partitioning to produce a single partition

of the interpolated axes of compositional variation (the interpolated NMDS scores) that opti-

mized within-group homogeneity. Cells were clustered based on their species composition

with no regard to spatial dependence to avoid unjustified cohesion of clusters by the actual

species distributions [13]. However, in K-means the number of clusters (k) must be defined

before the partitioning. Because K-means is an Euclidean-based analysis, and neither the

NMDS axes scores nor the Simpson distance matrix are Euclidean metric (sensu [89]), we used

a principal coordinate analysis (PCoA) to identify the best number of floristic sub-regions in

which the Caatinga floristic variation should be divided. We ran a PCoA with Cailliez correc-

tion for negative eigenvalues to project the Simpson distance matrix into a multivariate Euclid-

ean space that reproduces the exact original observed distances [7]. The PCoA was obtained

with the cmdscale function of the ‘stats’ R base package. The PCoA scores were then used as

input data in the Euclidean-based cluster analysis used to identify the number of clusters. We

identified the optimum number of clusters using the L-method proposed by Salvador & Chan

[90]. This method consists of performing a piecewise regression of the evaluation metric (here,

the within-group sum of squares) against the number of clusters and finding the ‘knee’ in

which two regression lines minimize the root of the mean squared error (RMSE) in the scatter-

plot. However, the maximum number of groups entered a priori in the piecewise regression as

the range of the x-axis influences the identification of the optimal breakpoints, and provides

different optimal number of groups in the piecewise regression [90]. We solved this problem

following [3] and finding the optimal k for each possible value of maximum number of groups

from 4 to nsites -1. This procedure comprised 262 K-means partitioning analyses, each with

100 iterations and 50 random starting points. Because we performed piecewise regressions

with distinct degrees of freedom (different maximum k), we used the residual standard error

(RSE) instead of RMSE to identify the optimal breakpoint. We obtained 262 values of optimal

k (including repeated values) and used the most frequent among them as the optimal number

of clusters. Calculations were performed using the ‘vegan’ package and the kmeans function of

the ‘stats’ R base package.

Environmental correlates and comparison between classification systems

Following Banda-R et al. [53], we investigated relationships among the floristic groups identi-

fied by the overall clustering analyses (nine floristic groups; see below). We pooled the species

lists for each group into a single list and conducted hierarchical clustering analyses on a

species × floristic group matrix using the Simpson dissimilarity and UPGMA linkage method

as recommended by Kreft & Jetz [2]. We used the recluster.boot function of the ‘recluster’

package (option tr = 100) to determine node significance with 1000 bootstrapped trees. In

order to test our hypotheses and determine the environmental correlates of Caatinga bio-

geographical sub-regions, which constitutes a categorical variable with multiple levels, we used

multinomial logistic regression run with the multinom function of the ‘nnet’ package [91]. Fol-

lowing Zuur et al. [92], we built a full model including the variable sets of soil (sand content

+ cation exchange capacity), topography (elevation and elevation CV), current climate (aridity

index), historical climate (historical aridity index and historical variation in overall hydric and

thermal conditions), and the human footprint variables. We then used model selection to iden-

tify the smallest set of variables explaining the deviance in the Caatinga floristic regions. We

built models using single-predictors, each predictor set, and each combination of current and
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historical predictor sets. Model selection was based on the smallest value of Akaike’s informa-

tion criterion corrected for small sample sizes (AICc). We used Akaike weights (wAICc) to

evaluate model selection uncertainty. wAICc vary from 0 (no support) to 1 (complete support)

and may be interpreted as the probability that any given model is the best model expected for

the sampling situation considered [93]. The deviance of the model with the lowest AICc was

partitioned to obtain the unique and shared contribution of different predictor sets to explain

floristic regions.

We examined the spatial structure in the multionomial logistic regression residuals of the

best supported model through spatial correlograms of Moran’s I coefficients using 14 geo-

graphical distance classes. Since we detected significant autocorrelation in the residuals of pre-

liminary model runs, we used Moran’s Eigenvector Maps (MEMs) [94] to control for spatial

autocorrelation in the model. Positive and significant (P < 0.05) MEM eigenfunctions were

included as explanatory variables alongside the environmental variables in the model. MEM

eigenfunctions were calculated following Borcard et al. [95] and using the ‘spacemakeR’ pack-

age [96].

To match the resolution of the species assemblage data used in the multinomial logistic

regression, we calculated the mean, range, or coefficient of variation of the predictor variables

listed in Table B in S1 Text using a buffer of 10-km radius centered on geographical coordi-

nates of each site using the ‘raster’ package [97]. The Pearson correlations among the final set

of environmental variables ranged from 0.007 to 0.672 and variance inflation factor (VIF)

was< 3.25 for all variables, indicating low multicollinearity [98].

In order to evaluate the effectiveness of different classification systems in explaining floristic

variation in the Caatinga, we classified each of our 260 localities to the fifth level of the physi-

ognomic classification system for vegetation types in extra-Andean tropical and subtropical

South America proposed by Oliveira Filho [99]. We also attributed each locality to one of the

Caatinga ecoregions proposed by Velloso et al. [67] and to one of the floristic groups proposed

by Moro et al. [54]. We compared the explanatory power of the different classifications using

the adonis function of the ‘vegan’ package to run three two-way PERMANOVAs [100] using

the Simpson distance matrix and 1000 randomizations. In each PERMANOVA, the physiog-

nomic classification and one of the other three classification systems, including ours, were

included as explanatory factors.

Results

We found a total of 2,666 shrub and tree species belonging to 778 genera and 143 botanical

families in the 260 localities (Table A in S2 Text). Species restricted to a single locality totalled

1411 (52.9% of the total). The average number of species per locality was 47.0 (SD = 40.9,

median = 33; range: 5–216). The three-dimensional NMDS produced high congruence

between the observed and ordinated distances (non-metric fit R2 = 0.97, linear fit R2 = 0.83)

and a stress value of 17.3 (Fig F in S1 Text). The floristic variation captured by the NMDS axes

was depicted in a beta diversity map (Fig 2a), where cells of similar colour contained similar

woody communities (lower Simpson dissimilarity), providing a visual interpretation of the

turnover between any two cells and the total floristic variation. The K-means piecewise regres-

sion L-method identified nine floristic groups as the best solution for our dataset (Fig G in S1

Text). The subsequent K-means clustering of the interpolated NMDS identified the following

floristic biogeographical regions: (1) Core Chapada Diamantina, (2) Chapada Diamantina

Periphery, (3) sSouthern Caatinga, (4) Eastern Caatinga, (5) Reconcavo, (6) São Francisco and

Sertaneja Depressions, (7) Sertanejo Highlands, (8) Middle São Francisco and Cearense

Depressions, and (9) Ibiapaba (Fig 2b and Table C in S1 Text). The Core Chapada Diamantina
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was the smallest region, but contained the highest number of species and nearly five times the

number of exclusive species than the other regions. Although we did not let spatial dependency

influence the clustering of neighbouring cells, the groups showed strong spatial cohesiveness,

although disjunctions of relatively small sizes were common. The shapefile of the groups

described above is available in S1 File–Shapefile floristic groups of the Caatinga.

The hierarchal UPGMA pooling all sites in each of the nine floristic groups, complemented

by a nonmetric multidimensional scaling (NMDS) ordination, recognized three higher-level

clusters of groups (Fig 3a and H-I in S1 Text). The Core Chapada Diamantina group was flo-

ristically distinct from all other groups. It formed a separate branch in the dendrogram and its

localities clustered at the lower end of the third axis of the NMDS. The distinctiveness of this

sub-region was due to the reduced number of species this group shared with the other groups

(Fig 3b and Table D in S1 Text). The remaining groups formed two higher-order clusters,

which split the Caatinga woody flora into two broad clusters (Fig 3a and J in S1 Text). The

southern cluster comprised the Chapada Diamantina Periphery, the Southern Caatinga, and

the Eastern Caatinga groups. These groups shared relatively few species (Fig 3b and Table D in

S1 Text). The northern cluster comprised the remaining groups and presented the widest arid-

ity intensities, including the São Francisco and Sertaneja Depressions and the Ibiapaba groups.

The sub-regions in this northern higher-order group formed a floristic gradient along the first

Fig 2. Tree and shrub floristic variation in the Caatinga. (a) Quantitative representation of beta diversity as interpolated dissimilarity based on

NMDS axes. The colours of the map have no absolute meaning—only the colour differences between locations within the same study site are

meaningful. (b) Regionalization of woody plants into nine biogeographical subregions based on the K-means partitioning of the interpolated values of

NMDS axes. Maps drawn in 2.5 arc-min resolution.

https://doi.org/10.1371/journal.pone.0196130.g002
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Fig 3. Floristic groups of the Caatinga. (a) Hierarchical classification of the 9 Caatinga floristic groups using Simpson dissimilarity and UPGMA as the

linkage method. This analysis highlights the relationships between the 9 floristic groups identified by the K-means analysis and identified higher-level

clusters of groups. Asterisks correspond to the statistically significant (P< 0.05) nodes obtained using 1000 iterations of bootstrap resampling.

Horizontal bars indicate the corresponding higher-level clusters of groups. (b) Geographical patterns of species turnover among the nine Caatinga

biogeographical sub-regions. The size of colored circles is proportional to the total number of species and of gray circles to the number of exclusive

species per sub-region. The species turnover among areas is described by line widths proportional to the shared number of species (values from Table D

in S1 Text).

https://doi.org/10.1371/journal.pone.0196130.g003
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axis of the NMDS (Fig H in S1 Text). Despite this, these groups showed the strongest connec-

tions, sharing the highest number of species among all pairwise comparisons (Fig 3b and

Table D in S1 Text).

The nine biogeographical sub-regions we identified explained a larger fraction of the floris-

tic variability in the Caatinga (27.7%) than the floristic classification employed by Moro et al.

[54] (18.4%) and the soil-relief-plant-animal sub-regions based on expert opinions of Velloso

et al. [67] (18.7%)(PERMANOVA, Table E in S1 Text). Variation in vegetation physiognomy

also explained a significant portion of floristic variation, and the interaction between floristic

sub-region and physiognomy was significant in all three PERMANOVAs. This means that

there were species occurring preferentially in specific combinations of our biogeographical

sub-regions and vegetation types, like the semi-arid deciduous stiff-leaved scrub in the Eastern

Caatinga floristic sub-region. The inclusion of floristic sub-regions doubled or tripled (our

sub-regions) the portion of floristic variance explained relative to only physiognomy in all

cases.

Spatial structure in floristic variation was captured by eight positive MEMs, which effec-

tively controlled for spatial autocorrelation in the model residuals and were included in all

tested models (Fig J in S1 Text). Floristic variation among the nine biogeographical groups

was explained mostly by variation in current aridity. The model with only the aridity index

was the best supported model, including current and historic environmental conditions, as

well as the human footprint (Table F in S1 Text). Explained deviance was highest for the full

model (59%), but most of the variables contributed weakly and the model with only the aridity

index was the best supported (lowest AICc and highest wAICc), explaining 47.63% of the vari-

ability in the biogeographical sub-regions. The unique contribution of aridity accounted for

the largest fraction of this variability in the sub-regions (78.06% of the explained variability),

while the spatial structures captured in the MEMs accounted for 21.94% of the explained

variability.

Discussion

The determinants of the Caatinga floristic sub regions act through direct

and indirect effects

We confirmed the Current Productivity hypothesis since the woody flora of the Caatinga was

spatially organized by variation in aridity. As an integrative measure, aridity is a proxy to local

productivity because it reflects the balance between heat load and hydrological dynamics

[38,79]. In north-eastern South America, aridity poses severe constraints on plant growth and

biomass accumulation, not only due to seasonal drought coupled with consistently high year-

round temperatures, but also because of high year-to-year variation in annual rainfall, which

can cause several dry years in a row [71]. Arid environments are known to act as biogeographi-

cal filters that select species with particular ecological strategies. Increased semiarid conditions

select for stress-tolerant strategies that favour resource maintenance over resource acquisition

[41,43]. Morpho-physiological traits that increase survivorship in drought-prone tropical envi-

ronments include slow growth, xylem that is resistant to drought-induced cavitation, high sap-

wood capacitance that protects xylem from critically low water potentials, deciduousness,

photosynthetic stems that have the potential to assimilate carbon with greater water-use effi-

ciency than leaves, deep roots, regulation of gas exchange to reduce leaf water loss or to main-

tain photosynthesis at low leaf water potential, and low cuticular conductance of exposed

tissues during extended drought [42]. Many of these traits have been found in the Caatinga

flora [54,64,66], but our regionalization makes certain sub regions more likely to present such
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traits than others, mainly the São Francisco and Sertaneja Depressions, Reconcavo, and the

Middle São Francisco and Cearense Depression.

The effects of the human footprint, elevation, and historic climate stability did not hold

when aridity was included in the analyses. However, these exclusions may have distinct mean-

ings. The impact of human activities as fire, cattle grazing, and vegetation destruction and frag-

mentation are known to change species distributions and community structure in the

Caatinga [49,101]. However, our analyses suggest that these impacts have a rather homoge-

neous distribution across the region. Their effects on species distributions, as strong as they

may be, seem to be local and did not influence the broad-scale floristic patterns we detected,

which agrees with findings from other regions [5,13]. This also agrees with recent findings that

floristic gradients along the South American dry diagonal respond to climatic changes more so

than to human impacts like fragmentation and isolation [40]. The exclusion of elevation varia-

tion indicates that the main mountain ranges of the Caatinga (Chapada Diamantina, Araripe,

Borborema, Ibiapaba, Fig A in S1 Text) act indirectly on floristic patterns through increased

productivity because they attenuate aridity through reduced temperatures [19]. In arid and

semiarid ecosystems, small variations in productivity can lead to significant changes in species

composition [37,38]. This occurs in part because productivity increases shift the relative

advantage of distinct sets of traits and ecological strategies from more arid-stress tolerance to

competitive resource acquisition [41,44]. Furthermore, aridity and vegetation biomass/physi-

ognomy are spatially structured by orographic rain and rain shadows produced in mountain

ranges and inselbergs by the strong easterly trade winds that bring moisture from the Atlantic

ocean, as well as forest refugia and semideciduous forests that cover eastern slopes and moun-

tain tops and deciduous and thorn vegetation that cover the drier western slopes [46]. The

main mountain ranges of the Caatinga have been recognized as historic forest refugia for plant

lineages adapted to wetter conditions [35].

The environmental complexity that mountain ranges create is known to reduce plant spe-

cies migration and colonization in the tropics due to the narrow temperature ranges that tropi-

cal species tolerate [47], as well as to the niche diversity that the heterogenous mountain

environment creates [45]. Therefore, such indirect elevation effects were strong enough to pro-

duce two distinctive plant sub regions (Core and Periphery of the Chapada Diamantina) and

northern disjunct areas in the Borborema, Araripe, and Ibiapaba mountain ranges. The two

Chapada Diamantina sub regions had a higher concentration of restricted species, agreeing

with the estimation made by Manhães et al. [57]. The Chapada Diamantina represents one end

of the larger Espinhaço mountain range that runs southwards into Minas Gerais state, where it

is covered by the Atlantic forest and Cerrado savannah. Therefore, it is possible that a portion

of the distinctive diversity of the Chapada Diamantina we registered represents the northern

ranges of southern rainforest and savannah species. Many regional differences in species diver-

sity that have been classically attributed to historical factors can also be predicted by contem-

porary differences in the environment [19]. However, the Chapada Diamantina has been

recognized as a centre of endemism, with hundreds of unique genera and species [58,67]. This

has been attributed to evolutionary divergence promoted by gene flow reduction caused by

barriers as valleys, rifts, and steep walls [22,30,45] and is reinforced by the separation of the

Core Chapada Diamantina biogeographical sub region from all other sub regions in our

UPGMA analysis. Even though large rivers may act as geographical barriers for Cactaceae in

Eastern Brazil [36], the Caatinga biogeographical sub regions we detected were not delimited

by major rivers like the São Francisco or the Jaguaribe, suggesting that such rivers did not rep-

resent barriers to seed movement for most of the plant species.

Our estimates of the Caatinga paleoclimate and historic aridity and climatic stability por-

trayed a much more arid climate 21,000 years ago than today’s climate. The lack of an effect of
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historic climate stability on current Caatinga floristic sub regions may indicate that current flo-

ristic patterns do not carry any significant historic signatures. Yet, this is unlikely since vegeta-

tion is known to be spatially organized by historic factors to a large extent [17–19]. The highly

biodiverse species pool in South American has evolved more or less continuously since the

Tertiary [20], driven mainly by geographic and tectonic forces and then by climatic changes

during the Pleistocene [21,22]. Such climatic changes were quite frequent and extensive, with

alternating dry and wet periods with different intensities and durations throughout the last

couple million years until very recently [26,31–33]. These changes have produced genetic sig-

nals of range expansion for dry forest and woodland species from xeric refugia [29,30,32], as

well as for recent divergence in xeric plant lineages [36]. Our snapshot of the past climatic con-

ditions probably did not capture the long and complex cumulative effects of environmental

change that may explain much of the deviance unexplained by current aridity in our model,

mainly in the eastern parts of the Caatinga [26,31].

Biogeographical relationships of the Caatinga sub regions

Most plant lineages found in the Caatinga drylands came from Mesoamerican seasonally dry

forest and woodland communities, with subsequent in situ diversification in the Caatinga in

pre-Pleistocenic times [39]. This is attributed to the fact that plant lineages of this biome are

strongly shaped by niche conservatism and dispersal limitations, and because Caatinga’s harsh

climatic conditions pose severe limits to the establishment of immigrant species which are not

pre-adapted to long and erratic dry seasons [27,39]. At the same time, the Caatinga is bordered

by a diverse array of biogeographical provinces, including the Atlantic and Amazon rain forests

and the Cerrado Savannah. The proximity of these diverse vegetation types must have contrib-

uted to the recruitment of Caatinga lineages and elevated diversity [53]. Our UPGMA analysis

clustered biogeographical sub regions as Chapada Diamantina Periphery, Southern Caatinga,

and Eastern Caatinga. All these sub regions are closer to the eastern and northeastern portions

of the Atlantic forest complex, and were repeatedly covered by Atlantic forest expansions dur-

ing the Pleistocene [26,31]. Thus, aside from the Chapada Diamantinga being a major diversifi-

cation centre [39], these sub regions most likely also include floristic transitions to distinct

Atlantic forest floristic sub regions, most likely the Pernambuco and Bahia rainforests (Eastern

Caatinga) and the Interior semideciduous forests (Chapada Diamantina Periphery and South-

ern Caatinga) [102]. The floristic influence of the Cerrado is probably determined by the dis-

tinction of the Middle São Francisco and Cearense Depression sub region, where the

southwestern portion borders the Cerrado domain and the northeastern disjunction coincides

with a Cerrado physiognomic disjunction in Rio Grande do Norte state (Fig B in S1 Text).

The cluster of the Middle São Francisco and Cearense Depression sub regions with the

other northern sub regions in the UPGMA suggests a pervasive presence of Cerrado species in

central and northern Caatinga areas. This is compatible with the fossil record, which registers

repeated savannah expansions into northeastern Brazil in the past 200,000 years [32]. The

northwestern Ibiapaba sub region was distinguished by two transitions. The first was a climatic

transition to a wetter climate, since this was the least drought-prone region. This means

increased productivity and change in the suite of advantageous ecological strategies [44]. Addi-

tionally, this sub region borders the ecotone of the Amazon rainforest and the northernmost

part of the Cerrado savannah in the Piaui state, known as Campo Maior complex [54,67].

Indeed, it is likely that both the Ibiapaba and its eastern neighbor Sertanejo Highlands sub

region include transitional zones between the xeric flora of the São Francisco and Sertaneja

Depressions and Reconcavosub regions and the northern Cerrado and eastern Amazon floras,

mediated by decreasing aridity and topographic complexity. This interpretation is supported
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by the elevated beta-diversity estimated by Manhães et al. [57] for the northern Caatinga, espe-

cially its northwestern portion. It is worth noting that the few bioregions tentatively proposed

for animal groups share with the plant bioregions we found the pivotal role of the Chapada

Diamantina as a center of diversity and endemism [62]. Apart from this animal bioregions in

the Caatinga seem to be much broader and cohesive than plant bioregions. This pattern

repeats findings made in other continents and probably results from the restricted migration

hability of plants, coupled with their increased frequency of sympatric speciation [16].

Comparison with earlier subdivision attempts and practical implications

The plant biogeographical sub regions we identified contrasted with previous regionalization

attempts for the Caatinga in three important ways. First, they highlighted the importance of

studying plant species separately from geomorphological and animal distributions. Previous

bioregionalizations proposed for the Caatinga were based on geomorphological units as well

as on plant and animal distributions (e.g., [67]). Such synthetic units may hide important dif-

ferences in the bioregionalization of broad areas, as recently seen for several contrasting plant,

bird, mammal, and reptile bioregionalizations [5,13,16]. Second, although expert consensus

may be valuable to support conservation and management decisions when there is a lack of

detailed distribution data, quantitative analyses of distributional data are much more accurate.

Distributional data can distinguish precise bioregion borders and delineate subdivisions like

the nested spatial structure in the Chapada Diamantina, with a core and more distinctive sub

region surrounded by a significantly different peripheral sub region with distinct floristic affin-

ities. Third, they emphasized the value of a data-driven approach instead of constraining the

analyses to previously postulated biogeographical units (e.g., [54,69]). For highly biodiverse

biotas, most assumed regionalizations will yield significant floristic differences, but these are

not necessarily the strongest or more natural ones.

We attribute these causes to the fact that the sub regions we identified did not confirm pre-

vious proposals, although there were a few exceptions. We confirmed the Chapada Diamantina

as a distinctive floristic unit in the Caatinga, as in Velloso et al. [67] and Moro et al. [54],

although distinguished its core area separate from its periphery. Other mountain ranges like

the Borborema, Ibiapaba, and Araripe did not form particular sub regions as suggested by Vel-

loso et al. [67]. The Eastern Caatinga sub region corresponded with the agreste floristic unit

proposed by Rizzini [64], Fernandes [66], and Moro et al. [54], which constitutes a transition

to the Atlantic forest, although it is not as continuous or extensive as previously thought. We

found that the northern and southern Sertaneja depressions of Velloso et al. [67] were much

more complex and subdivided floristically, while their Raso da Catarina semiarid unit was

mostly included in our Reconcavo and São Francisco and Sertaneja Depressions sub regions.

The assumed distinction between floras of sedimentary versus crystalline terrains [39,54,67,69]

was not confirmed. Floristic sub regions did not match the distribution of sandy or crystalline

soils nor were soil variables included in the best model selected to explain the relationship

between biogeographical units and past climate, current environmental, or human footprint

variables. This is not to say that soil factors do not influence community structure and species

distributions in the Caatinga. There is evidence that they do [54] but our results indicate that

they are likely to be more determinant for floristic structure on smaller spatial scales than at

the Caatinga sub region scale. Our analyses were based on the Simpson dissimilarity index and

thus emphasize species turnover and not community nestedness [86]. Some of the floristic pat-

terns previously ascribed to human activities, geomorphological, soil, and physiognomic varia-

tion, may correspond to patterns of community nestedness within the distinct biogeographical

sub regions, which is a future step for understanding the Caatinga biome.
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Our results also highlight the distinction between floristic and physiognomic variation. The

official Brazilian vegetation classification is the product of a great effort to map the highly com-

plex physiognomic variation [74], and improvements in this classification have occurred [99].

However, the Caatinga floristic sub regions present different physiognomic units (i.e., season-

ally dry forests, open scrub, and short thorn forests) that are overlapped (Fig 2 and B in S1

Text), as for European plant bioregions [13]. Commonly recognized vegetation types like Rest-
inga along coastal sandy plains, rainforests on mountainous refugia, and thorn scrubs in the

semiarid Raso da Catarina did not comprise separate floristic units. Importantly, the decid-

uous forest patches found in western Bahia and parts of the Chapada Diamantina did not form

separate biogeographical units. Therefore, they can hardly be regarded as valid biogeographical

disjunctions of the Atlantic forest, as defined by the Brazilian government decree that estab-

lished the Atlantic forest limits [103]. This has two important implications. First, that pheno-

typic plasticity is strong enough in the region so that species can express distinct habits and

trait values across different vegetation types, to a large extent driven by local resource variation

[43,104]. Second, although physiognomic variation captures a significant portion of changes

in species composition [68], we should not use vegetation types as proxies for floristic compo-

sition because they masks the main biogeographical patterns in plant species distributions.

Rather, vegetation types should be used as a classification scheme complimentary to recog-

nized biogeographical sub regions.

In summary, we identified the main plant biogeographical sub regions of the biodiversity-

rich Caatinga nucleus in the Neotropical dry forest and woodland biome, based on a rigorous

quantitative analysis of a large data set. Our results help refine the current terrestrial ecore-

gions [9], and create a more accurate taxonomy for Brazil’s phytogeographical regions and

sub-regions, which are still entirely based on physiognomic variation [74]. The biogeographi-

cal regionalization we proposed, which is available as shape files in the Supplementary Mate-

rial, can be used for strategic conservation and management planning, for measuring and

modelling change, and to test hypotheses about the ecology and evolution of dry forest biotas

[4,5,6,8,10], including animal species [12,14]. Our regionalization also allows regional applica-

tions to be aggregated into regional-wide assessments, facilitating the growing demand for

coherent ecological data to assist policy and assess of the state of the global environment. Fur-

thermore, a greater understanding of the changes in morpho-physiological traits and ecologi-

cal strategies that accompany sub region shifts will enable a broader understanding of the

adaptive history of species and their potential for adaptation in the face of human induced cli-

mate change [38].
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13. Rueda M, Rodrı́guez MÁ, Hawkins BA. Towards a biogeographic regionalization of the European

biota. J Biogeogr. 2010; 37: 2067–2076. https://doi.org/10.1111/j.1365-2699.2010.02388.x

14. Heikinheimo H, Eronen JT, Sennikov A, Preston CD, Oikarinen E, Uotila P, et al. Convergence in the

distribution patterns of Europe’s plants and mammals is due to environmental forcing. J Biogeogr.

2012; 39: 1633–1644. https://doi.org/10.1111/j.1365-2699.2012.02723.x

15. Mackey BG, Berry SL, Brown T. Reconciling approaches to biogeographical regionalization: a system-

atic and generic framework examined with a case study of the Australian continent. J Biogeogr. 2008;

35: 213–229. https://doi.org/10.1111/j.1365-2699.2007.01822.x

16. Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldså J, Rahbek C. The partitioning of Africa: Statisti-

cally defined biogeographical regions in sub-Saharan Africa. J Biogeogr. 2012; 39: 1189–1205.

https://doi.org/10.1111/j.1365-2699.2012.02728.x

17. Ricklefs RE, He F. Region effects influence local tree species diversity. Proc Natl Acad Sci. 2016; 113:

674–679. https://doi.org/10.1073/pnas.1523683113 PMID: 26733680

18. Rezende VL, Dexter KG, Pennington RT, Oliveira-Filho AT. Geographical variation in the evolutionary

diversity of tree communities across southern South America. J Biogeogr. 2017; 44: 2365–2375.

https://doi.org/10.1111/jbi.13013

19. Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci.

2007; 104: 5925–5930. https://doi.org/10.1073/pnas.0608361104 PMID: 17379667

20. Antonelli A, Zizka A, Silvestro D, Scharn R, Cascales-Miñana B, Bacon CD. An engine for global plant

diversity: Highest evolutionary turnover and emigration in the American tropics. Front Genet. 2015; 6:

1–14.

21. Rull V. Speciation timing and neotropical biodiversity: The Tertiary-Quaternary debate in the light of

molecular phylogenetic evidence. Mol Ecol. 2008; 17: 2722–2729. https://doi.org/10.1111/j.1365-

294X.2008.03789.x PMID: 18494610

22. Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C. Phylogeographical patterns shed light on

evolutionary process in South America. Mol Ecol. 2013; 22: 1193–1213. https://doi.org/10.1111/mec.

12164 PMID: 23279129

23. Rull V. Neotropical biodiversity: timing and potential drivers. Trends Ecol Evol. 2011; 26: 508–513.

https://doi.org/10.1016/j.tree.2011.05.011 PMID: 21703715

24. Collevatti R, Terribile LC, Lima-Ribeiro MS, Nabout J, Oliveira G, Rangel TF, et al. A coupled phylo-

geographical and species distribution modelling approach recovers the demographical history of a

Neotropical seasonally dry forest tree species. Mol Ecol. 2012; 21: 5845–5863. https://doi.org/10.

1111/mec.12071 PMID: 23094833

25. Collevatti RG, Lima-Ribeiro MS, Diniz-Filho JAF, Oliveira G, Dobrovolski R, Terribile LC. Stability of

Brazilian seasonally dry forests under climate change: inferences for long-term conservation. Am J

Plant Sci. 2013; 4: 792–805. https://doi.org/10.4236/ajps.2013.44098

26. Werneck FP, Costa GC, Colli GR, Prado DE, Sites JW Jr. Revisiting the historical distribution of Sea-

sonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological

evidence. Glob Ecol Biogeogr. 2011; 20: 272–288. https://doi.org/10.1111/j.1466-8238.2010.00596.x

Aridity drives plant biogeographical sub regions in the Caatinga

PLOS ONE | https://doi.org/10.1371/journal.pone.0196130 April 27, 2018 18 / 22

https://doi.org/10.1111/j.1365-2699.2006.01664.x
https://doi.org/10.1111/j.1365-2699.2006.01664.x
https://doi.org/10.1073/pnas.0504225102
https://doi.org/10.1073/pnas.0504225102
http://www.ncbi.nlm.nih.gov/pubmed/16260748
https://doi.org/10.1111/j.1466-822X.2005.00190.x
https://doi.org/10.1111/j.1466-822X.2005.00190.x
https://doi.org/10.1111/j.1365-2699.2007.01822.x
https://doi.org/10.1111/j.1366-9516.2005.00143.x
https://doi.org/10.1111/j.1366-9516.2005.00143.x
https://doi.org/10.2307/3817
https://doi.org/10.2307/3817
https://doi.org/10.1111/j.1365-2699.2010.02388.x
https://doi.org/10.1111/j.1365-2699.2012.02723.x
https://doi.org/10.1111/j.1365-2699.2007.01822.x
https://doi.org/10.1111/j.1365-2699.2012.02728.x
https://doi.org/10.1073/pnas.1523683113
http://www.ncbi.nlm.nih.gov/pubmed/26733680
https://doi.org/10.1111/jbi.13013
https://doi.org/10.1073/pnas.0608361104
http://www.ncbi.nlm.nih.gov/pubmed/17379667
https://doi.org/10.1111/j.1365-294X.2008.03789.x
https://doi.org/10.1111/j.1365-294X.2008.03789.x
http://www.ncbi.nlm.nih.gov/pubmed/18494610
https://doi.org/10.1111/mec.12164
https://doi.org/10.1111/mec.12164
http://www.ncbi.nlm.nih.gov/pubmed/23279129
https://doi.org/10.1016/j.tree.2011.05.011
http://www.ncbi.nlm.nih.gov/pubmed/21703715
https://doi.org/10.1111/mec.12071
https://doi.org/10.1111/mec.12071
http://www.ncbi.nlm.nih.gov/pubmed/23094833
https://doi.org/10.4236/ajps.2013.44098
https://doi.org/10.1111/j.1466-8238.2010.00596.x
https://doi.org/10.1371/journal.pone.0196130


27. Pennington RT, Richardson JE, Lavin M. Insights into the historical construction of species-rich

biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure.

New Phytol. 2006; 172: 605–616. https://doi.org/10.1111/j.1469-8137.2006.01902.x PMID: 17096788

28. Caetano S, Prado D, Pennington RT, Beck S, Oliveira-Filho A, Spichiger R, et al. The history of Sea-

sonally Dry Tropical Forests in eastern South America: Inferences from the genetic structure of the

tree Astronium urundeuva (Anacardiaceae). Mol Ecol. 2008; 17: 3147–3159. https://doi.org/10.1111/j.

1365-294X.2008.03817.x PMID: 18522691

29. Melo WA, Lima-Ribeiro MS, Terribile LC, Collevatti RG. Coalescent simulation and paleodistribution

modeling for Tabebuia rosealba do not support south American dry forest refugia hypothesis. PLoS

One. 2016; 11. https://doi.org/10.1371/journal.pone.0159314 PMID: 27458982

30. Vieira F de A, Novaes RML, Fajardo CG, dos Santos RM, de S Almeida H, de Carvalho D, et al. Holo-

cene southward expansion in seasonally dry tropical forests in South America: phylogeography of

Ficus bonijesulapensis (Moraceae). Bot J Linn Soc. 2015; 177: 189–201. https://doi.org/10.1111/boj.

12241

31. Costa GC, Hampe A, Ledru M-P, Martinez PA, Mazzochini GG, Shepard DB, et al. Biome stability in

South America over the last 30 kyr: Inferences from long-term vegetation dynamics and habitat model-

ling. Glob Ecol Biogeogr. 2017; 0. https://doi.org/10.1111/geb.12694

32. Auler AS, Wang X, Edwards RL, Cheng H, Cristalli PS, Smart PL, et al. Quarternary ecological and

geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil. J Quat

Sci. 2004; 19: 693–701. https://doi.org/10.1002/jqs.876

33. Oliveira PE, Magno A, Suguio K. Late Pleistocene/Holocene climatic and vegetational history of the

Brazilian caatinga: the fossil dunes of the middle São Francisco River. Palaeogeogr Palaeoclimatol

Palaeoecol. 1999; 152: 319–337.

34. Wang X, Auler AS, Edwards LL, Cheng H, Cristalli PS, Smart PL, et al. Wet periods in northeastern

Brazil over the past 210 kyr linked to distant climate anomalies. Nature. 2004; 432: 740–743. https://

doi.org/10.1038/nature03067 PMID: 15592409

35. Pessenda LCR, Gouveia SEM, Ribeiro A de S, De Oliveira PE, Aravena R. Late Pleistocene and Holo-

cene vegetation changes in northeastern Brazil determined from carbon isotopes and charcoal rec-

ords in soils. Palaeogeogr Palaeoclimatol Palaeoecol. 2010; 297: 597–608. https://doi.org/10.1016/j.

palaeo.2010.09.008

36. Menezes MOT, Zappi DC, Moraes EM, Franco FF, Taylor NP, Costa IR, et al. Pleistocene radiation of

coastal species of Pilosocereus (Cactaceae) in eastern Brazil. J Arid Environ. Elsevier Ltd; 2016; 135:

22–32. https://doi.org/10.1016/j.jaridenv.2016.08.006

37. Murphy PG, Lugo AE. Ecology of tropical dry forest. Annu Rev Ecol Syst. 1986; 17: 67–88. Available:

1001
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