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Abstract

Beta cell dysfunction accompanies and drives the progression of type 2 diabetes mellitus

(T2D), but there are few clinical biomarkers available to assess islet cell stress in humans.

Secretagogin, a protein enriched in pancreatic islets, demonstrates protective effects on

beta cell function in animals. However, its potential as a circulating biomarker released from

human beta cells and islets has not been studied. In this study primary human islets, beta

cells and plasma samples were used to explore secretion and expression of secretagogin in

relation to the T2D pathology. Secretagogin was abundantly and specifically expressed and

secreted from human islets. Furthermore, T2D patients had an elevated plasma level of

secretagogin compared with matched healthy controls, which was confirmed in plasma of

diabetic mice transplanted with human islets. Additionally, the plasma secretagogin level of

the human cohort had an inverse correlation to clinical assessments of beta cell function. To

explore the mechanism of secretagogin release in vitro, human beta cells (EndoC-βH1)

were exposed to elevated glucose or cellular stress-inducing agents. Secretagogin was not

released in parallel with glucose stimulated insulin release, but was markedly elevated in

response to endoplasmic reticulum stressors and cytokines. These findings indicate that

secretagogin is a potential novel biomarker, reflecting stress and islet cell dysfunction in

T2D patients.

Introduction

Type 2 diabetes mellitus (T2D) is the most common form of diabetes [1,2]. One of the key

pathological mechanisms for the disease progression is the gradual loss of pancreatic beta cells.

It leads to insufficient release of insulin to compensate for the insulin resistance in tissues and
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thus an impaired glucose homeostasis in the body [3]. The major defect leading to a decrease

in beta cell mass in T2D is increased apoptosis, while new islet formation and beta cell replica-

tion are less affected [4]. Multiple stress conditions, including endoplasmic reticulum (ER)

stress [5–7] and enhanced production of pro-inflammatory cytokines [8,9], are present in the

T2D islets and cause beta cell dysfunction and apoptosis. Chronic activation of biological sys-

tems involved in emotional or social stress response, could contribute to ER stress and ulti-

mately beta cell functions, such as endothelial dysfunction [10], changes in energy pathways

[11], or cellular mechanisms [12–14]. Synergistic effects of stress together with exposure to

eugenic agents may further enhance activation of biological systems involved in stress

response, such as dysfunctional cell division processes [15].

The current gold standard biomarkers of T2D include fasting plasma glucose, oral glucose

tolerance test (OGTT), HbA1c, and biomarkers of beta cell capacity for insulin release, such as

insulin and C-peptide. However, these biomarkers do not provide a comprehensive picture of

the status of islet cells, for instance overall mass, viability or ability to cope with micro-environ-

mental stressors at the islet level [16]. The study of proteins released specifically from the islets

and their relation to islet cell stress could provide a source of novel biomarkers reflecting the

islet status. Consequently, they may allow a more informed decision-making on novel thera-

peutic approaches aiming at restoring beta cell function and islet health.

Secretagogin is a protein consisting of six EF-hand calcium-binding domains [17]. It is

highly expressed at mRNA level in human islets [17,18] and at protein level in the rat endo-

crine pancreas [19,20]. Secretagogin is also expressed by a subpopulation of endocrine cells of

the gastrointestinal tract and neuronal cells [17], particularly in cerebellum, pituitary gland

and hypothalamus [21]. Through systematic comparison of the expression in multiple human

tissues, the Human Protein Atlas displays that secretagogin has its highest protein expression

level in islets of Langerhans, compared with other tissues [22].

The precise physiological role of secretagogin is not yet known. However, previous studies

have shown that it is involved in calcium influx, diminished cell proliferation [10], improved

insulin secretion [17,23,24], beta cell homeostasis [25], apoptosis [26] as well as transcription

and control of insulin secretion [27]. A recent study by Malenczyk and co-workers [28]

showed that secretagogin knockout mice developed progressive glucose intolerance and loss of

beta cells with induced ER stress. Their study confirmed interaction of secretagogin with the

cytoskeleton and exocytosis machinery and proposed that intracellular secretagogin promotes

pancreatic beta cell survival and decreases ER stress by stabilizing deubiquitinating proteins

[28]. On the other hand, these previous functional studies of secretagogin were performed in

animal islets, animal beta cell lines or rodent in vivo models. It raises questions regarding their

translatability, given the important differences between human and rodent islets [29]. Never-

theless, no studies of secretagogin release from primary human islets and human beta cells

have been reported previously.

The present study aims to assess secretagogin as a potential soluble biomarker of human

islets stress by using translational in vivo and in vitro models and determining the secretagogin

level in plasma samples from diabetes patients compared with healthy controls.

Materials and methods

Cohort of study

The clinical samples were from two merged cohorts and consisted in total of 26 T2D and 26

healthy control subjects (Table 1). The first cohort of 20 T2D and 20 healthy controls matched

for gender, age and BMI has previously been described by Pereira et al. [30]. The second cohort

is an addition, by six individuals per group, from the same clinical site using a similar but
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reduced clinical protocol. The additional subjects were also fasted overnight, but in this

instance fasting blood samples were collected at only one occasion, without performing oral

glucose tolerance test (OGTT) or metabolic imaging. The clinical and biochemical characteris-

tics measured are given in the result section, Table 1.

All T2D subjects were on a stable dose of metformin for at least the past three months as

their only anti-diabetic medication. Subjects with type 1 diabetes, endocrine disorders, cancer

or other major illnesses were excluded, as well as those having ongoing medication with sys-

temic glucocorticoids, beta blockers or immune modulating therapies. The studies were

approved by the Regional Ethics Review Board in Uppsala and all participants gave their writ-

ten informed consent (Ethical approval number, 2013/183 and 2013/494).

Human pancreatic tissue

For the two-dimensional gel analysis pancreatic tissue and islets, not used for transplantation,

was obtained from multi-organ donors with informed consent from the organ donor registry

or from relatives. Approval for conduction of the present study was obtained from the local

Ethics Committee at Uppsala University, Uppsala, Sweden. Human pancreatic islets were iso-

lated at Uppsala University as described previously [31,32]. Human pancreatic tissue used for

immunohistochemical analysis (donor information in Table 2) and primary islets used for

xenograft transplantation were also purchased from Prodo Laboratories Inc. (Irvine, CA,

USA), providing donor pancreas obtained from deceased individuals with research consent

from Organ Procurement Organizations (OPOs). The use and storage of human islets and tis-

sue samples were performed in compliance with the Declaration of Helsinki, ICH/Good Clini-

cal Practice and was approved by the independent Regional Ethics Committee. Primary

Table 1. Clinical and biochemical characteristics of study participants and correlations between characteristics and the secretagogin (SCGN) level.

Control T2D T2D vs. Ctrl (p) Corr. with SCGN

Number of participants (N) 26 (13 F, 13 M) 26 (12 F, 14 M) N/A ---------

Age (years) 58 ± 12 60 ± 9 0.9 r = 0.13, p = 0.4

BMI (kg/m2) 30.1 ± 4.6 29.8 ± 4.5 0.7 r = -0.30, p = 0.04

HbA1c (%) 5.49 ± 0.36 6.77 ± 1.02 <0.0001 r = 0.46, p = 0.04

HbA1c (mmol/mol) 36.5 ± 3.96 50.5 ± 11.1 <0.0001 r = 0.46, p = 0.04

Plasma glucose (mmol/L) 6.00 ± 0.71 8.60 ± 2.48 <0.0001 r = 0.45, p = 0.001

Plasma insulin (mU/L) 10.9 ± 5.66 13.8 ± 6.21 0.06 r = 0.05, p = 0.7

Serum C-peptide (nmol/L) 0.88 ± 0.34 1.06 ± 0.32 0.03 r = 0.30, p = 0.03

Plasma Proinsulin (pmol/L) 11.8 ± 7.54 26.0 ± 18.1 0.0001 r = 0.25, p = 0.7

Plasma Proinsulin/C-peptide (pmol/L)/ (nmol/L) 13.0 ± 4.55 24.0 ± 16.3 0.0002 r = 0.17, p = 0.2

Plasma Secretagogin (pg/mL) 60.7 ± 36.0 103 ± 58.1 0.0037 ---------

Plasma Glucagon (pmol/L) 4.26 ± 2.33 5.70 ± 3.72 0.02 r = 0.045, p = 0.8

HOMA IR 2.92 ± 1.67 5.13 ± 2.85 0.0009 r = 0.30, p = 0.03

HOMA2%B 59.9 ± 14.0 39 ± 13.8 <0.0001 r = -0.41, p = 0.003

Insulinogenic index ¤ 33.4 ± 14.0 5.60 ± 4.64 0.0004 r = -0.56, p = 0.0002

Data are mean ± SD. Differences between groups were measured with Mann–Whitney U test.

Correlations between secretagogin and other markers were assessed by the Spearman correlation coefficient.

Bold values indicate statistical significance (p<0.05).

Blood chemistry is fasting.

T2D, type 2 diabetes; F, females; M, males. BMI, Body mass index; HbA1c, glycated hemoglobin

¤ A subset of the cohort analyzed (Control, n = 20; T2D, n = 20)

https://doi.org/10.1371/journal.pone.0196601.t001
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human islets, from seven donors were incubated in Prodo islet medium-standard (PIM-S)

complete medium containing 5.5mM glucose, under humidified atmosphere with 5% CO2 at

37˚C for 24h. Islet culture media were collected and centrifuged at 4˚C, 2000×g for 10 minutes

and levels of secretagogin was measured using ELISA (BioVendor).

Animals and human islet transplantation procedure

All animal procedures were performed following the guide for the care and use of laboratory

animals, eight edition, under experimental protocols approved by the Local Ethics Review

Committee on Animal Experiments (Gothenburg region). The AstraZeneca R&D Gothenburg

animal vivarium is accredited by the Association for the Assessment and Accreditation of Lab-

oratory Animal Care (AAALAC). Immune-compromised male NUDE (Crl:NMRI-Foxn1nu)

mice (Charles River, Germany), 6 weeks of age at arrival, were single housed in autoclaved,

individually ventilated cages on a 12 hour light/dark cycle (lights on at 6 am) with free access

to chow diet (R70, Lantmännen, Sweden) and water ad lib. Three days before the transplanta-

tion mice were made diabetic by a single intravenous injection of Alloxan monohydrate (72.5

mg/kg, Sigma Aldrich, UK) dissolved in saline. Mice with blood glucose >20 mM were

included in the study. Body weight (26.7±1.3g at start) were monitored three times per week

throughout the study. Individuals that showed signs of affected health condition, or decreased

10% or more of its initial body weight during the study were excluded according to the ethical

experimental protocol.

Human pancreatic islets were purchased from Prodo Laboratories Inc., USA. Before trans-

plantation the islets were allowed to recover for 24h in complete Prodo Islet Media Standard

PIM(s). Human islets were prepared into islet suspension of 1000 adult human islet equiva-

lents (IEQs)/mouse in cold saline. Islets were loaded into a catheter (P50) and kept on cold

until the transplantation. The surgical procedure was performed under aseptic conditions. The

mouse was anesthetized with isoflurane, washed and wiped with chlorhexidine solution. A

small cut was made in the skin to expose the kidney. The kidney capsule was scratched by a

needle and a glass rod was used to make a pocket under the kidney capsule. The P50 catheter

containing the islets was inserted in the pocket and the islets were slowly injected. After the

surgery, the mice were given analgesia (Temgestic, 0.06 mg/kg one dose immediately after sur-

gery and a second dose the day after) and were allowed to wake up on a warm pad and then

transferred back to the home cage. Seven mice were transplanted with human islets from one

donor. The function of the grafted islets was followed for 38 days by regular measurement of

blood glucose (AccuCheck) and circulating human c-peptide levels (Mercodia, Uppsala, Swe-

den). At termination, blood samples were collected and plasma was separated and stored fro-

zen until ELISA analyses were performed.

Table 2. Demographic information of the donors of pancreatic tissue used for immunohistochemical analysis.

Control T2D p
N (Males, Females) 8 (6 M, 2 F) 8 (6 M, 2 F) N/A

Age (years) 45 ± 14 50 ± 8 0.27

BMI (kg/m2) 30.7 ± 7.1 30.1 ± 6.6 0.88

HbA1c (%) 5.6 ± 0.3 7.4 ± 0.8 0.0007

Data are mean ± SD. Differences between groups were measured with Mann–Whitney U test.

Bold values indicate statistical significance (p<0.05).

T2D, type 2 diabetes; F, females; M, males. BMI, Body mass index; HbA1c, glycated hemoglobin.

https://doi.org/10.1371/journal.pone.0196601.t002
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ELISA analyses

A human secretagogin ELISA (BioVendor, Brno, Czech Republic) was used. The plates were

blocked with a solution of membrane blocking agent (1%, GE Healthcare) and Rotiblock (1×
dilution, Carl Roth GmbH), rinsed with provided kit wash and the manufacturer’s instructions

were followed. The plasma samples were diluted three-fold, media samples five-fold, and

EndoC extracts 100-fold, prior to analysis. Insulin, human C-peptide and proinsulin ELISAs

were used for measurements in plasma, according to the manufacturer’s instructions (Merco-

dia, Uppsala, Sweden). All samples were assayed in duplicates, randomized and blinded during

the run. All ELISA results were obtained using a microplate reader (SpectraMax M2, Molecu-

lar devices, Ca, USA).

Proteomic analysis with two-dimensional gel analysis and mass

spectrometry

Proteins were extracted from human islets and exocrine pancreas followed by protein precipi-

tation and analysis with differential in gel electrophoresis (DIGE, GE-healthcare). Selected 2D

gel spots were subjected to in gel tryptic digestion and analyzed using on line nanoflow liquid

chromatography (LC) on a hybrid linear ion trap-FT-ICR mass spectrometer equipped with a

7T ICR magnet (LTQ-FT, Thermo Electron, Bremen, Germany). MS/MS data was analyzed

using Thermo Proteome Discoverer (Thermo Scientific) with the Mascot search engine

(Matrix Science, London, UK) and the UniProtKB/Swiss-Prot 55.3 database (selected for

Homo sapiens, 19372 entries and trypsin as enzyme). Further details of the proteomic method

are provided in the supporting information (S1 Materials and Methods).

Western blotting

Protein extracts (10 μg, BCA protein assay kit, Pierce, Life Technologies) and proteins precipi-

tated (ProteoExtract, Calbiochem, Merck Chemicals) from conditioned islet media were sepa-

rated by SDS-PAGE on NuPAGE1 4–12% Bis-Tris Gels using MES SDS buffer (Life

Technologies). The proteins from the gels were transferred using the iBlotsystem (Life Tech-

nologies) at 23 V, 6 min. For immunoblotting of secretagogin polyvinylidene fluoride (PVDF)

iBlot membranes were used and the membranes were blocked in 1:1 mixture of membrane

blocking agent (1%, GE Healthcare) and Rotiblock (1 × Carl Roth GmbH, Karlsruhe, Ger-

many) solution and then incubated for 1h at RT with anti-Secretagogin, rabbit polyclonal ab

(HPA006641, Sigma Aldrich) diluted 1:1000 in PBS Tween 0.1% (PBS-T, Sigma Aldrich).

After washing, the Goat Anti-rabbit IgG, alkaline phosphatase labeled, secondary antibody

(Pierce, Thermo Scientific) was added (1:5000) to the membrane. Immunoreactive bands were

visualized using 1-step NTB/BCIP substrate (Pierce, Thermo Scientific). For detection of

CHOP, fluorescent western blot with the Odyssey CLx imaging system (LI-COR biotechnol-

ogy, NE, USA) was used. Proteins from the gels (10μg EndoC cell extract/lane) were trans-

ferred to nitrocellulose iBlot membranes. The membranes were blocked in Odyssey blocking

buffer (TBS) (LI-COR Biotechnology, NE, USA) and then incubated with anti-CHOP, mouse

monoclonal ab (# ab 11419 [9C8], Abcam, Cambridge, MA, USA) diluted 1:1000 in blocking

buffer (TBS)-Tween 0.1% at 4˚C over night. After rinses in TBS-T membranes were incubated

with secondary antibody (donkey anti-mouse 800CW (Odyssey, LI-COR Biotechnology))

diluted 1:15000 in blocking buffer TBS-T for 1h. After extensive washes in TBS-T and then in

TBS the membranes were scanned using the Odyssey CLx imager with the Image Studio soft-

ware, v. 4.0 and the 800 channel selected (LI-COR Biotechnology).
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Quantitative immunohistofluorescence analysis

Formalin fixed and paraffin embedded (FFPE) human pancreatic tissue samples from human

normal controls (n = 8) and T2D subjects (n = 8) (Table 2) were sectioned at 4μm thick sec-

tions and mounted on glass slides.

An immunohistofluorescence (IHF) assay for simultaneous visualization of insulin, gluca-

gon and secretagogin was developed. The IHF staining process included an initial heat-

induced antigen retrieval by incubating the deparaffinized tissue sections in an EDTA buffer,

pH 8.0, for 45 minutes. Secretagogin was detected using an affinity purified rabbit polyclonal

anti-human secretagogin, antibody. (at 0.15 μg/ml, Sigma-Aldrich, # HPA006641) and tyra-

mide signal amplification-based fluorescence detection of the secretagogin antibody (using a

horse radish-conjugated anti-rabbit secondary antibody and a Rhodamine detection kit, from

Ventana Medical Systems, # 760–4311 and # 760–233). Detection of insulin and glucagon was

achieved by mouse monoclonal anti-glucagon (at 12.4 μg/ml, Sigma-Aldrich, # G2654) and

polyclonal guinea pig anti-insulin, (at 17.4 μg/ml, DAKO # A0564), respectively, which were

co-incubated with the secretagogin antibody on the tissue sections. The bound insulin and glu-

cagon antibodies were then detected with Alexa Fluor 647 goat anti-mouse IgG and Alexa

Fluor 488 goat anti-guinea pig IgG antibodies (both at 10 μg/ml, from Life Technologies).

Then the tissue sections were counter-stained with DAPI (Sigma # D9542, final concentration

1 μg/ml) and cover slipped. Systematic cross-wise omission of each of the primary antibodies

from the staining process resulted in complete loss of IHF staining in the relevant filter

channel.

The IHF assay was used to stain one pancreatic tissue section from each of the eight normal

controls and eight T2D subjects. The stained tissue sections were scanned using a 20x objective

on a 3DHistech Panoramic 250 FLASH II digital slide scanner for visualization of the fluoro-

phores. Each slide was scanned over the entire tissue area, using individual filter cubes opti-

mized for viewing of the DAPI, Alexa Fluor 488, Rhodamine and Alexa Fluor 647

fluorophores. In addition, the tissues were simultaneously scanned through a fifth filter which

exclusively detects tissue autofluorescence. Fixed exposure time and gain settings for imaging

of the fluorophores and the tissue autofluorescence were selected to ensure that the images

were not overexposed and that there was minimal cross-talk between the individual compo-

nents of the IHF assay. This included evaluation and demonstration of absence of inadvertent

bleed-over between the different filter channels (e.g. Rhodamine inadvertently generating sig-

nals through the Alexa Flour 488 or Cy5 filters) in single stained tissue sections scanned

through all filters.

The image files were finally imported into software for quantitative image analysis (VIS,

Visiopharm, Denmark) and processed for quantitative analysis of the deposited fluorophores.

Briefly, the program was trained to specifically recognize and separate tissue areas that were

labelled with each fluorophore above set thresholds. In addition, as means to avoid confounds

from broad spectrum tissue autofluorescence the program was also trained to specifically rec-

ognize, and disregard, any tissue structures emitting autofluorescence above a set threshold.

The program was finally programmed to measure the levels of IHF for secretagogin staining

over tissue identified as stained positive for insulin or glucagon.

EndoC-βH1 cell culture

EndoC-βH1 cells,a genetically engineered human pancreatic β-cell line exhibiting glucose-

inducible insulin secretion [33], were cultured in Dulbecco’s modified Eagle’s medium

(DMEM, Sigma Aldrich) low glucose (5.6 mM) containing 2% bovine serum albumin (BSA)

fraction V, 50 μM 2-mercaptoethanol, 10 mM nicotinamide, 5.5 μg/mL transferrin, 6.7 ng/mL
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sodium selenite and penicillin (100 units/mL)/streptomycin (100 mg/mL). Cell culture plates

were pre-coated with DMEM with 25mM glucose, containing fibronectin 2 μg/mL, ECM 1%,

and penicillin (100 units/mL)/streptomycin (100 mg/mL). For the glucose-stimulated insulin

release experiments, 50 000 cells were seeded in wells of coated 96-well plates. Cells were

treated with 100 μL complete medium containing 5.5 mM glucose for 24 h then starved in

Krebs-Ringer bicarbonate buffer containing 10mM Hepes, pH 7.4 (KRH), 0.2% BSA and 2.8

mM glucose for 1 h, and washed three times with KRH. The cells were then incubated in KRH

with 2.8 mM or 16.7 mM glucose for 1h. Then cell culture medium was collected, cells were

washed three times with PBS and immediately lysed in 100 μL RIPA lysis buffer (Sigma-

Aldrich, #R0258).

SiRNA transfection and treatment with stressing agents

EndoC-βH1 cells were transfected with FlexiTube pre-designed SCGN siRNA oligos (QIA-

GEN) using Lipofectamine RNAiMAX (Thermo Fisher Scientific) two days before treatment,

according to the manufacturer’s instructions. AllStars Negative Control siRNA (QIAGEN)

was used as scrambled siRNA in all transfections. 50 000 EndoC-βH1 cells were seeded in

wells of coated 96-well plates. Cells were treated with 100 μL complete medium containing 5.5

mM glucose and one of subsequent treatments; 1) DMSO (1:1000), 2) Thapsigargin (1 μM) in

DMSO (1:1000), 3) Tunicamycin (10 μg/mL) in DMSO (1:1000), 4) Cytokine cocktail (IFN-γ
(40 ng/mL), IL1-β (20 ng/mL), TNF-α (40 ng/mL)) in DMSO (1:1000) (all treatments, n = 4).

After 24h, the medium was collected and cells lysed as described above. For normalization pur-

pose, equal number of cells were seeded per well and the volume of medium and lysis buffer

used was the same. The medium and protein extracts were kept at -80˚C pending analysis.

The level of intracellular caspase 3/7 activity was assessed by Caspase-Glo assay systems

(Promega, Madison, USA) according the manufacturer’s instruction. Intracellular CCAAT-

enhancer-binding protein homologous protein (CHOP) expression was assessed using western

blotting analyzing 30 μl lysate/well (corresponding to 10μg total protein).

Statistics

The results are presented as the mean±SD. Statistical analyses were performed using GraphPad

Prism version 7.02. Group comparisons of clinical data was done using Mann-Whitney U-test.

When multiple measurements existed for individual patients, the mean value for each patient

was used. Correlations between secretagogin and other markers were assessed by the Spear-

man correlation coefficient (r). Group comparisons of in vivo and in vitro data were performed

using unpaired Student’s t-test. Multiple comparisons in in vitro and IHF staining experiments

were performed using one-way ANOVA with Dunnett’s multiple comparisons test or two-way

ANOVA with Tukey’s correction for multiple testing. Values of p<0.05 was considered statis-

tically significant.

Results

Abundant expression of secretagogin in human pancreatic islets

Proteomic analysis of human islets was performed to identify proteins enriched in islets com-

pared to exocrine pancreatic tissue. The 2D DIGE analysis allowed the simultaneous visualiza-

tion in the same gel of islet proteins (Fig 1A) and exocrine proteins (Fig 1B). The protein spots

were properly matched in the gel using a reference sample of equal concentrations of endo-

crine and exocrine human pancreatic tissue. The protein spots enriched more than two-fold in

human islets compared with exocrine pancreas were selected for protein identification by MS.
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Among these proteins, secretagogin was abundantly expressed in the islets and identified in

three distinct protein spots (Fig 1A and S1 Table).

A subsequent western blot analysis performed on extracts of human pancreatic islets and

exocrine tissue, confirmed that secretagogin was expressed exclusively within the islets (Fig

1C). Released secretagogin was also detectable in conditioned media from cultured human

islets by western blot (Fig 1D). Furthermore, the average level of secretagogin in media of islets

from seven different donors was 13±4 pg/islet equivalent (IEQ), determined using ELISA.

Elevated level of secretagogin in plasma from T2D patients

The potential of secretagogin as a serological biomarker was investigated by analyzing plasma

levels of secretagogin in a clinical cohort of T2D and healthy control individuals (Table 1). The

T2D patients of this cohort was well controlled, with mean HbA1c levels of 6.8% ±1.0% and

metformin was their only antidiabetic medication [30]. The plasma levels of secretagogin were

significantly elevated in the T2D patients, when compared with non-diabetic control subjects

(Fig 2).

One T2D subject was excluded from the data reported for the secretagogin plasma levels,

since the level of that individual was about 50-fold higher than mean cohort levels and statisti-

cally defined as an outlier.

The subject characteristics and glycemic biomarkers and their correlation with plasma

secretagogin levels were calculated and presented in Table 1. There was no association between

Fig 1. Abundant expression of secretagogin in human islets but not in exocrine tissue. Total protein extracts of

human islets analyzed by two-dimensional difference in gel electrophoresis (DIGE). Protein spots identified as

secretagogin by mass spectrometry (nano LC-FTICR MS/MS) are denoted in red. (b) Total protein extracts of exocrine

pancreatic tissue analyzed by DIGE. (c) Western blot analysis of total extracts of human islets and exocrine pancreatic

tissue and (d) conditioned media from human islets, immunostained with a polyclonal rabbit anti-secretagogin

antibody.

https://doi.org/10.1371/journal.pone.0196601.g001

Fig 2. Plasma levels of secretagogin were increased in T2D patients. Secretagogin levels in plasma were significantly

increased in T2D patients (n = 26) compared with age, BMI and gender matched healthy controls (n = 26) (p = 0.004).

Data presented as mean±SD and statistical differences were calculated using Mann Whitney’s U test.

https://doi.org/10.1371/journal.pone.0196601.g002
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plasma levels of insulin or glucagon with the secretagogin level. The most striking negative cor-

relations were observed between secretagogin level and insulinogenic index (IGI) as well as

HOMA2%B [34], respectively (Table 1). In contrast, secretagogin level had a positive correla-

tion with fasting plasma glucose, fasting serum C-peptide and HbA1c, respectively.

Increased plasma level of human secretagogin in mice with failing

transplanted human islets

To study the release of secretagogin from primary human islets in vivo, a human islet trans-

plantation model was used. Seven hyperglycemic (32±0.7 mM glucose) nu/nu mice, with

ablated endogenous islets, were transplanted with human islets under the kidney capsule,

which resulted in a significant reduction in the plasma glucose level (13±2.4 mM) (Fig 3A).

Three of the mice regained and remained normoglycemic (6.8±0.6 mM) during the entire

observation period of 40 days. In contrast, the engraftment of the islets failed in four of the

mice and they became increasingly hyperglycemic. In four weeks after the transplantation the

plasma glucose level reached 30 mM again, in this group. Dividing the human islet trans-

planted mice into two groups, allowed comparison of secretagogin release from human islets

in vivo under normoglycemic and diabetic conditions. The plasma level of human secretagogin

was found to be increased in the diabetic mice compared with the normoglycemic mice (Fig

3B), while human C-peptide levels were decreased (Fig 3C). The results indicated that islet fail-

ure and/or the hyperglycemic condition resulted in increased secretagogin release from the

islets as a possible measure of beta cell stress.

Increased expression of secretagogin in β-cells from T2D pancreatic tissue

sections

Using immunohistofluorescence (IHF) analysis the distribution of secretagogin within the

human pancreas was characterized. This analysis confirmed an exclusive secretagogin immu-

noreactivity within the islet cells (Fig 4A). Furthermore, high resolution imaging demonstrated

the presence of secretagogin in cytoplasm as well as nuclear compartment of both insulin and

glucagon positive cells (S1 Fig). In addition, secretagogin staining was also observed in other

islet cells not co-stained for either insulin or glucagon (S1 Fig).

Next, a quantitative analysis of the secretagogin staining intensity in insulin and glucagon-

positive cells was performed in pancreatic tissue sections from T2D (n = 8) and non-diabetic

controls (n = 8) (Table 2). It revealed a significantly enhanced secretagogin staining in insulin-

positive, beta cells in T2D islets as compared with the non-diabetic controls (Fig 4B). In con-

trast, no significant difference in secretagogin staining intensity was observed in the glucagon-

positive cells (Fig 4B). Representative pictures of IHF staining of human islets from three con-

trol individuals (Fig 4C1–4C3, 4D1–4D3 and 4E1–4E3) and three T2D individuals (Fig 4F1–4F3,

4G1–4G3 and 4H1–4H3) are shown.

Secretagogin was not released in parallel with insulin from EndoC-βH1

cells

To explore if secretagogin was secreted in parallel with insulin and/or released in response to

hyperglycemic conditions, human EndoC-βH1 beta cells were treated with 2.8 mM or 16.7

mM glucose for 1h. Both secretagogin and insulin release as well as intracellular levels were

measured. It showed that secretagogin release was unaltered at different glucose levels (Fig

5A), while there was a significant increase in insulin secretion at high glucose concentration

(16.7 mM) compared with low concentration (2.8 mM) (Fig 5B). The intracellular level of
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secretagogin was slightly increased in EndoC cells by high glucose (Fig 5C), while the intracel-

lular level of insulin was unchanged (Fig 5D). In all conditions, secretagogin was both released

and expressed at substantially lower molar ratio (~200-fold lower release and ~40-fold lower

intracellular expression) compared to insulin

Treatment of EndoC-βH1 cells with stress-inducing agents increased the

secretagogin release

To further explore what triggered the release of secretagogin, functional in vitro studies of ER

and inflammatory stress were performed using human EndoC-βH1 cells. The secretagogin

release from EndoC cells was significantly increased in response to 24 h treatment with all

stressors, including tunicamycin, thapsigargin, and cytokine cocktail, compared with control

cells (Fig 6A). The highest secretagogin release was triggered by cytokine cocktail, mimicking

an inflammatory stress response (Fig 6A).

The insulin secretion was also measured in order to detect potential co-release of secretago-

gin. This showed that insulin and secretagogin were not released in parallel since the pattern of

release was different for the two proteins (Fig 6A and 6B). Thapsigargin and cytokine treat-

ments significantly increased the release of both insulin and secretagogin from the cells (Fig

6B). However, tunicamycin incubation triggered only secretagogin release with no parallel

increase of insulin secretion when compared with control cells. These results indicate that

secretagogin and insulin can be released independently of each other.

In terms of intracellular secretagogin levels, none of the cellular stress inducing treatments

resulted in significant changes (Fig 6C). It suggests that the intracellular secretagogin does not

necessarily drive its increased release into the cell media.

Intracellular secretagogin protected EndoC-βH1 cells from ER stress-

induced apoptosis

To confirm that the stress inducers (tunicamycin, thapsigargin and cytokine cocktail) lead to

apoptosis, the levels of caspase 3/7 activity was assessed in parallel to the secretagogin and insu-

lin release. Furthermore, the causative effect of secretagogin on EndoC-βH1 apoptosis was

determined by siRNA silencing of secretagogin.

For effective secretagogin silencing four different secretagogin siRNA oligos (siSCGN), #4

to #7, and a pool of the oligos (with lower dose of each oligo, were tested (S2 Fig)). The pooled

siRNA-oligos were most effective in silencing of the intracellular secretagogin mRNA levels

and subsequently used in the experiments. The pooled siSCGN oligos silenced secretagogin

mRNA expression by 89% and 93% (normalized to housekeeping gene HPRT1) compared

with scrambled siRNA-treated control cells after 48 h and 72 h respectively. On protein level

this corresponded to a reduction of intracellular secretagogin expression by 54% as measured

by ELISA in lysates of silenced EndoC cells (p<0.0001) compared with non-silenced cells.

This indicated that the secretagogin protein was fairly stable since a substantial suppression of

the mRNA expression only resulted in reduction of protein expression to about 50%.

Fig 3. Plasma level of human secretagogin was increased as a result of human islet transplant failure in mice. (a)

Plasma glucose levels in human islet-transplanted nu/nu mice. Mice (n = 7) were injected with alloxan to ablate the

mouse beta cells, at day -3, followed by transplantation with human islets (1000 IEQ) under the kidney capsule at day

0. Plasma glucose level was monitored over 40 days. (b) Human secretagogin level (c) and human C-peptide level were

measured in mouse plasma of both normoglycemic and hyperglycemic mice 40 days after human islet transplantation.

Data are presented as mean±SD and statistical differences were calculated using Student’s unpaired t-test.

https://doi.org/10.1371/journal.pone.0196601.g003
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Fig 4. Increased secretagogin expression in beta cells from pancreatic tissue of T2D patients. (a) Secretagogin expression in islet cells of human pancreatic tissue

sections were detected by immunohistofluorescence, using anti-secretagogin antibody (showed in red). Sections were counterstained with DAPI in nucleus (pseudo-

colored in white). (b) Quantitative analysis of immunohistofluorescence as measured by mean fluorescence intensity of secretagogin staining in all insulin and glucagon

expressing cells of human pancreatic tissue sections. Eight T2D individuals and eight control subjects, matched for age, BMI and gender, were used. Horizontal bars

indicate group median. Group comparisons were performed using unpaired t-test. (c1, d1, e1, f1, g1, h1) The upper row shows representative pictures of human islets from

three control individuals (c1, d1, e1) and three T2D individuals (f1, g1, h1) (selected to reflect the group median staining intensities). Triple immunohistofluorescence

staining was performed for secretagogin (showed in red), insulin (showed in green) and glucagon (showed in turquoise). (c2, d2, e2, f2, g2, h2) The middle row shows

secretagogin and insulin co-distribution (showed as yellow and orange tints). (c3, d3, e3, f3, g3, h3) The lower row shows secretagogin immunostaining together with DAPI

counterstaining (showed in white).

https://doi.org/10.1371/journal.pone.0196601.g004
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All tested stress-inducing agents resulted in significantly increased apoptosis in human

EndoC-βH1 cells (Fig 7). Despite only 50% decrease in protein level, silencing of secretagogin

in EndoC beta cells resulted in further enhanced caspase 3/7 activity after 24h treatments with

the ER stressor tunicamycin or thapsigargin (Fig 7). Moreover, the activation of unfolded pro-

tein response (UPR) by ER stressors was assessed using immunoblotting of CHOP in protein

lysates. Only tunicamycin and thapsigargin treatments but not cytokine cocktail induced

CHOP protein expression (S3 Fig).

Discussion

In this study we explored the role of increased release of secretagogin as a potential biomarker

of human islet stress and revealed that T2D patients had elevated plasma level of secretagogin.

Fig 5. Secretagogin release was unaltered at different glucose concentrations. (a) Levels of secretagogin and (b)

insulin released into cell media during 1 h incubation of EndoC-βH1 cells at 2.8 mM or 16.7 mM glucose level. (c)

Intracellular levels of secretagogin and (d) insulin in cell lysates after 1 h treatment at low and high glucose concentr-

ation. Data are presented as mean ± SD. Statistical differences were calculated using Student’s unpaired t-test, n = 4.
� p<0.05; ��� p<0.0005.

https://doi.org/10.1371/journal.pone.0196601.g005
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Fig 6. Secretagogin was released from human beta cells after induction of cellular stress. (a) Secretagogin release,

(b) insulin secretion and (c) intracellular secretagogin level of EndoC-βH1 cells treated for 24h with stress inducers,

either tunicamycin (10 μg/ml), thapsigargin (1 μM) or cytokine cocktail (IFN-γ (40 ng/ml), IL1-β (20 ng/ml), TNF-α
(40 ng/ml)). All inducers were dissolved in DMSO (1:1000) and control cells were incubated in DMSO (1:1000). Data
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Secretagogin was identified as a candidate biomarker present in human islets through a prote-

omic analysis. It showed that secretagogin was highly abundant in the islets but not present in

the exocrine pancreas, which was further confirmed with immunoblotting. We also found that

secretagogin was released into media from primary human islets, which is in line with a previ-

ous study from rat insulinoma Rin-F cells [19]. These findings raised an intriguing question

whether secretagogin can be used as a soluble biomarker of islet cell stress, given its published

association with ER stress in beta cell [28]. To answer this question, we assessed secretagogin

levels in plasma samples from healthy and T2D subjects. The T2D individuals in this study

had a well-controlled diabetes disease, with metformin as their only antidiabetic medication.

In this study we observed that:

1. The secretagogin plasma level was elevated in T2D patients compared with matched healthy

controls.

are presented as mean±SD, statistical differences were calculated using one-way ANOVA analysis, n = 4.
���� p<0.0001.

https://doi.org/10.1371/journal.pone.0196601.g006

Fig 7. Silencing of secretagogin in EndoC cells increased ER stress-induced apoptosis. Caspase 3/7 activity in EndoC-βH1 cells pretreated (48h) with scrambled

control or secretagogin siRNA followed by stress induction by either tunicamycin, thapsigargin or cytokine cocktail (IFN-γ, IL1-β, TNF-α) for 24h. All substances were

dissolved in DMSO (1:1000) and control cells were incubated in DMSO (1:1000). Scr. siRNA = Cells treated with scrambled siRNA. siSCGN = Secretagogin knock down

by siRNA. Data are presented as mean ± SD and statistical differences were calculated using two-way ANOVA analysis, n = 4. �� p = 0.003; ���� p< 0.0001.

https://doi.org/10.1371/journal.pone.0196601.g007
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2. The secretagogin plasma level was inversely associated with HOMA2%B (an estimate of

steady state beta cell function [34]) and insulinogenic index (index of beta cell function

[35]), supporting its potential as a marker of beta cell or islet stress status.

3. The secretagogin plasma level was not associated with insulin or glucagon levels, indicating

a different mechanism of release or degradation/removal from plasma between secretago-

gin and the beta and alpha cell specific hormones.

4. There was a nominally significant positive correlation between secretagogin and fasting glu-

cose, fasting C-peptide, and HbA1C levels, suggesting that a disturbed glucose homeostasis

may be related to increased secretagogin plasma levels.

As a potential biomarker of islet stress status in T2D patients secretagogin may have some

limitations. For instance, secretagogin has been reported to be highly expressed in some endo-

crine form of cancers [26,36–38]. Moreover, secretagogin was identified as a potential bio-

marker of cerebral ischemia damage or stroke [21,39]. This may result in altered plasma level

of secretagogin in these disorders as well. In a study by Montaner et al. [39] the secretagogin

plasma level was quantified in 915 stroke patients and 90 patients with stroke mimicking con-

ditions. Their study indicated that stroke patients had lower levels of secretagogin compared

with the mimicking conditions. Then they assessed the effect of different risk factors in this

stroke cohort, including T2D, on the plasma concentration of secretagogin. Without knowing

the source tissues of secretagogin, they found that the T2D population (n = 260) had elevated

plasma levels of secretagogin compared with non-T2D individuals (n = 745) (p-value = 0.02)

in their cohort [39]. The study by Montaner and colleagues supports the finding of increased

secretagogin levels in our well controlled early T2D cohort. It also suggests that plasma secreta-

gogin as a biomarker is distinguishable between T2D and cerebral ischemia. Given our find-

ings of negative correlation with clinical estimates of beta cell function, we hypothesize that

islets predominantly contribute to the increase of secretagogin level in T2D plasma, although

islets are not the only source tissue of secretagogin release [17,22].

To evaluate the extent of secretagogin release exclusively from human islets in vivo, we

adopted a mouse model of human islet transplantation, in which successful transplantation

resulted in normoglycemia while transplant failure lead to islet dysfunction and hyperglycemia

in the mice. Using this model, we could confirm that levels of human specific secretagogin

were significantly increased in the plasma of mice with hyperglycemia, which was likely caused

by beta cell failure. This finding supports the concept that secretagogin release from the islets

was sufficient to create quantifiable levels in the plasma as part of islet failure (i.e. increased

islet stress).

The IHF analysis in our study demonstrated that secretagogin was expressed in all islet cells

but not in the exocrine cells. This is in line with a recent study using single cell RNA-seq analy-

sis of human pancreatic islets showing high mRNA expression of secretagogin in all endocrine

islet cells, with a trend of higher expression in beta cells [40]. Furthermore, increased intracel-

lular levels of secretagogin were found specifically in the beta cells of the T2D subjects com-

pared with controls. In contrast to our findings, Malenzcyk et al. [28], recently reported that

the mRNA level of secretagogin was significantly reduced in isolated islets from T2D donors

compared with healthy controls. The discrepancy between these findings may be explained by

that secretagogin mRNA level may not correspond to the immunohistochemically detected

protein level, as indicated in a previous study [20]. An alternative explanation may be that the

isolation of culture of islets for one to nine days prior to mRNA analysis may affect the mRNA

expression level. Nevertheless, our IHF analysis should be interpreted with caution, as only

one tissue slide per individual was used due to the limitation of material and a fairly large
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variation of secretagogin levels was observed between T2D individuals. Additionally, the quan-

titative analyses of the IHF-stained tissue sections were performed on images acquired with a

fluorescence scanning microscope. The chosen approach for imaging provided important ben-

efits (e.g. generating quantitative data from all endocrine cells within each tissue in a robust

and non-biased way and rapid acquisition of evenly illuminated images), this scanning micro-

scope offers a lower resolution in the Z plane as compared to confocal microscopes. This

increases the risk that a component of our dual staining data may actually be derived from

IHF staining of different but locally overlapping cells. The potential impact from such an over-

lap was limited by using 4 μm thin tissue sections for analysis of the endocrine cells (roughly

sized 8–15 μm).

To investigate whether hyperglycemia and/or induced islet stress resulted in increased

secretagogin release the pattern of its release was assessed in vitro in response to either high

glucose levels or stress induction. As pharmacological inducers of ER stress, tunicamycin (an

inhibitor of N-linked protein glycosylation) and thapsigargin (an inhibitor of sarcoplasmic/

endoplasmic reticulum Ca2+ ATPase [SERCAs]) were used. The pro-inflammatory stress

mechanism was mimicked by treatment using the combination of IFN-γ, IL1-β and TNF-α as

a cytokine cocktail. These in vitro studies showed that:

1. Secretagogin was released in response to both ER stress and cytokine stimuli in human beta

cells. The siRNA knockdown of intracellular secretagogin increased apoptosis of EndoC

cells only in response to ER stress inducers.

2. Secretagogin was not released in parallel with insulin and not in response to hyperglycemic

conditions. The intracellular level of secretagogin was slightly upregulated by high glucose

level in EndoC cells.

Our findings that intracellular secretagogin protected beta cells from apoptosis is sup-

ported by recent findings in cancer cells by Bai and colleagues [26] which shows that

overexpression of secretagogin inhibited apoptosis. Interestingly, in our study the anti-

apoptotic effects of secretagogin were only seen in cells that were subjected to pharmaco-

logical ER stressors but not to the cytokine cocktail. Secretagogin has been suggested to

be a Ca2+ sensor and not a buffering protein [27]. However, it was recently proposed that

depending on availability of Ca2+ and redox state secretagogin may have different charac-

teristics [41]. In the cytosol, secretagogin may then function as a Ca2+ sensor, while in an

oxidizing milieu (such as in ER and under oxidative stress conditions) secretagogin may

act as a Ca2+ buffer [41]. Fluctuations in the levels of Ca2+ in the ER can severely impact

protein folding capacity, causing UPR and triggering cell death [42]. Thus, in ER, secreta-

gogin may reduce Ca2+ fluctuations and promote survival. These results are also in line

with a recent finding that intracellular secretagogin promotes pancreatic beta cell sur-

vival and decreases ER stress by stabilizing deubiquitinating proteins [28].

Secretagogin has previously been suggested to be involved in beta cell homeostasis by pro-

tecting against IL-1β-mediated beta cell destruction in diabetes-prone biobreeding rat islets

[43]. These results are in contrast with our study, which indicated that cytokines did not

change the apoptotic susceptibility of secretagogin silenced human beta cells. However,

another study showed that intracellular secretagogin expression was not affected by cytokines

in rat insulinoma cells and neither in islets from Wistar Furth rats[25]. The discrepancy

between different studies highlights that use of different strains and model systems may give

conflicting results.

Previous studies based on rodent models, or rodent beta cell lines [23,24,27] have shown

that intracellular secretagogin modulates and facilitates the exocytosis of insulin through
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interaction with cytoskeletal proteins [24,44], soluble N-ethylmalemide-sensitive-factor attach-

ment receptor (SNARE) components [45,46] and cargo proteins [47]. The tight association of

secretagogin with the exocytosis machinery may postulate a release during insulin secretion.

However, in this study we show that secretagogin release is not in parallel to glucose stimulated

insulin secretion, which has also been shown in a study of secretagogin release from rodent

beta cells [19].

The fact that secretagogin release was not fluctuating in relation to insulin release is an

important feature of a novel biomarker. It could enable secretagogin to reflect a certain disease

condition that cannot be captured by insulin, C-peptide or proinsulin levels. A suggestion may

be that secretagogin may function as a stress responsive endocrine or paracrine factor, released

in response to increased cell stress. But further studies on effects of released secretagogin on

surrounding cells are needed to test this hypothesis.

In conclusion, our findings suggest that released secretagogin is a candidate plasma bio-

marker of islet cell stress with independent value compared to insulin. To further validate

secretagogin as a biomarker for islet stress, studies in larger cohorts are warranted.
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S1 Fig. Secretagogin was expressed in cytoplasm and nuclear compartment of both insulin

and glucagon positive cells. High resolution immunohistofluorescence staining for secretago-

gin (showed in red), insulin (showed in green) and glucagon (showed in turquoise), and

nucleus counterstained with DAPI (pseudo-colored in white). In the left image secretagogin is

visualized together with the nuclear counterstaining. In the middle image, the insulin staining

is added to the secretagogin and nuclear staining. In the right-hand image, secretagogin, insu-

lin and nuclear staining is visualized together with the staining for glucagon.

(TIF)

S2 Fig. A pool of silencing oligos gave robust knock down of secretagogin mRNA levels in

EndoC cells. Four pre-designed (FlexiTube, QIAGEN) silencing RNA oligos of secretagogin

(siSCGN) as well as a pool of #4-#6 were assessed for their effect on mRNA silencing of secre-

tagogin expression in EndoC cells as compared with the expression of a scrambled siRNA (Scr

siRNA) as negative control.

(TIF)

S3 Fig. CHOP expression was induced in EndoC cells treated with thapsigargin and tunica-

mycin. Intracellular CCAAT-enhancer-binding protein homologous protein (CHOP) expres-

sion was assessed using western blotting, analyzing 10μg total protein per well of EndoC cells

treated with stress induction by either tunicamycin, thapsigargin or cytokine cocktail (IFN-γ,

IL1-β, TNF-α) for 24h. All substances were dissolved in DMSO (1:1000) and control cells were

incubated in DMSO (1:1000).

(TIF)

S1 Table. Identification of secretagogin from 2D gel analysis by mass spectrometry.
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