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Abstract

Background—Reported per-patient costs of Clostridium difficile infection (CDI) vary by two 

orders of magnitude among different hospitals, implying that infection control officers need 

precise, local analyses to guide rational decision-making between interventions.

Objective—We sought to comprehensively estimate changes in length of stay (LOS) attributable 

to CDI at one urban tertiary-care facility using only data automatically extractable from the 

electronic medical record (EMR).

Methods—We performed a retrospective cohort study of 171,938 visits spanning a 7-year period. 

23,968 variables were extracted from EMR data recorded within 24 hours of admission to train 

elastic net regularized logistic regression models for propensity score matching. To address time-

dependent bias (reverse causation), we separately stratified comparisons by time-of-infection and 

fit multistate models.

Results—The estimated difference in median LOS for propensity-matched cohorts varied from 

3.1 days (95% CI, 2.2–3.9) to 10.1 days (95% CI, 7.3–12.2) depending on the case definition; 

however, dependency of the estimate on time-to-infection was observed. Stratification by time to 

first positive toxin assay, excluding probable community-acquired infections, showed a minimum 

excess LOS of 3.1 days (95% CI, 1.7–4.4). Under the same case definition, the multistate model 

averaged an excess LOS of 3.3 days (95% CI, 2.6–4.0).

Conclusions—Two independent time-to-infection adjusted methods converged on similar excess 

LOS estimates. Changes in LOS can be extrapolated to a marginal dollar costs by multiplying by 

average costs of an inpatient-day. Infection control officers can leverage automatically extractable 

EMR data to estimate costs of CDI at their own institution.

#Corresponding author: Andrew Kasarskis, Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of 
Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA; telephone, +1 (212) 659-8542; 
andrew.kasarskis@mssm.edu. 

Potential conflicts of interest
ERS receives salary support from and acts as an advisor for Sema4 Incorporated. All other authors report no conflicts of interest 
relevant to this article.

HHS Public Access
Author manuscript
Infect Control Hosp Epidemiol. Author manuscript; available in PMC 2018 April 27.

Published in final edited form as:
Infect Control Hosp Epidemiol. 2017 December ; 38(12): 1478–1486. doi:10.1017/ice.2017.214.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Clostridium difficile; attributable cost; clinical informatics; length of stay; machine learning

Introduction

Clostridium difficile infection (CDI) is the most frequently reported healthcare-associated 

infection (HAI) in the US1 and the major infective cause of nosocomial diarrhea in 

developed countries,2 incurring billions of dollars in excess medical costs per year.3 

Estimates of the per-patient cost of CDI have varied from $2,871 to $122,318 due to 

differences in methodology, patient inclusion criteria, and regional costs.4–6 Given the high 

hospital-to-hospital variability of these costs,7,8 infection control officers, hospital 

administrators, and clinicians would benefit from estimates tailored to their particular 

population and healthcare practices. Concretely defining the potential economic savings of 

CDI prevention would empower stakeholders to prudently choose among the many available 

validated interventions.9,10

Measuring costs within healthcare systems is notoriously difficult, as many hospitals do not 

have access to itemized reimbursement data linked to medical records.11 Even institutions 

that have informatics retrospectively linking these data have relied on the curation of select 

variables and chart review to estimate attributable CDI cost.12–14 Nevertheless, electronic 

medical record (EMR) systems are used by most first-world acute care facilities.15,16 Part of 

the rationale for these systems is that hospitals may leverage EMR data for optimal decision-

making by inferring causal relationships from raw observations during routine care.17–19 An 

analysis based on automatically extractable data from an EMR that quantifies preventable 

hospital costs, such as those attributable to an HAI like CDI, would be of great value in 

building a continuously learning healthcare system.20 EMRs contain many structured fields 

relevant to this analysis, including: diagnosis codes and lab results demonstrating onset of 

HAIs; thousands of variables for procedures, problems, and medications that can serve as 

covariates for adjustment in observational studies; and importantly, the length of stay (LOS) 

for each visit, which is the primary contributor to excess costs for most HAIs, including 

CDI.3,21,22

The goal of this study was to generate a robust estimate of local cost associated with CDI 

using data that are automatically extractable from a typical EMR. We use all available 

structured data recorded within 24 hours of admission in the EMR—including over 20,000 

variables, such as medications reported and administered, abnormal lab values, and problem 

list entries—to build fully data-driven models for CDI risk using a machine learning 

algorithm, avoiding the potential bias of preselected covariates and manual chart review. 

CDI risk models trained on uncurated data from EMRs have already outperformed models 

that only incorporate variables for known risk factors, indicating that CDI risk may be 

nuanced in particular care settings.23 We then use these trained CDI risk models for 

propensity score matching, which allows estimation of changes in LOS associated with CDI. 

Most previous studies of CDI cost do not account for the possibility that longer LOS 

increases the risk of CDI, i.e., reverse causation, and therefore likely overestimate the cost of 
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CDI.7,24 To adjust for this, we stratify our analysis by the time of CDI diagnosis to find the 

change in LOS conditional on minimal prior exposure to the hospital environment. Finally, 

we compare these results to a multistate model of competing time-dependent risks between 

discharge and the onset of CDI.

Methods

Data Source

This study was conducted at The Mount Sinai Hospital, a 1,171-bed tertiary care hospital in 

New York, NY. Records of warehoused adult inpatient EMR visit data were de-identified 

using the HIPAA Safe Harbor method, 45 CFR §164.514(b)(2). Data was collected on 

demographics, LOS, time of death, admission sources, reported medications, and the 

presence of a “008.45” ICD-9 principal or secondary visit diagnosis code denoting 

“Intestinal infection due to Clostridium difficile.” Furthermore, all records of medications 

administered, abnormal lab results, surgery procedure codes, or problem list ICD-9 codes 

within the first 24 hours after admission were collected as Boolean variables (presence or 

absence). All variables that were uniform across the study population were dropped from the 

dataset. The relationships between collected data elements are summarized in Figure 1A. 

This study was approved by Mount Sinai’s Institutional Review Board as exempt research.

Study Population

The cohort included all patients 18 years of age or older admitted between January 1, 2009 

and October 22, 2015 (Figure 1B). For each patient, visits following the first recorded visit 

in the time range were excluded so that each patient corresponded to a single visit. Visits 

involving a patient death, defined as a recorded time of death within 24 hours after 

discharge, were excluded (2,682 adult patients; 1.5%). Visits with missing or invalid date 

information were excluded (<0.01% of all records).

Study Design

Prior studies vary on the use of ICD-9 discharge codes vs. positive laboratory tests to define 

CDI cases5,6 and identify differing positive predictive values for immunoassay and nucleic 

acid based laboratory tests.25–27 To ensure maximally robust results and allow comparison 

with prior studies, we repeated our analysis for five definitions of CDI:

i. An “008.45” ICD-9 visit diagnosis code

ii. ≥1 positive stool toxin enzyme immunoassay (EIA) lab result

iii. ≥1 positive stool toxin polymerase chain reaction (PCR) lab result

iv. Either ii or iii

v. Any of i, ii, or iii

Our study’s time range included both a period where the EIA assay was the standard 

hospital laboratory test (~3 years) followed by a period where the PCR assay was standard 

(~4 years). For case cohorts (ii) and (iii), comparisons were only permitted with controls 

Pak et al. Page 3

Infect Control Hosp Epidemiol. Author manuscript; available in PMC 2018 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the time range during which that same test was standard. The hospital laboratory 

protocol requires unformed stool samples for either toxin assay.

Statistical Analysis

Details of propensity model development, matching, evaluation of matching performance, 

and LOS comparisons are available in Supplementary Methods. Briefly, propensity models 

for CDI based on the five case definitions were trained using logistic regression with elastic 

net regularization. After exact matching on gender and age bins, nearest-neighbor 1:1 

matching on the propensity score was performed with a caliper of 0.2 standard deviations of 

the logit of the propensity score (Figure S1).28 Matching was repeated using the matched 

controls against remaining unmatched controls to create a matched-again cohort, testing 

whether matching alone associates with changes in LOS. For each case definition of CDI, 

differences of the median LOS between cases and matched controls were calculated, and 

statistical significance tested with the two-sided Mann-Whitney U. Although violation of the 

proportional hazards assumption (Figure S2) pre-empted traditional Cox survival analysis, 

non-parametric Kaplan-Meier estimates of the time-dependent risk of discharge were plotted 

for matched cohorts.

To further address the possible effect of time-to-infection on CDI risk and measured LOS 

differences, we repeated the analysis for case definition (iv) stratified by the time of the first 

positive toxin assay, using three ranges: 0–3 days, 3–8 days, and ≥8 days. Propensity models 

were again fitted to each of these case cohorts for matching as described previously, with the 

added condition that controls discharged before the start of the CDI time window were 

ineligible for matching.29 LOS comparisons followed the same procedure as above. We 

furthermore fit a nonparametric multistate model consistent with previous studies,7,24,30 

under which the mean excess LOS was estimated as the average difference in LOS between 

patients that had or had not transitioned through the infected state for all timepoints, 

weighted by the distribution of times spent in the uninfected state.

Analyses were performed in R 3.2.2, and all software code is available at: https://

github.com/powerpak/cdi-cost

Results

371,622 records of visits during the study time range were queried from the EMR, with 

23,968 variables extracted for each visit (Figure 1A and 1B). After filtering for the index 

visit per adult patient and excluding deaths and invalid dates, 171,938 visits were eligible for 

inclusion and classified into five overlapping case definitions for CDI. Case cohort sizes 

before matching and their overlaps are depicted in Figure 1C. Regularized logistic regression 

models predicting the risk of CDI acquisition were fitted to EMR data from the first 24 

hours of each admission for each case definition, with consistently high predictive 

performance (Supplementary Methods; Figure S3).

For each case definition, over 75% of cases were successfully matched by propensity score 

to controls (Figure 1C and Table 1). The groups are well matched on demographics and 

propensity scores (Table 1 and Figure S4). Differences in the median LOS between matched 
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case and control cohorts for all CDI case definitions were strongly statistically significant, 

although the magnitude of the differences varied greatly between definitions (Figure 2A). 

The differences in the median LOS by case definition were: (i) by ICD-9 code, 3.1 days 

(95% confidence interval [CI], 2.2–3.9); (ii) by positive toxin EIA, 10.1 days (95% CI, 7.3–

12.2), (iii) by positive toxin PCR, 6.6 days (95% CI, 5.0–8.1), (iv) by either toxin assay, 7.2 

days (95% CI, 5.8–8.3); and (v) by any of these, 5.7 days (95% CI, 4.5–6.6). There were no 

significant differences in LOS for a second round of matching between matched controls and 

remaining controls (matched-again controls) for any of the case definitions (Figure 2A). 

Kaplan-Meier curves for the time-dependent risk of being discharged from the hospital 

showed significant differences between matched case and control cohorts up to post-admit 

day 60 for all case definitions except ICD-9 code (Figure 2B–F).

Estimates of LOS associated with CDI are inflated by dependencies on time-to-infection—if 

longer pre-infection LOS increases CDI risk, i.e., reverse causation, this leads to 

overestimates in attributable cost.7,24 We therefore performed two follow-up analyses to 

account for this. First, we stratified the LOS comparison by the time of CDI diagnosis for 

case definition (iv) into 0–3 day, 3–8 day, and ≥8 day case cohorts, training new propensity 

models for re-matching, with similar performance (Figure S5). Since 3 days is a typical 

cutoff for differentiating community acquired (CA) from healthcare-associated (HA) CDI,
25,31 these strata were named “CA,” “early HA,” and “late HA,” respectively. As suspected, 

stratification revealed a positive correlation between time of diagnosis and CDI-associated 

difference in LOS (Figure 3A). The differences in medians were: for CA, 2.5 days (95% CI, 

1.2–3.4); early HA, 3.1 days (95% CI, 1.8–4.4); and late HA, 14.0 days (95% CI, 9.9–17.1). 

All comparisons between matched cases and controls were again strongly statistically 

significant, and comparisons with again-matched controls were not significant (Figure 3A). 

Kaplan-Meier plots likewise confirmed a correlation between time of CDI diagnosis and 

differences in time-dependent discharge risk (Figure 3B–D).

To further address reverse causation, we fit a multistate model similar to previously 

published studies7,24,30 that explicitly estimates time-dependent, competing risks of 

transitioning to CDI vs. discharge. Figure 4A depicts the model’s states and transitions. 

After fitting the model for the case definitions with a time of diagnosis (ii, iii, and iv), the 

expected remaining LOS can be compared across cohorts that have already transitioned to 

the CDI infected state vs. those that are still CDI negative at any given timepoint (Figure 

4B–D). To summarize the overall relationship between CDI and LOS, differences in LOS 

were weighted by the distribution of times spent in the initial state and averaged. The 

average differences for each case definition were: (ii) by positive toxin EIA, 3.0 days (95% 

CI, 2.0–4.0); (iii) by positive toxin PCR, 3.5 days (95% CI, 2.7–4.5); and (iv) by either toxin 

assay, 3.3 days (95% CI, 2.6–4.0). Notably, the 95% CI for the difference in cohort (iv) 

overlaps the 3.1 day difference for the “early HA” stratum of the propensity-matched 

analysis in the same cohort.

Discussion

This study examined nearly seven years of uncurated EMR data for a single hospital and 

determined associated costs of CDI as defined by either visit diagnosis codes or lab results. 
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In the analysis unadjusted for time-to-infection, differences in LOS were often greater than 

national averages from similar unadjusted studies,3,5,6 but changes in the case definition 

resulted in substantial changes in the estimated differences in LOS. Although two hospitals 

reported good concordance between ICD-9 codes and CDI toxin assay results,32,33 this is 

not necessarily the case for all hospitals. We found that 75% of ICD-9 coded visits involved 

a positive toxin assay, while only 46% of visits with a positive toxin assay had the ICD-9 

code (Figure 1C). Changes in LOS were not significantly different between EIA and PCR 

toxin assays, although our study was limited by a smaller sample size for EIA (+) cases. 

Toxin assays are likely a more reliable CDI definition given their basis in clinical symptoms 

and evidence for CDI, whereas medical coding suffers from biases introduced by billing and 

reimbursement.34,35

Treating CDI as a baseline condition by ignoring the relationship between pre-infection 

hospital exposure and CDI risk overestimates associated costs.7,24,36 Unlike visit diagnosis 

codes, toxin assay results provide a presumptive time-to-infection that we incorporated into 

two different statistical methods addressing time-dependent bias. When using a case 

definition of either toxin assay being positive, the measured difference in LOS in the 

multistate model corresponded closely with the difference seen in the “early HA” stratum of 

a time-stratified propensity-matched analysis (3.3 vs. 3.1 days). This suggests that measured 

differences in this study robustly reflect associated costs of HA-CDI in our patient 

population. Since estimates for each time-to-infection stratum in the matching analysis 

differed greatly (Figure 3), time-to-infection clearly contributed bias to the unstratified 

analysis (Figure 2), demonstrating how the many studies that ignore this bias3,5,6 produce 

inflated estimates. In our dataset, ignoring time-dependent bias would lead to a more than 

two-fold overestimation of CDI-associated LOS. Given our findings, we cautiously interpret 

the results of meta-analyses that conflate ICD-9 code and toxin assay case definitions and 

often ignore time-dependent bias.4–6

To our knowledge, this is the first study that uses machine learning on uncurated EMR data 

to estimate the local cost of CDI. Our models of CDI risk performed on par with prior 

models fitted to lower-dimensional data.23,37,38 Since our models are based on tens of 

thousands of structured fields in the EMR that require neither chart review nor manual 

curation beyond masking known CDI-related effects, re-analysis of future data is 

inexpensive. Starting from exported visit data, the entire analysis runs in several hours on 

standard desktop computers. Therefore, the effects of new interventions against CDI can be 

efficiently monitored over time, e.g., continually testing whether new treatments actually 

lower the CDI-associated LOS or quantifying cost savings of new preventive strategies that 

decrease CDI incidence. Changes in LOS can be extrapolated to approximate economic 

costs by multiplying by the average cost of extra inpatient-days as LOS is the main 

contributor to CDI’s cost.3,21,22,36 In our dataset, using the time-dependency adjusted 

differences in LOS of 3.1–3.3 days and the national average cost of additional inpatient-days 

for CDI cases,3 the median cost associated with each case would be approximately $10,600–

11,300; this is substantial in comparison to the national average price for an inpatient visit—

approximately $13,000 in 2011.11 Using the average yearly caseload observed in the dataset 

for toxin assay positive cases, our figures represent an annual accounting cost to Mount 

Sinai of approximately $1.5 million, not including the opportunity cost of bed occupancy by 
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CDI patients or the impact on infection control resources.36 In principle, our analysis is 

generalizable to any HAI where lab results recorded in the EMR robustly reflect the 

incidence of infections.

Our study has several limitations. The analysis was designed conservatively, preferring that 

models underestimate rather than overestimate CDI-associated changes. For example, we 

censored all patient visits ending in death; therefore, our results are conditioned on patient 

survival, although a sensitivity analysis that included 12–16% additional cases ending in 

patient death yielded similar quantitative and qualitative results. Additionally, restricting to 

one index visit per patient certainly excluded many repeat visits for recurrent CDI, which are 

known to incur higher costs.12,13,39 We preferred a relatively simple, fast machine learning 

technique, elastic net regularized generalized linear models, whereas more advanced 

techniques might marginally improve propensity model accuracy.

Propensity score matching itself has been criticized for potentially introducing bias via 

collider variables.40 However, substantial empirical comparisons of estimates from 

observational and randomized controlled trial data show that propensity matching often 

reduces bias.41 Recent investigations of penalized regression propensity matching also show 

a reduction in bias.42,43 We believe our implementation reduced bias, as our estimate of the 

effect of CDI on LOS demonstrated significant deviations from unmatched analyses and 

concordance with the multistate matching analysis (which did not leverage propensity scores 

or matching). We also note again that propensity matched estimates offer a conservative 

effect size, which was the intention of this study.

EMR data has known drawbacks compared to clinical research data, such as limitations in 

time precision, the sparsity of the data, and increased opportunity for coding error. We did 

not have structured billing data, so we cannot characterize the exact relationship between 

LOS and costs beyond the proportional estimate above. Finally, only one hospital’s data was 

available for this study. We provide complete code for our analysis so that it may be re-

implemented elsewhere and improved by the community.

In conclusion, two independent statistical analyses adjusting for time-dependent bias 

produced similar results for the CDI-associated change in LOS at Mount Sinai (3.1 and 3.3 

days), suggesting that automated methods based on machine learning and uncurated EMR 

data robustly and conservatively estimate the local cost of an HAI in both LOS and financial 

terms. This procedure is transparent, reproducible, and inexpensive, suggesting that 

hospitalists and infection control officers can leverage EMR data to estimate their specific, 

local costs of HAIs on an ongoing basis rather than relying on widely varying benchmarks 

published by other institutions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Data Sources, Inclusion/Exclusion Criteria, and Cohort Sizes Before Matching
A, entity-relationship diagram for all EMR data used to generate models of CDI propensity, 

using Information Engineering notation.44 Boxes represent tables of entities with any 

directly associated attributes (fields) listed below; single lines represent relationships, with 

arrowheads indicating the cardinality of each side of the relationship; crow’s foot arrowhead 

with circle represents “zero or more”; crow’s foot arrowhead with cross-stroke represents 

“one or more”; cross-stroke arrowhead represents “exactly one”. Blue numbers indicate the 

number of variables extracted from each associated table for each visit. B, inclusion/

exclusion procedure for the present study. Double-line arrows indicate the procession of visit 

records. C, Venn diagram of case cohort sizes for each of the five CDI case definitions 

before matching, including sizes of all intersections between case definitions (overlaps). 

Areas are not to scale. There is no intersection between case definitions (ii) and (iii), since 

only the first positive toxin assay result for each visit was examined. Case definition (iv), 

“by EIA or PCR (+),” is a strict superset of case definitions (ii) and (iii). Case definition (v), 

“by any of these,” is a strict superset of case definitions (i), (ii), and (iii). Sizes of matched 
case cohorts are provided in Table 1. EMR, electronic medical record; CDI, Clostridium 
difficile infection.
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Figure 2. Changes in length of stay for five case definitions of Clostridium difficile infection, not 
accounting for time of infection
A, violin plots of the distributions in length of stay for matched cases, matched controls, 

matched-again controls, and all controls, for each of the five case definitions. Darker points 

and vertical bars depict the median and interquartile range for each group. Horizontal bars 

depict Mann-Whitney U tests for significance of differences between groups (***, 

Bonferroni-corrected P < 0.001; NS, not significant [P > 0.1]). B–F, Kaplan-Meier plots of 

the time-dependent probability for a patient to still be in the hospital, comparing matched 

cases and controls for each case definition of CDI. Shaded areas depict 95% confidence 

intervals calculated from standard errors. CDI, Clostridium difficile infection; ICD9, 

International Classification of Diseases Ninth Revision; EIA, enzyme immunoassay; PCR, 

polymerase chain reaction.
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Figure 3. Changes in length of stay for Clostridium difficile infection defined by any positive toxin 
assay, stratified by the time to infection
A, violin plots of the distributions in length of stay for matched cases, matched controls, 

matched-again controls, and all controls, for three ranges of the result time for the first 

positive toxin assay. Points and vertical bars depict the median and interquartile range for 

each group. Horizontal bars depict Mann-Whitney U tests for significance of differences 

between groups (***, Bonferroni-corrected P < 0.001; NS, not significant [P > 0.1]). B–D, 

Kaplan-Meier plots of the time-dependent probability for a patient to still be in the hospital, 

comparing matched cases and controls for the same three ranges of the time of the first 

positive toxin assay. Shaded areas depict 95% confidence intervals calculated from standard 

errors. CDI, Clostridium difficile infection; CA, community acquired; HA, healthcare 

associated.
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Figure 4. Multistate model of expected remaining length of stay for Clostridium difficile infection 
case definitions involving toxin assays
A, three states of the multistate model and allowed transitions. Patients may only transition 

in the direction of the arrows. B–D, expected remaining LOS for each post-admit time t 
depending on whether the patient has had a positive (+) toxin assay by that timepoint, for 

each of the case definitions involving toxin assays. Shaded areas depict 95% confidence 

intervals calculated from 1,000 bootstrap samples. CDI, Clostridium difficile infection; EIA, 

enzyme immunoassay; PCR, polymerase chain reaction; LOS, length of stay.
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