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ABSTRACT Aspergillus section Terrei is a species complex currently comprised of 14
cryptic species whose prevalence in clinical samples as well as antifungal susceptibil-
ity are poorly known. The aims of this study were to investigate A. Terrei clinical iso-
lates at the species level and to perform antifungal susceptibility analyses by refer-
ence and commercial methods. Eighty-two clinical A. Terrei isolates were collected
from 8 French university hospitals. Molecular identification was performed by se-
quencing parts of beta-tubulin and calmodulin genes. MICs or minimum effective
concentrations (MECs) were determined for 8 antifungal drugs using both EUCAST
broth microdilution (BMD) methods and concentration gradient strips (CGS). Among
the 79 A. Terrei isolates, A. terreus stricto sensu (n � 61), A. citrinoterreus (n � 13), A.
hortai (n � 3), and A. alabamensis (n � 2) were identified. All strains had MICs of �1
mg/liter for amphotericin B, except for two isolates (both A. hortai) that had MICs of
0.25 mg/liter. Four A. terreus isolates were resistant to at least one azole drug, in-
cluding one with pan-azole resistance, yet no mutation in the CYP51A gene was
found. All strains had low MECs for the three echinocandins. The essential agree-
ments (EAs) between BMD and CGS were �90%, except for those of amphotericin B
(79.7%) and itraconazole (73.4%). Isolates belonging to the A. section Terrei identified
in clinical samples show wider species diversity beyond the known A. terreus sensu
stricto. Azole resistance inside the section Terrei is uncommon and is not related to
CYP51A mutations here. Finally, CGS is an interesting alternative for routine antifun-
gal susceptibility testing.

KEYWORDS Aspergillus section Terrei, Aspergillus terreus, molecular identification,
antifungal susceptibility testing, Etest, EUCAST

Invasive aspergillosis (IA) is becoming a serious threat and a leading cause of mor-
bidity and mortality in immunocompromised patients. A. fumigatus is the most

common species found in clinical samples of patients suffering from IA; however, other
Aspergillus spp. can also be the cause of IA (1, 2). Among the five most common is A.
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terreus, which is difficult to manage and is often associated with increased mortality
because of its intrinsic resistance to amphotericin B (3, 4).

A. terreus is found worldwide in the environment and belongs to the section Terrei
(5). On the whole, 14 cryptic species that are phenotypically indistinguishable belong
to the section Terrei (5, 6). However, only a few of them, namely, A. terreus stricto sensu,
A. citrinoterreus, A. alabamensis, A. hortai, and A. niveus, have been reported in human
diseases (7–10). The prevalence of these cryptic species in clinical samples is poorly
known.

In recent years, a striking emergence of azole resistance has been described in
Aspergillus species (11, 12). Azole resistance is mainly related to mutations in the
CYP51A gene and in its promoter, yet there might be other mechanisms (13, 14). The
intrinsic resistance of A. terreus to amphotericin B puts it at very high risk of multidrug
resistance. Nevertheless, only a few azole-resistant A. terreus isolates have been re-
ported so far (15).

The broth microdilution method (BMD) based on the EUCAST or CLSI guidelines is
currently the reference method for antifungal susceptibility testing (AFST) of Aspergillus
species (16, 17). Clinical breakpoints and epidemiological cutoffs (ECOFFs) have been
determined by EUCAST and can be used to detect resistance (18). However, BMD is
time-consuming and requires expertise. As such, many clinical microbiology laborato-
ries routinely apply alternative methods, such as concentration gradient strips (CGS), to
assess the in vitro susceptibility of their isolates. Few studies have assessed the
correlation between these two methods in the susceptibility tests of A. terreus, and even
when it was examined, it was not done so for all drugs (19–21). Therefore, interpreting
MICs obtained by CGS is difficult.

In this study, we investigated 79 morphologically identified A. Terrei French clinical
isolates. We aimed to identify them molecularly by sequencing parts of the beta-tubulin
and calmodulin genes and to assess their susceptibility to 8 antifungal drugs by CGS
and BMD according to the EUCAST guidelines.

RESULTS
Isolates and patients. Seventy-nine non-temporally related A. Terrei isolates were

collected from 50 patients from 8 university hospitals (more than 1,000 beds each,
except one with 850 beds), the majority of whom were immunocompromised patients,
including hematopoietic stem cell, renal, cardiac, liver, and pulmonary transplant
patients. The origin of isolates was mainly respiratory samples (n � 70; 88.6%). Other
isolates were taken from deep samples (n � 4; 5.1%), such as cutaneous biopsy
specimen, joint fluid, and intravascular thrombus, or from superficial samples (n � 5;
6.3%), such as nail, external ear, and stools. Sex ratio was 1.5 (30 males and 20 females)
with a mean age of 54 years. Underlying diseases were mainly bronchopulmonary
diseases (n � 22; 44%), like cystic fibrosis (n � 15) and chronic obstructive pulmonary
disease (COPD; n � 7), followed by hematological malignancy (n � 7; 14%), solid-organ
transplant (n � 4; 8%), solid malignancy (n � 3; 6%), local trauma (n � 2; 4%), and other
conditions (n � 6; 12%). Three patients (6%) had no underlying disease, and there were
no data for 3 patients (6%). The clinical forms consisted of 5 cases of invasive
aspergillosis, 1 case of onychomycosis, and 44 cases of colonization (Table 1).

Molecular identification. Among the 79 A. Terrei isolates, A. terreus sensu stricto was
the most common species (n � 61; 77.2%), found in 7 of the 8 participating centers, and
was responsible for the 5 cases of invasive aspergillosis. A. citrinoterreus was the second
most frequent species and represented 13 isolates (16.5%). The two other cryptic
species were identified as A. hortai (3 isolates, 3.8%) and A. alabamensis (2 isolates,
2.5%) (Fig. 1). Both calmodulin and �-tubulin genes were able to identify the isolates to
the species level and gave the same results.

Antifungal susceptibility testing by EUCAST method. Geometric mean MIC,
MIC50/50% minimum effective concentration (MEC50), MIC90/MEC90, and ranges for the
79 isolates are presented in Table 2.
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FIG 1 Neighbor-joining tree obtained from the analysis of combined beta-tubulin and calmodulin data set. Numbers
above the nodes represent bootstrapping values generated from 1,000 replicates using a Kimura 2-parameter model.
Only values above 70% are indicated. Branch lengths are proportional to phylogenetic distances.
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Amphotericin B susceptibility testing by the BMD method resulted in MICs above 1
mg/liter for all isolates except two, which had MICs of 0.25 mg/liter. Interestingly, these
isolates were both A. hortai; however, the third A. hortai isolate had a MIC of 4 mg/liter.
Eleven isolates had a MIC above the ECOFF (MIC of 8 mg/liter by EUCAST), including the
two A. alabamensis isolates, which showed the highest MICs for amphotericin B by the
CGS method (MIC of �32 mg/liter). The last 9 isolates with MICs above the ECOFF were
five A. terreus sensu stricto and four A. citrinoterreus isolates (Table 2).

Concerning antifungal susceptibility testing by the BMD method for azole drugs, no
differences were found between the different cryptic species. However, four isolates
either had MICs above the ECOFF (MIC of 4 to 8 mg/liter for voriconazole and 2 to 4
mg/liter for isavuconazole) or were resistant (MIC of 8 mg/liter for itraconazole and 0.5
mg/liter for posaconazole) to at least one azole drug, e.g., one isolate showed resistance
to a pan-azole. These four isolates were all A. terreus sensu stricto.

As for echinocandin drugs, all isolates had low MECs for the three echinocandins by
both BMD and Etest methods (MECs of �0.25 mg/liter for caspofungin and �0.031
mg/liter for micafungin and anidulafungin).

MIC/MEC comparison between EUCAST and CGS methods. Considering all A.
Terrei species, MIC50/MEC50 and MIC90/MEC90, as determined by the two methods, were

TABLE 2 Results of in vitro antifungal susceptibility test for the 82 A. Terrei isolates by EUCAST and CGS methodsa

Species and drug

EUCAST method CGS method

EA (%) CA (%)
Range
(mg/liter)

GM
(mg/liter)

MIC50/MEC50

(mg/liter)
MIC90/MEC90

(mg/liter)
Range
(mg/liter)

GM
(mg/liter)

MIC50/MEC50

(mg/liter)
MIC90/MEC90

(mg/liter)

A. terreus sensu stricto (n � 61)
AMB 1–8 2.482 2 4 0.25–4 1.023 1 2 82 91.8
ITC 0.016–8 0.092 0.06 0.25 0.125–2 0.381 0.5 0.5 68.9 98.4
VRC 0.25–8 0.664 0.5 1 0.06–16 0.363 0.5 1 93.4 100
POS 0.016–0.5 0.063 0.06 0.125 0.016–0.5 0.13 0.125 0.25 96.7 73.8
ISA 0.25–4 0.517 0.5 1 0.06–4 0.310 0.25 0.5 100 96.7
CAS 0.03–0.25 0.071 0.06 0.125 0.016–0.125 0.028 0.03 0.06 96.7 NA
MFG �0.016 �0.016 �0.016 �0.016 �0.016–0.03 �0.016 �0.016 0.016 100 NA
AFG �0.016–0.03 �0.016 �0.016 �0.016 �0.016 �0.016 �0.016 �0.016 100 NA

A. citrinoterreus (n � 13)
AMB 2–8 4.219 4 8 0.5–4 1.238 1 2 69.2 69.2
ITC 0.016–0.125 0.069 0.06 0.125 0.016–0.5 0.154 0.25 0.25 100 100
VRC 0.25–1 0.404 0.5 0.5 0.06–0.25 0.139 0.125 0.25 92.3 100
POS 0.016–0.062 0.033 0.031 0.062 0.008–0.125 0.058 0.06 0.125 100 100
ISA 0.125–1 0.293 0.25 1 0.03–0.25 0.131 0.125 0.25 84.6 100
CAS 0.031–0.25 0.086 0.125 0.125 0.016–0.25 0.068 0.06 0.25 100 NA
MFG �0.016–0.03 �0.016 �0.016 �0.016 �0.016–0.03 �0.016 �0.016 0.016 100 NA
AFG �0.016 �0.016 �0.016 �0.016 �0.016–0.016 �0.016 �0.016 �0.016 100 NA

A. hortai (n � 3)
AMB 0.25–4 NA NA NA 0.5–2 NA NA NA 66.7 100
ITC 0.016–0.03 NA NA NA 0.125–0.5 NA NA NA 33.3 100
VRC 0.25 NA NA NA 0.125–0.5 NA NA NA 100 100
POS 0.016–0.03 NA NA NA 0.03–0.25 NA NA NA 66.7 66.7
ISA 0.25 NA NA NA 0.25 NA NA NA 100 100
CAS 0.06–0.25 NA NA NA 0.016–0.125 NA NA NA 66.7 NA
MFG �0.016 NA NA NA �0.016 NA NA NA 100 NA
AFG �0.016 NA NA NA �0.016 NA NA NA 100 NA

A. alabamensis (n � 2)
AMB �8 NA NA NA 32 NA NA NA 100 100
ITC 0.125–0.25 NA NA NA 0.5 NA NA NA 100 100
VRC 1 NA NA NA 0.5–1 NA NA NA 100 100
POS 0.06–0.125 NA NA NA 0.125–0.25 NA NA NA 100 50
ISA 0.25–1 NA NA NA 0.5 NA NA NA 100 100
CAS 0.06 NA NA NA 0.125 NA NA NA 100 NA
MFG �0.016 NA NA NA �0.016 NA NA NA 100 NA
AFG �0.016 NA NA NA �0.016–0.016 NA NA NA 100 NA

All A. Terrei (n � 79)
AMB 0.25–8 2.648 2 8 0.25–32 1.161 1 2 79.7 88.6
ITC 0.016–8 0.084 0.06 0.25 0.016–2 0.322 0.5 0.5 73.4 98.7
VRC 0.25–8 0.596 0.5 1 0.06–16 0.311 0.25 1 93.7 100
POS 0.016–0.5 0.055 0.06 0.125 0.008–0.5 0.112 0.125 0.25 96.2 77.2
ISA 0.125–4 0.458 0.5 1 0.03–4 0.270 0.25 0.5 97.5 97.4
CAS 0.031–0.25 0.074 0.06 0.125 0.016–0.25 0.034 0.03 0.125 96.2 NA
MFG �0.016–0.03 �0.016 �0.016 �0.016 �0.016–0.016 �0.016 �0.016 �0.016 100 NA
AFG �0.016–0.03 �0.016 �0.016 �0.016 �0.016–0.03 �0.016 �0.016 0.016 100 NA

aGM, geometric mean; EA, essential agreement; CA, categorical agreement; NA, not available.
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identical (within �2 dilutions) for all drugs, except for the MIC50 of itraconazole, which
had a higher value with the CGS method (Table 2). The EA values were above 90% for
all antifungal drugs, except for those for amphotericin B and itraconazole, which had EA
values of 79.7% and 73.4%, respectively. For amphotericin B, the MICs were higher by
the BMD method (P � 0.001 by Wilcoxon test), whereas for itraconazole the MICs were
significantly higher by the CGS method (P � 0.001 by Wilcoxon test). The CA values
were above 90% for itraconazole, voriconazole, and isavuconazole but were only 88.6%
for amphotericin B and 77.2% for posaconazole and were not available for echinocan-
dins.

When we separately considered the two cryptic species (A. terreus sensu stricto and
A. citrinoterreus) with a sufficient number of isolates for each, the EAs were acceptable
(�90%) for all drugs except amphotericin B and itraconazole for A. terreus sensu stricto
and amphotericin B and isavuconazole for A. citrinoterreus (Table 2).

Comparison of visual and spectrophotometric readings for EUCAST MIC values.
For azole drugs and amphotericin B, the spectrophotometric reading was made for 69
of the 79 A. Terrei isolates. MIC50 and MIC90, determined visually and by the spectro-
photometer, were identical (within �2 dilutions) for all drugs. Similarly, the EAs were
above 90% for all drugs.

CYP51A sequencing. The CYP51A gene and its promoter were sequenced for the
four isolates that were resistant in vitro to at least one azole drug. The same sequencing
was made for 11 other susceptible isolates as controls. Of note, all of these isolates were
A. terreus sensu stricto. No mutation in the amino acid sequence was detected in the
four resistant isolates or in nine of the susceptible isolates. For the remaining two
susceptible isolates sequenced for CYP51A and its promoter, we found polymorphism
in the CYP51A amino acid sequence; one isolate harbored E313K mutation and the
other A249G mutation.

DISCUSSION

In recent years, the development of fungal identification protocols based on mo-
lecular methods has increased our knowledge on Aspergillus species epidemiology.
Among the main Aspergillus species implicated in human diseases (like A. fumigatus, A.
flavus, and A. niger), A. terreus belongs to the section Terrei (5). This section is currently
composed of 14 recognized cryptic species (6). To our knowledge, little research work
was directed to study the epidemiology inside the section Terrei, and the prevalence of
the cryptic species involved in human disease is poorly known (7, 8, 22). However, it
may be useful to identify Aspergillus at the species level in clinical samples to improve
patient management or to deepen knowledge of the local epidemiology. Several of
these cryptic species can be the main species isolated in clinical samples of patients
with IA or exhibit resistance to antifungal drugs. For example, within the section
Fumigati, A. lentulus has been shown to be intrinsically resistant to voriconazole (23).
Moreover, within the section Nigri, A. niger sensu stricto alone stands for 7 to 58% of
clinical isolates, whereas A. tubingensis and A. awamori account for 17.8 to 76.2% and
16.7 to 55.6%, respectively (24–27).

In the present study, we investigated the molecular identification and in vitro
antifungal susceptibility of 79 clinical isolates identified initially as A. terreus. The results
show that A. terreus sensu stricto is the most common species, and that almost 25% of
the isolates represent the three other cryptic species: A. citrinoterreus, A. hortai, and A.
alabamensis. Moreover, the newly described (6) A. citrinoterreus is the second most
common species (16.5%). These four cryptic species have already been involved in
human invasive aspergillosis (6, 8, 9), but interestingly, in our study the five cases of
invasive aspergillosis were caused only by A. terreus sensu stricto. The remaining isolates
were mainly responsible for colonization in patients suffering from chronic broncho-
pulmonary diseases (cystic fibrosis and COPD).

Our A. Terrei isolates come from two main distinct French geographical areas: Paris
(north of France) and Marseille (south of France). No difference was found in the species
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distribution between these two areas, although the incidence might differ between the
cities, as was already reported (28).

A. terreus is known to be intrinsically resistant to amphotericin B (29). However, our
results indicate that this pattern of susceptibility is dependent on the cryptic species
inside the Terrei section. For instance, A. hortai seems to have the lowest MICs, and two
of its isolates had MICs of �1 mg/liter. This is consistent with previous observations
where 6 to 38% of the A. Terrei isolates had MICs of �1 mg/liter (7, 29, 30). However,
in the Risslegger et al. study, the low-MIC isolates all were A. terreus sensu stricto (7). In
contrast, A. alabamensis had the highest MIC and corresponds to the only two isolates
with MICs of �32 mg/liter by the CGS method. Such observations need to be confirmed
by using a larger number of isolates for each species.

Azole resistance in Aspergillus species is an emerging issue in recent years (11, 12).
This phenomenon is well studied for A. fumigatus and is mainly related to mutations in
the CYP51A gene and its promoter (14, 31, 32). A unique case of pan-azole-resistant A.
terreus with a mutated CYP51A has already been reported (15). Among our 79 A. Terrei
isolates, four were resistant to at least one azole drug, including one with pan-azole
resistance. Unfortunately, we did not find mutation in the CYP51A gene or its promoter
in these four isolates. We think that other mechanisms, already described in other
Aspergillus species, like increased drug efflux or overexpression of the target, stand
behind the azole resistance of these isolates (13, 31). Interestingly, we detected
polymorphism in the CYP51A amino acid sequence in two of our susceptible control
isolates; one harbored an E313K mutation and the other an A249G mutation without
association with higher MICs for azole drugs.

ECOFFs and clinical breakpoints used to categorize isolates as wild type/non-wild
type or susceptible/resistant are only defined for the reference BMD method (18). Given
that BMD requires experience and is not practicable for all laboratories, the CGS
method often replaces it. Several studies have already assessed the correlation between
CLSI and CGS methods for A. terreus, but this has never been the case between EUCAST
and CGS methods. Therefore, in the present study we compared, for the first time,
EUCAST and CGS methods for AFST of our 79 A. Terrei isolates. The EAs were acceptable
(i.e., �90%) for all antifungal drugs except itraconazole and amphotericin B, which had
EAs of 73.4% and 79.7%, respectively. The same finding on amphotericin B was already
described between CLSI and CGS in previous studies, with EAs ranging from 16% to
75% (19, 33). However, a good agreement for this drug was also shown with EAs of
100% (34, 35). Regarding azole drugs, previous comparison studies between CLSI and
CGS methods showed various results ranging from EAs of 100% for voriconazole (19),
itraconazole (35), posaconazole (34), and isavuconazole (36) to less acceptable EAs for
itraconazole (EA of 88%) (33) and posaconazole (EA of 64%) (19). Consequently, our
results show that the CGS method could be a good alternative to BMD, allowing the use
of EUCAST ECOFF and breakpoints for all drugs but itraconazole and amphotericin B.
For the latter, low MICs obtained by CGS should be interpreted with caution in these
amphotericin B intrinsically resistant species.

EUCAST guidelines recommend reading MICs of azole and amphotericin B in
filamentous fungi visually (17). However, this method is subject to variations and errors,
as it is operator dependent. It has been shown previously that spectrophotometric
reading for AFST of Aspergillus spp. was reliable (37, 38). More recently, authors have
assessed the use of this spectrophotometric reading in AFST of A. fumigatus using a
490-nm wavelength (39). They found good agreement between this spectrophotomet-
ric and visual reading, so they proposed additional investigations on other Aspergillus
species, hence their suggestion to consider the use of a spectrometer in practice. Our
results showed the same good agreement for our A. Terrei isolates, with EAs above 90%
for all tested drugs, adding more evidence to the use of spectrophotometric readings
in AFST of Aspergillus species.

In conclusion, A. terreus isolates found in clinical samples show several species
besides A. terreus sensu stricto. The antifungal susceptibility testing demonstrated a low
rate of azole resistance inside the section Terrei and was not related to CYP51A
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mutations. Amphotericin B MICs showed significant differences between the isolates,
which could be due to species identification. Finally, CGS could be a good alternative
to EUCAST BMD for AFST of A. Terrei isolates.

MATERIALS AND METHODS
Isolates and patients. Phenotypically identified A. Terrei clinical isolates were collected retrospec-

tively over a 13-year period (2003 to 2015) from 8 French university hospitals, of which five are in the
Parisian area and 3 in the south of France (Marseille, Montpellier, and Bordeaux). For each isolate, age,
sex, underlying disease of the patient, site of isolation, and clinical form of aspergillosis were registered.
The study was approved by the local Ethical Committee, and the database was declared to the
Commission Nationale de l’Informatique et des Libertés (CNIL) (no. 1699340).

Molecular identification. Molecular identification within the Terrei section was performed by
sequencing part of the calmodulin and �-tubulin genes, as described in previous studies (40). Briefly,
complete genomic DNA was extracted from a mature subculture on Sabouraud-chloramphenicol-
gentamicin agar using a QIAamp DNA blood minikit (Qiagen Sciences Ing., Courtaboeuf, France) after a
step of beading in a MagNA Lyser instrument (Roche Diagnostics, Meylan, France). Primers used for the
amplification were 5=-TGGTGCCGCTTTCTGGTA-3= and 5=-AAGTTGTCGGGACGGAATAG-3= for �-tubulin
and 5=-GTAGCGCAGCGGCCAGTCCGAGTACAAGGARGCCTTC-3= and 5=-CAGGGCGCAGCGATGACCCGATRG
AGGTCATRACGTGG-3= for calmodulin. Obtained DNA sequences were analyzed using Seqscape v2.5
(Applied Biosystems) and were compared with A. Terrei GenBank and MycoBank database sequences.
Phylogenetic analyses were also performed for each gene individually and with the concatenated
sequences of the two genes using MEGA 6.0 software. Neighbor-joining trees were built using the Kimura
two-parameter model with 1,000 bootstraps replications and included sequences of the type strain of
each cryptic species inside the Terrei section.

Antifungal susceptibility testing. Antifungal susceptibility testing of each isolate was performed for
8 drugs: itraconazole (Sigma-Aldrich, Saint-Quentin Fallavier, France), voriconazole (Sigma-Aldrich),
posaconazole (MSD, Kenilworth, NJ), isavuconazole (Basilea Pharmaceutica International Ltd., Basel,
Switzerland), amphotericin B (Sigma-Aldrich), caspofungin (Sigma-Aldrich), anidulafungin (Pfizer New
York, NY), and micafungin (Astellas Pharma Inc., Tokyo, Japan). The BMD method was used.

BMD was performed according to the EUCAST guidelines (17). Final drug concentration ranges were
0.016 to 8 mg/liter for each drug. Quality control strains C. parapsilosis ATCC 22019 and C. krusei ATCC
6258 were included, but MICs were read after 24 h of incubation. For azoles and amphotericin B, MICs
were also read by a spectrophotometer at 550 nm, using a 90% growth inhibition endpoint, and
compared with the drug-free control well.

For the agar diffusion method, we used MIC test strips (Liofilchem, Roseto degli Abruzzi, Italy) for
isavuconazole and Etest (bioMérieux, Marcy l’Etoile, France) for the other seven drugs. A spore suspen-
sion adjusted to a 0.5 McFarland standard in sterile water was prepared and inoculated on RPMI medium
plates supplemented with 2% glucose. MICs and MECs were determined after incubation at 37°C for 48
h. Values obtained with the CGS method were adjusted to the next higher concentration matching the
2-fold dilution scheme of the BMD method.

Essential agreement (EA) between BMD and CGS methods, and between the visual and spectropho-
tometric readings for the EUCAST method, was considered to have been achieved when the MIC/MEC
values were within �2 dilutions. EA values above 90% were considered acceptable.

Isolates were categorized as wild type/non-wild type or as susceptible/resistant by comparing MIC
values with ECOFFs and clinical breakpoints (18).

CYP51A sequencing. For azole-resistant and control isolates, the whole CYP51A gene and its
promoter were amplified using 4 couples of in-house primers (Table 3). The 4 obtained partial sequences
were analyzed and assembled using SeqScape. The generated sequence was then translated and aligned
to those of gene ATEG05917 from the reference strain NIH2624 and set for amino acid sequence analysis.

TABLE 3 Primers used in this study to sequence gene CYP51A and its promoter

Fragment Sequence

1
Forward 5=-GTAGCGCAGCGGCCAGTGGTGGGAGAACTTTCGTTCTA-3=
Reverse 5=-CAGGGCGCAGCGATGACTGTACACCTCTTCTGCGTTGAC-3=

2
Forward 5=-GTAGCGCAGCGGCCAGTTCATCCTCAACGGCAAACTC-3=
Reverse 5=-CAGGGCGCAGCGATGACAGATCATGTCGGAGTCGGAG-3=

3
Forward 5=-GTAGCGCAGCGGCCAGTTCTACATGGACATCATCCGC-3=
Reverse 5=-CAGGGCGCAGCGATGACCATCATCATCAGGTTCCGCT-3=

4
Forward 5=-GTAGCGCAGCGGCCAGTTTCCTAACGCTAGTCGCTGG-3=
Reverse 5=-CAGGGCGCAGCGATGACGCCGTTCTTACGCCTTGTT-3=
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Accession number(s). The obtained sequences were submitted to GenBank under accession num-
bers MH006731 to MH006809 and MH006810 to MH006888.
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