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ABSTRACT Whole-genome sequence analyses revealed the presence of blaNDM-1

(n � 31), blaGES-5 (n � 8), blaOXA-232 (n � 1), or blaNDM-5 (n � 1) in extensively drug-
resistant and pandrug-resistant Enterobacteriaceae organisms isolated from in-
patients in 10 private hospitals (2012 to 2013) in Durban, South Africa. Two novel
NDM-1-encoding plasmids from Klebsiella pneumoniae were circularized by PacBio
sequencing. In p19-10_01 [IncFIB(K); 223.434 bp], blaNDM-1 was part of a Tn1548-like
structure (16.276 bp) delineated by IS26. The multireplicon plasmid p18-43_01
[IncR_1/IncFIB(pB171)/IncFII(Yp); 212.326 bp] shared an 80-kb region with p19-10_01,
not including the blaNDM-1-containing region. The two plasmids were used as refer-
ences for tracing NDM-1-encoding plasmids in the other genome assemblies. The
p19-10_01 sequence was detected in K. pneumoniae (n � 7) only, whereas p18-
43_01 was tracked to K. pneumoniae (n � 4), Klebsiella michiganensis (n � 1), Serra-
tia marcescens (n � 11), Enterobacter spp. (n � 7), and Citrobacter freundii (n � 1),
revealing horizontal spread of this blaNDM-1-bearing plasmid structure. Global phy-
logeny showed clustering of the K. pneumoniae (18/20) isolates together with closely
related carbapenemase-negative ST101 isolates from other geographical origins. The
South African isolates were divided into three phylogenetic subbranches, where
each group had distinct resistance and replicon profiles, carrying either p19-10_01,
p18-10_01, or pCHE-A1 (8,201 bp). The latter plasmid carried blaGES-5 and aacA4
within an integron mobilization unit. Our findings imply independent plasmid acqui-
sition followed by local dissemination. Additionally, we detected blaOXA-232 carried
by pPKPN4 in K. pneumoniae (ST14) and blaNDM-5 contained by a pNDM-MGR194-like
genetic structure in Escherichia coli (ST167), adding even more complexity to the
multilayer molecular mechanisms behind nosocomial spread of carbapenem-resistant
Enterobacteriaceae in Durban, South Africa.
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The global dissemination of carbapenemase-producing Enterobacteriaceae (CPE) has
reached African countries (1). Clinical isolates of CPE, including Klebsiella pneu-

moniae, Enterobacter spp., Escherichia coli, Serratia marcescens, and Citrobacter spp.,
have been described in South Africa, Gabon, Angola, Senegal, Nigeria, Kenya, and
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Tanzania, as well as in North African countries, including Morocco, Algeria, Tunisia,
Libya, and Egypt. Specifically, NDM-1 and OXA-48-like are the most commonly reported
carbapenemases in Africa (2–7).

In South Africa, NDM was first detected in Enterobacter cloacae in 2011 and subse-
quently in K. pneumoniae and S. marcescens (1, 8, 9). The NDM-positive K. pneumoniae
strains of African origin have been multiclonal (1). Similar to the global situation,
GES-carbapenemases are less prevalent and were first described in Enterobacteriaceae
in South Africa in 2013 (1).

The rapid spread of CPE is supported by intra- and interspecies plasmid-mediated
transfer of carbapenemase-encoding genes embedded in transposons and integrons
(10–12). As part of class 1 integrons, blaGES-5 seems to be widespread worldwide and
detected on different plasmid backbones (12–14). As reviewed previously (15), plasmids
of several incompatibility groups (Inc) can mediate spread of carbapenem resistance
in clinically relevant Enterobacteriaceae. While epidemic plasmids encoding KPC and
OXA-48-like predominantly belong to IncF or IncL, a diversity of plasmid backbones,
including IncA/C, IncF, IncL/M, IncN, IncR, and IncX, are associated with NDM (12,
16–19).

Here, we have explored the molecular epidemiology of multidrug-resistant (MDR),
extensively drug-resistant (XDR), and pandrug-resistant (PDR) Enterobacteriaceae iso-
lated from the private hospital sector in Durban, South Africa, by whole-genome
sequence (WGS) analyses focusing on the carbapenem resistance-encoding determi-
nants and their genetic support.

RESULTS
Phenotypic and genotypic analyses of the Enterobacteriaceae collection. Table

S1 in the supplemental material summarizes relevant patient data, source of specimen,
and relevant phenotypic and genotypic characteristics for the 45 collected carba-
penem-resistant Enterobacteriaceae (CRE), which included K. pneumoniae (n � 21), K.
michiganensis (n � 1), S. marcescens (n � 12), Enterobacter spp. (n � 9), and C. freundii
(n � 1). Antimicrobial susceptibility testing (Table S2) categorized them as multidrug
resistant (MDR), extensively drug resistant (XDR), or pandrug resistant (PDR) according
to standard definitions (20). As shown, PDR isolates were found among the S. marc-
escens strains (n � 6) only, while the XDRs included K. pneumoniae (n � 5), S.
marcescens (n � 4), and Enterobacter spp. (n � 4). The PDR S. marcescens organisms
belong to a distinct phylogenetic branch that is comprised of all except two (no. 33 and
34) of the included isolates, as evident in the NCBI Genome Tree report consisting of
341 genome assemblies (https://www.ncbi.nlm.nih.gov/genome/tree/1112?; accessed
29 September 2017). This branch included both XDR and PDR isolates from the same
intensive care unit (ICU) as well as a blaNDM-1-negative MDR isolate (no. 35) from a
different ward, which implicate blaNDM-1 acquisition as well as nosocomial spread and
development of a PDR genetic lineage.

The WGS analyses (Data Set S1) revealed the presence of carbapenemase-encoding
genes in 41 of the 45 isolates: blaNDM-1 (n � 31), blaGES-5 (n � 8), blaNDM-5 (n � 1), and
blaOXA-232 (n � 1). All except three of these were positive in the Carba NP test (Table
S1). Four of the CRE contained no known carbapenemase-encoding gene, although one
was positive in the Carba NP test.

Phylogenetic analyses of carbapenemase-encoding K. pneumoniae. Among the
41 carbapenemase-encoding isolates (Table 1), K. pneumoniae was the most prevalent
species (n � 20), dominated by ST101 (n � 14). The available demographic data
showed that they were obtained from six hospitals and 14 wards, from different clinical
sources, and from both sexes between the ages of 2 months and 82 years (Table S1).

To investigate the global phylogeny and likely origins of these isolates, we added
genome assembly data sets (n � 1148) downloaded from the PATRIC database
(https://www.patricbrc.org/) to our analyses as well as country of origin and multilocus
sequence type (MLST). In the phylogenetic tree shown in Fig. S1, all of the South African
isolates with the exception of ST323 (blaNDM-1) and ST14 (blaOXA-232) clustered together
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in a distinct branch. These findings are in accordance with the NCBI Genome Tree
report for K. pneumoniae (n � 2,814) based on genomic BLAST (https://www.ncbi.nlm
.nih.gov/genome/tree/815? shows the phylogenetic branch containing the main cluster
of the South African isolates, including ST101 as well as the novel ST2016 and ST2017;
accessed 29 September 2017). As revealed by the metadata, the other ST101 isolates
constituting the branch come from several different countries. It is worth noting that
these do not contain carbapenemase-encoding genes. The exception is the Norwegian
isolate (GCA_00143615; blaNDM-1), which has a different content of plasmid replicons
and resistance-encoding genes than the South African isolates.

The South African isolates divide into three distinct subbranches, which correlate
with the presence of blaGES-5 (group I) or blaNDM-1 (groups II and III), as marked in Fig.
1. In addition, the plasmid replicon and resistance gene profiles were specific for each
of these groups (Data Set S1).

TABLE 1 Genetic and phenotypic characteristics of the carbapenemase-encoding Enterobacteriaceae (n � 41)

Bacterial isolate

MLST Groupa

Carbapenemase-encoding genetic structure

No. Strain ID Taxonomy Gene Plasmid structureb Replicon type
Size
(bp)

GenBank
accession no.

1 947385799 E. coli ST167 blaNDM-5 pNDM-MGR194-like IncX3 46,253 NC_022740.1
2 944535499 K. pneumoniae ST14 blaOXA-232 PittNDM01 plasmid4 ColPK3 6,141 NZ_CP006802.1
3 939996824 K. pneumoniae ST101 I blaGES-5 pCHE-A1 IncQ 8,201 KX244760.1
4 945154233 K. pneumoniae ST101 I blaGES-5 pCHE-A1
5 945165838 K. pneumoniae ST101 I blaGES-5 pCHE-A1
6 945169659 K. pneumoniae ST101 I blaGES-5 pCHE-A1
7 957083320 K. pneumoniae ST101 I blaGES-5 pCHE-A1-like
8 U44822 K. pneumoniae ST101 I blaGES-5 pCHE-A1
9 957083896 K. pneumoniae ST101 I blaGES-5 pCHE-A1-like
10 957089165 K. pneumoniae ST101 I blaGES-5 pCHE-A1
11 960186733 K. pneumoniae ST101 II blaNDM-1 p19-10_01 IncFIB(K) 223,434 CP023488.1
12 950171785 K. pneumoniae ST101 II blaNDM-1 p19-10_01-like
13 950173000 K. pneumoniae ST101 II blaNDM-1 p19-10_01-like
14 951373950 K. pneumoniae ST101 II blaNDM-1 p19-10_01-like
15 951362657 K. pneumoniae ST2016 II blaNDM-1 p19-10_01-like
16 951384356 K. pneumoniae ST101 II blaNDM-1 p19-10_01-like
17 951363981 K. pneumoniae ST101 II blaNDM-1 p19-10_01-like
18 950142398 K. pneumoniae ST2017 III blaNDM-1 p18-43_01 IncR_1, IncFIB(pB171),

IncFII(Yp)
212,326 CP023554.1

19 941530379 K. pneumoniae ST323 blaNDM-1 p18-43_01-like
20 950117510 K. pneumoniae ST2017 III blaNDM-1 p18-43_01-like
21 950118422 K. pneumoniae ST2017 III blaNDM-1 p18-43_01-like
23 939742031 K. michiganensis ST170 blaNDM-1 p18-43_01-like
24 950005607 S. marcescens NAc 1 blaNDM-1 p18-43_01-like
25 950196656 S. marcescens NA 1 blaNDM-1 p18-43_01-like
26 950163360 S. marcescens NA 1 blaNDM-1 p18-43_01-like
27 950164094 S. marcescens NA 1 blaNDM-1 p18-43_01-like
28 950165859 S. marcescens NA 1 blaNDM-1 p18-43_01-like
29 950166381 S. marcescens NA 1 blaNDM-1 p18-43_01-like
30 950174583 S. marcescens NA 1 blaNDM-1 p18-43_01-like
31 950172946 S. marcescens NA 1 blaNDM-1 p18-43_01-like
32 9501453777 S. marcescens NA 1 blaNDM-1 p18-43_01-like
33 945154301 S. marcescens NA 2 blaNDM-1 p18-43_01-like
34 945174350 S. marcescens NA 2 blaNDM-1 p18-43_01-like
36 19870317 E. asburiae ST108 blaNDM-1 p18-43_01-like
37 939705067 E. asburiae ST435 blaNDM-1 p18-43_01-like
40 950180354 E. cloacae complex ST145 blaNDM-1 p18-43_01-like
41 953102574 E. cloacae complex ST433 blaNDM-1 p18-43_01-like
42 941713674 E. kobei ST54 blaNDM-1 p18-43_01-like
43 953099839 E. kobei ST434 blaNDM-1 p18-43_01-like
44 950178628 Enterobacter spp. ST121 blaNDM-1 p18-43_01-like
45 944526466 C. freundii ST63 blaNDM-1 p18-43_01-like
aPhylogenetic subgroup as determined for K. pneumoniae and S. marcescens isolates.
bReferred to as “-like” when plasmid sequence is not circularized but the carbapenemase-encoding contig revealed 100% nucleotide identity to the given plasmid.
cNA, MLST is not available for this species.
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The blaNDM-1-containing genetic structures. To investigate the genetic backbone
of the carbapenemase-encoding determinants, we performed alignments and BLAST
analyses. For the assembled blaNDM-1-containing contigs, we detected two distinct
genetic structures, corresponding to phylogenetic groups II and III. The K. pneumoniae
group II isolates revealed extensive homology to the blaNDM-1-encoding regions of the
completely sequenced E. coli plasmid pNDM-HK (NC_019063.1) as well as K. pneu-
moniae plasmids pNDM-OM (NC_019889.1) and pNDM-1-Saitama (NC_021180.1). All
seven blaNDM-1-containing contigs started at precisely the same nucleotide, and five
had the exact same length of 16.276 bp (Data Set S1), explained by contig break caused
by the surrounding insertion sequence (IS) elements described below.

For the three K. pneumoniae group III isolates, the blaNDM-1-containing contigs
showed a different DNA sequence and gene synteny. It is noteworthy that alignment
and BLAST analyses grouped them together with 21 other isolates in our CRE collection,
including the K. pneumoniae isolate of ST323, all of the S. marcescens and Enterobacter
species isolates, and the single isolates of K. michiganensis and C. freundii (listed in Table
1). The aligned blaNDM-1-containing contigs showed extensive homology to the conju-
gative 110-kb pRJF866 K. pneumoniae plasmid (NC_025184.1) reported in China (21).
Except for base pair substitutions at pRJF866 positions 69130 (G to A) and 73304 (C to
G), 100% nucleotide identity was found. Although the contig length varied from 2,268
bp to 27,908 bp (Data Set S1), the high DNA identity strongly suggests a common origin
of their blaNDM-1-encoding determinants.

PacBio circularizing of two novel NDM-1-encoding plasmids. The genetic sup-
port of blaNDM-1was further investigated by PacBio sequencing of two K. pneumoniae
isolates, from group II (isolate 960186733) and III (isolate 950142398). Circularizing of
the DNA sequences revealed two novel NDM-1-encoding plasmids: p19-10_01 (223.434
bp) and p18-43_01 (212.434 bp). Both plasmids encode a heavy-metal efflux system,
multiple resistance determinants, and transposable element, as well as type IV secretion
systems (T4SS), as depicted in Fig. 2 and 3. While p19-10_01 belongs to the IncFIB(K)
replicon type, p18-43_01 is a multireplicon plasmid that includes IncR_1, IncFIB(pB171),
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FIG 1 Phylogenetic branch of K. pneumoniae containing the South African isolates (n � 18). Global
phylogeny from genome assembly data sets (n � 1,148) downloaded from the PATRIC database
(https://www.patricbrc.org/) was revealed by rapid core genome multialignment (https://github.com/
marbl/parsnp) and metadata (isolation country and MLST) coupled with the use of Phandango (https://
github.com/jameshadfield/phandango/wiki). The selected branch shows the isolate assembly identifier
(ID) for the downloaded samples (lilac) and isolate ID for the samples from this study (yellow), for which
subgroup (I, II, or III) and carbapenemase-encoding determinants are indicated. Color codes show
isolation country and MLST for each isolate.
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and IncFII(Yp). In p19-10_01, a Tn1548-like element delineated by IS26, contained
blaNDM-1 as well as armA and other resistance-encoding genes, while the blaNDM-1-
containing region in p18-43_01 had a completely different gene synteny.

BLAST comparisons (Fig. S2) show that the two plasmids share regions of high
sequence identity, although they are inverted and rearranged. Tree regions (99%
identity) were detected, with the largest (�72 kb; positions 1728 to 73963 in p19-
10_01) delineated by a putative recombinase (green box) and IS26. The alignment also
reveal a partly overlapping 8-kb region (positions 73111 to 81049 in p19-10_01),
delineated by the IS26 element and a putative integrase (green box), and an �5-kb
region spanning from positions 82193 to 87068, which is enclosed by IS26.

Horizontal spread and evolution of blaNDM-1-encoding plasmids. By using the
BLAST Ring Image Generator (BRIG) (22), the two circularized plasmids were references
for tracking of similar plasmids in the blaNDM-1-positive isolates. BLAST comparisons
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FIG 2 Tracking of plasmid p18-43_01 in NDM-1-encoding CPE isolates (n � 24). The map was constructed using
BRIG software. The concentric circles represent comparisons between p18-43_01 and, starting with the inner circle,
genome assemblies from Enterobacter species (strain ID 950178628, 953099839, 941713674, 950180354,
953102574, 939705067, and 19870317), C. freundii (944526466), S. marcescens (945174350, 945154301, 950145377,
950172946, 950174583, 950166381, 950165859, 950164094, 950163360, 950196656, and 950005607), K. michi-
ganensis (939742031), and K. pneumoniae (941530379, 950118422, 950117510, and 950142398). Color codes are
given for each species and for DNA identity, ranging from 70 to 100%, as indicated. Plasmids with extensive
homology to p18-43_01, including pRJF866 (NC_025184.1), plasmid1 (CP009116.1), pKPC_CAV1217 (CP018675.1),
and p19-10_01 (this study), were included in the BLAST comparisons and are represented as circles according to
the given color codes. The outer black and red circles represent the p18-43_01 reference sequence and its
annotated coding DNA sequence (CDS), respectively. Black transverse lines mark the ends of homology between
p18-43_01 and p19-10_01 or pRJF866.

Spread of Carbapenemase Genes in South Africa Antimicrobial Agents and Chemotherapy

May 2018 Volume 62 Issue 5 e02178-17 aac.asm.org 5

https://www.ncbi.nlm.nih.gov/nuccore/NC_025184.1
https://www.ncbi.nlm.nih.gov/nucleotide/CP009116.1
https://www.ncbi.nlm.nih.gov/nucleotide/CP018675.1
http://aac.asm.org


using p18-43_01 as a reference (Fig. 2) revealed regions with 70 to 100% DNA identity
(color codes as indicated for each species) in 24 of the isolates. The concentric circles
represent (i) group III K. pneumoniae and the phylogenetically distant ST323; (ii) K.
michiganensis (ST170); (iii) different Enterobacter species, comprising ST252, ST54,
ST121, and ST145 and the novel sequence types ST433, ST434, and ST435; (iv) S.
marcescens isolates from two phylogenetic distant branches; and (v) C. freundii (novel
ST63), in the order given in the figure legend.

Included in the comparison are plasmids with homology to the reference, including
p19-10_01 (circle colors as indicated). The regions shared between p18-43_01 and
p19-10_01 or pRJ866 are delineated by black lines. A large part corresponding to the
pRJF866 sequence was common for all 24 isolates. Of interest, Tn5403 had inserted
onto the pRJF866 part in the reference plasmid but was absent from some of the
isolates, including K. michiganensis and the K. pneumoniae ST323 (isolate 941530379),
one E. kobei isolate (isolate 9953099839), and two S. marcescens isolates (isolates
94517435 and 945154301, which belong to a phylogenetically distant branch).
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FIG 3 Tracking of plasmid p19-10_01 in subgroup II K. pneumoniae. The map was constructed using BRIG software.
The concentric blue circles represent BLAST comparisons between p19-10_01 and genome assemblies from K.
pneumoniae 960186733, 951362657, 951363981, 951373950, 950173000, 950171785, and 951384356, starting with
the innermost circle. Color codes are for DNA identity, ranging from 70 to 100%, as indicated. Plasmids with regions
homologous to the reference, including pKp848CTX (NC_024992.1), pPMK-1A (NZ_CP008930.1), pNDM-HK
(NC_019063.1), and p18-43_01 (this study), were included in the BLAST comparisons and are represented as circles
according to the given color codes. The outer black and red circles represent the p18-43_01 reference sequence
and its annotated CDS, respectively. The Tn1548 region is marked, with the CDS shown in purple. The black
transverse lines mark the ends of homology between p19-10_01 and p18-43_01.
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K. pneumoniae isolates from group III were positive for the three rep genes carried
by p18-43_01. The IncR_1 replicon type was also detected in one Enterobacter
isolate, while IncFII(Yp) and IncFIB(pB171) were present in the whole group of 24
isolates. The resistance-encoding genes rmtC and sul1, closely linked to blaNDM-1 in
p18-43_01, were present in all isolates, while catA, tetD, and dhfrA14 were found in
the Klebsiella isolates but only sporadically in the others. Taken together, these
findings indicate that blaNDM-1 is carried by plasmids with a common origin and
partly common backbone structure, including T4SS, which has enabled local hori-
zontal transfer between Enterobacteriaceae organisms. Further insight into the
evolution of the p18-43_01-like plasmids in Enterobacteriaceae would require cir-
cularizing of their DNA sequences.

Transfer of blaNDM-1-containing transposon. The BRIG analyses (Fig. 3) showed

that major parts of p19-10_01, including the blaNDM-1-containing region, were present
in all K. pneumoniae isolates from group II. The observed differences indicate local
evolution of the blaNDM-1-containing plasmids after acquisition. Genome assemblies
from isolates 951373950, 951362657, and 951363981 reveal the most similarity to
p19-10_10 (960186733), which correlates with their phylogenetic relatedness (Fig. 1).
Circularization of additional plasmids would be required for further investigation of
plasmid changes. Notably, the only part of pNDM-HK present in these isolates was the
Tn1548-like structure delineated by IS26, which has 100% sequence identity. Using
pNDM-HK, pNDM-OM, or pNDM-1-Saitama as the reference plasmid in the BRIG anal-
yses resulted in the same observation (data not shown): the group II K. pneumoniae
isolates contained no other parts of these plasmids except from the Tn1548-like structure,
which strongly suggests movement of this putative blaNDM-1-containing transposon be-
tween different replicons followed by horizontal transfer.

blaGES-5 is colocated with aacA4 on a pCHE-A-like plasmid. For the K. pneu-

moniae group I isolates, BLAST analyses of the blaGES-5-containing contigs revealed
extensive genetic homology to the E. cloacae pCHE-A (NC_012006.1) plasmid (11). For
six of the isolates, we identified a complete, circular pCHE-A-like plasmid (8,201 bp),
named pCHE-A1 (KX244760). Except for three base pair changes and a 641-bp insertion
downstream of blaGES-5, it had 100% identity to pCHE-A. The inserted DNA showed
100% identity to a class I integron bearing an aminoglycoside 6=-N-acetyltransferase
(aacA4) found in K. pneumoniae (JN108899.1) and in other Enterobacteriaceae. Interest-
ingly, aacA4 was inserted into the described integron mobilization unit (IMU) of pCHE-A
(11) within the proposed consensus sequence of the conserved core for site-specific
recombination of gene cassettes into integrons (23). The inserted DNA interrupted the
GTTAG-ATGC sequence of pCHE-A, resulting in GTTAG-GC (5= end), which is iden-
tical to the consensus sequence. The insertion site was conserved in the 3= end of
the inserted DNA.

BRIG analyses (Fig. S3) confirmed the presence of DNA with 100% coverage and
identity to the pCHE-A1 reference (strain 957089165) in all K. pneumoniae group I
isolates.

Other plasmid-borne carbapenemase-encoding genes. We detected blaNDM-5 in

an E. coli ST167 strain. The blaNDM-5-positive contig (�9 kb) revealed 100% nucleotide
identity to the blaNDM-5-containing region of the 46.3-kb K. pneumoniae plasmid
pNDM-MGR194 (KF220657.1). The plasmid was not circularized, but BLAST analyses
using pNDM-MGR194 as a reference showed the presence of the complete plasmid
DNA in the E. coli strain (data not shown).

The single K. pneumoniae ST14 isolate not belonging to the main phylogenetic
cluster encoded OXA-232. The blaOXA-232-containing contig of 6,348 bp shared 100%
sequence identity with the K. pneumoniae PittNDM01 plasmid4 (CP006802.1), named
pPKPN4 (24), and circularization of the 6,141-bp plasmids was enabled. BRIG compar-
isons between pPKPN4 and the assembled sequences from this isolate confirmed the
finding (data not shown).
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DISCUSSION

The molecular characterization of clinical CRE from the private hospital sector in
Durban, South Africa, revealed complex patterns for the dissemination of carbapenem
resistance. In this collection of MDR, XDR, and PDR Enterobacteriaceae, we identified
four different carbapenemase-encoding genes contained by five different plasmid-
associated genetic supports. The overall WGS data indicate plasmid acquisition into an
established local K. pneumoniae clone of ST101 as well as horizontal transfer between
different genera of Enterobacteriaceae, accompanied by clonal dissemination. Our
results are in line with those observed in the Jiaxingin Zhejiang Province in China,
where cross-species transfer and clonal spread were suggested to contribute synergis-
tically to the rapid increase in prevalence of CRE in hospital settings (25).

Reports from several European and Mediterranean countries suggest a continental
spread of ST101 associated with OXA-48 (26–28). The ST101 strains in this study were
isolated within the same hospital environment but encoded NDM-1 or GES-5 on three
different plasmids, further demonstrating the capability for adaptation and spread of
this genetic lineage.

Resistance-encoding plasmids can be extremely dynamic due to nested genetic
elements that enable short-term evolution as well as rapid dissemination of resistance
genes between multiple species, strains, and plasmids (29). In our study, the circular-
ization of two NDM-1-encoding plasmids revealed two different plasmids structures,
including replicon types and blaNDM-1-containing regions. Nevertheless, we identified
large regions with high sequence identity, although the regions were rearranged. Their
presence in the same hospital niche and within closely related K. pneumoniae isolates
strongly point to a common source of these plasmids, which then have evolved in their
host by recombination events.

The NDM-1-encoding part of p18-43_01, corresponding to pRJF866 (21) and includ-
ing the IncFIB and IncFII(Yp) replicons, was detected in four different genera of
Enterobacteriaceae, which implicates a common ancestor. In p18-43_01, we observed a
Tn5403 insertion in the pRJF866-homologous part. This genetic marker was absent from
five of the isolates, including the K. pneumoniae ST232 isolate, the K. michiganensis
isolate, one E. kobei isolate, and two S. marcescens isolates, which belong to a different
branch of the phylogenetic tree than the others. This implies that independent transfer
events of two different plasmid variants had occurred for all three genera. However,
further analyses of the phylogeny and host adaptation for this versatile NDM-1-
encoding plasmid structure would require circularizing of plasmids from the different
isolates.

The p19-10_01 plasmid carried blaNDM-1 on a putative mobile element with 100%
nucleotide identity to a segment of the completely sequenced pNDM-HK, pNDM-OM,
and pNDM-1-Saitama plasmids (30–32). The region contains multiple resistance deter-
minants, including armA flanked by IS26, and structurally resembles a Tn1548-type
composite element (33, 34). In our study, we detected no other parts of these plasmids
in the Tn1548-like containing K. pneumoniae strains, which strongly suggests a mobi-
lization of this element from one plasmid to the other. IS26 has been shown to mediate
the formation of transposons that carry antibiotic resistance genes (35, 36) and to
significantly reorganize plasmids by replicative transposition or by homologous recom-
bination between preexisting IS26 structures (37, 38). Here, transfer by IS26 activity
would explain the finding of Tn1548-like in a new genetic context. IS26 could also offer
an explanation for the differences in plasmid structure observed between the isolates
due to homologous recombination and merging of plasmids.

The pCHE-A plasmid is a mobilizable IncQ-type plasmid first described in an E.
cloacae strain isolated in Canada (11). The blaGES-5 gene is part of a novel IMU, which
could be mobilized by providing transposase activity in trans (11). Here, we detected a
homologous plasmid with an additional resistance-encoding gene, aacA4. The insertion
of aacA4 into the conserved core sequence for site-specific recombination (23) supports
an integron activity, although the Intl gene is partially deleted in pCHE-A. These
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findings substantiate the potential for accumulation and spread of resistance genes by
pCHE-A, as suggested previously (11).

K. pneumoniae ST14 has been associated with CTX-M-15, FOX-7, and NDM-1 out-
breaks in Tanzania, Italy, and other parts of the world (1, 39–41). An OXA-232-producing
K. pneumoniae ST14 outbreak clone was recently detected in South Korea (42) and
traced to India, where it is reported to be dominant (43). The 6.1-kb OXA-232-encoding
pPKNPN4 detected in our study was initially described in the K. pneumoniae isolate
PittNDM01 (24) and also corresponds to an OXA-232-encoding plasmid reported in K.
pneumoniae and E. coli (42, 44), which accentuates its dissemination.

NDM-5 was first identified in an E. coli strain from the United Kingdom in 2011 (45).
In recent years, there has been widespread occurrence of NDM-5 in K. pneumoniae
(45–47). Here, blaNDM-5 detected in E. coli was harbored by pNDM_MGR194, which was
found to circulate in K. pneumoniae in India (48, 49). The finding of this broad-host-
range IncX3 plasmid in Proteus mirabilis as well (50) further extends its role in enhanc-
ing the spread of blaNDM-5.

The presence of blaNDM-1 in different species and STs of Klebsiella, as well as in other
genera of the Enterobacteriaceae family, emphasizes the broad-host-range dissemina-
tion of mobile NDM-encoding elements. In addition to K. pneumoniae, E. cloacae is
known as a major host for NDM-1 both in South Africa and in other African countries
(1, 2). Outbreaks of NDM-1-producing E. cloacae have also been reported (51), and
epidemiological analyses have revealed specific NDM-1-associated STs (52, 53). In our
study, however, the NDM-1-producing Enterobacter spp. encountered several species. S.
marcescens isolates are mostly associated with neonatal outbreaks in ICUs worldwide
(54, 55). Dissemination of NDM-1-producing S. marcescens in ICUs has not, to our
knowledge, been reported before. The development and nosocomial spread of a PDR
genetic lineage of S. marcescens is of great concern.

In conclusion, acquisition of different resistance-encoding plasmids, horizontal
transfer, and clonal dissemination facilitate the spread of carbapenemase genes in
Durban, South Africa. The overall observations emphasize the importance of early
detection of CRE and targeted infection control measures to prevent dissemination.

MATERIALS AND METHODS
Ethical considerations. Ethical approval was obtained from the Biomedical Research Ethics Com-

mittee of the University of KwaZulu-Natal (reference number BE040/14).
Bacterial strains. Forty-five clinical CRE (nonsusceptible to ertapenem and/or meropenem) collected

by Lancet Laboratories, Durban, South Africa, between 2012 and 2013 from patients hospitalized in 10
different private hospitals (represented by the letters A to J) and wards (represented by digits after the
letters) in Durban, South Africa, were included in the study (Table S1 in the supplemental material).
Duplicate isolates from the same patients were excluded. Species identification and antimicrobial
susceptibility testing were undertaken using matrix-assisted laser desorption ionization–time of flight
mass spectrometry (Bruker Daltonic Gmbh, Bremen, Germany) and broth microdilution using in-house-
designed, premade Sensititre microtiter plates (Thermo Fisher Scientific, East Grinstead, UK), respectively.
Interpretation was according to EUCAST breakpoints, version 7.1 (www.eucast.org). Nonsusceptibility
included both the intermediate and resistant categories. Carbapenemase production was examined by
the Carba NP test as previously described (56, 57).

DNA analysis. Genomic DNA for Illumina sequencing was purified using a GenElute bacterial
genomic DNA kit (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s instructions.
Paired-end libraries were generated using the Nextera kit (Illumina, San Diego, CA, USA), followed by
sequencing on an Illumina MiSeq platform at the Norwegian Sequencing Centre or at the Centre for
Bioinformatics at UiT–The Arctic University of Norway.

For PacBio sequencing, genomic DNA was purified by a Genomic-tip 100/G kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The DNA was subjected to the 20-kb library
preparation protocol and 6-kb cutoff BluePippin (Sage Sciences, Beverly, MA, USA) size selection,
followed by sequencing with the Pacific Biosciences RSII sequencer using P6-C4 chemistry, a 360-min
movie time, and one SMRT-cell per sample at the Norwegian Sequencing Centre.

Bioinformatic analysis. Illumina sequence reads were adaptor- and quality-trimmed using Trimmo-
matic (58) and subsequently assembled with Spades v.3.6.0 (59) using the “– careful” flag. PacBio
long-read sequences were assembled and polished at The Norwegian Sequencing Centre (http://www
.sequencing.uio.no/) using HGAP, v3, in SMRT analysis software, v2.3.0 (Pacific Biosciences) (60). Mini-
mus2 from AMOS (61) circularized unitigs, and the dnaA (chromosome) or repA (plasmids) gene was set
as the first nucleotide position using the Circulator (62).
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For in-house analysis purposes, assemblies were annotated using prokka v.1.11 (63) with further NCBI
BLAST searches and annotation of resistance and plasmid replicon genes by the Resfinder, NCBI
�-lactamase, and PlasmidFinder databases found in ABRicate (https://github.com/tseemann/abricate).
Annotation of NDM-1-containing plasmids additionally included ISfinder (64) searches for IS elements
and identifying T4SS using T346Hunter (65). Assemblies deposited in GenBank were annotated using the
PGAP pipeline provided by NCBI (https://www.ncbi.nlm.nih.gov/genome/annotation_prok/), with addi-
tional manual curation of resistance gene and mobile genetic element annotations.

To visualize presence/absence of specific plasmid DNA, fully sequenced plasmids were used as
reference input to BRIG (22) together with the Illumina sequence reads.

To investigate the global phylogeny and identify the likely origins of the K. pneumoniae isolates,
genome assembly data sets were downloaded from the PATRIC database (https://www.patricbrc.org/),
identifying all isolates with “country isolated” metadata. Genomes with fewer than 400 contigs were
selected and run through MinHASH (66) using standard settings, and genomes above a MASH distance
threshold of 0.05 excluded to remove isolates genetically distant from the main phylogroup. The data
sets were then run through parsnp v.1.2 (61) with “– c –x” flags enabled and random reference selection
among the included samples. FigTree (http://tree.bio.ed.ac.uk/software/figtree/) was used to edit the
phylogenetic trees. Phylogeny, country origin metadata, and MLST type were determined by MLST
software (https://github.com/tseemann/mlst) coupled with Phandango (67).

The housekeeping genes of new or unknown STs were sent for curation and assignment of new ST
numbers at the K. pneumoniae MLST database at the Pasteur Institute, the Enterobacter cloacae MLST
website (https://pubmlst.org/ecloacae/), and the Citrobacter freundii MLST website (https://pubmlst.org/
cfreundii/).

Accession number(s). The raw read sequences and the assembled whole-genome contigs have
been deposited in GenBank under Bioproject PRJNA287968. The plasmids pCHE-A1, p19-10_01, and
p18-43_01 have accession numbers KX244760.1, CP023488.1, and CP023554.1, respectively.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.02178-17.
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