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ABSTRACT A collection of clinical (n � 47) and environmental (n � 79) Fusarium
isolates were tested against 10 antifungal drugs, including 2 novel imidazoles. Luli-
conazole and lanoconazole demonstrated very low geometric mean MIC values of
0.005 and 0.013 �g/ml, respectively, compared with 0.51 �g/ml for micafungin, 0.85
�g/ml for efinaconazole, 1.12 �g/ml for natamycin, 1.18 �g/ml for anidulafungin,
1.31 �g/ml for voriconazole, 1.35 �g/ml for caspofungin, 1.9 �g/ml for amphotericin
B, and 4.08 �g/ml for itraconazole. Results show that these drugs are potential can-
didates for (topical) treatment of skin and nail infections due to Fusarium species.
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Species of Fusarium are globally distributed fungi of considerable ecological plas-
ticity, causing infections in plants and humans (1, 2). Over the past few years,

human infections with Fusarium species have shown a global increase in frequency in
immunocompromised patients and healthy individuals (3). These infections can be
classified into three main groups, i.e., superficial infections involving skin, nails, and
corneas; deep subcutaneous infections; and disseminated infections, which occur
exclusively in patients with profound neutropenia or T-cell immunodeficiency (4).
Management of infections caused by Fusarium species is challenging because of their
intrinsic multiresistance to most currently available antifungal drugs (5–7).

Fusarium and other members of the order Hypocreales, such as Trichoderma and
Acremonium, are among the most antifungal drug-resistant organisms encountered in
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clinical practice (8). Intrinsic resistance to azoles and high in vitro MIC values to polyenes
and the echinocandins have been noted, although some studies reported successful
clinical outcomes with these agents (8–14). Currently, European Society for Clinical
Microbiology and Infectious Diseases (ESCMID) and European Confederation of Medical
Mycology (ECMM) joint guidelines and most published studies suggest that early
therapy with amphotericin B and voriconazole in conjunction with surgical debride-
ment and reversal of immunosuppression is the treatment of choice for disseminated
fusariosis (13–15). However, survival rates are low in these patient populations (�30%
or less), particularly among patients with constant immunosuppression (13–17). In
keratitis cases, topical natamycin is used along with voriconazole as the mainstay of
Fusarium treatment (18).

Luliconazole and lanoconazole are novel topical FDA-approved imidazoles for treat-
ment of superficial mycoses. These drugs have proven in vitro activity against most
clinically important molds and yeasts, e.g., Aspergillus fumigatus (including strains with
acquired itraconazole resistance) (19), Aspergillus terreus species complex (20), dermato-
phytes (21), black fungi and relatives (22), Malassezia species (23), and Candida species
(24). No in vitro susceptibility data of luliconazole and lanoconazole against Fusarium
species have been published. Therefore, we used a large panel of Fusarium species to
evaluate the in vitro activity of luliconazole, lanoconazole, and eight comparator drugs
based on CLSI M38-A2 guidelines (25).

A total of 126 clinical and environmental Fusarium isolates were included in the
study. Species identification was confirmed by partial sequencing of the translation
elongation factor 1� (TEF-1�) (8). The clinical isolates originated from nails (n � 30) and
corneas (n � 17) from four clinical centers in Iran from 2014 to 2017 (Table 1). The
environmental isolates were recovered from samples of rice (n � 27), poultry fodder
(n � 9), maize (n � 25), wheat (n � 6), and eggplant (n � 1) (Table 1). The collection
comprised 11 reference environmental strains from three reference collections: Invasive
Fungi Research Center (IFRC, Iran), Teikyo University Institute of Medical Mycology
(TIMM, Japan), and Centraalbureau voor Schimmelcultures (CBS) housed at Westerdijk
Fungal Biodiversity Institute (Utrecht, The Netherlands) (Table 1).

All strains were tested for their in vitro susceptibility to luliconazole and lanocona-
zole and eight comparator agents according to CLSI M38-A2 guidelines (25). Powders
of the antifungal agents were obtained from the manufacturers (efinaconazole, luli-
conazole, and lanoconazole, Nihon Nohyaku Co., Osaka, Japan; itraconazole, Janssen,
Beerse, Belgium; anidulafungin and voriconazole, Pfizer, Sandwich, United Kingdom;
amphotericin B, Bristol-Myers-Squib, Woerden, The Netherlands; caspofungin, Merck
Sharp and Dohme BV, Haarlem, The Netherlands; micafungin, Astellas, Toyama, Japan;
and natamycin, Sigma-Aldrich, Steinheim, Germany). Final concentrations of antifungal

TABLE 1 MIC and MEC results of antifungal testing

Source of isolates and
variable

MIC (�g/ml)a for: MEC (�g/ml)b for:

LULI LANO EFINA VRC ITC AMB NATA CFG MFG AFG

All (n � 126)
Range 0.001 to 0.125 0.001 to 1 0.004 to 2 0.125 to �16 0.125 to �16 0.016 to 16 0.125 to 8 0.008 to �8 0.001 to �8 0.25 to �8
MIC50/MEC50 0.008 0.016 1 2 8 2 1 4 1 1
MIC90/MEC90 0.032 0.125 2 4 �16 8 2 �8 �8 �8
GM 0.005 0.013 0.85 1.31 4.08 1.9 1.12 1.35 0.51 1.18

Clinical (n � 47)
Range 0.001 to 0.125 0.001 to 1 0.004 to 2 0.125 to �16 1 to �16 0.016 to �16 0.125 to 2 0.008 to �8 0.001 to �8 0.25 to �8
MIC50/MEC50 0.004 0.016 1 2 �16 2 1 8 0.064 4
MIC90/MEC90 0.032 0.064 2 4 �16 8 2 �8 �8 �8
GM 0.005 0.014 0.88 1.88 3.48 1.7 1.02 2.69 0.09 1.64

Environmental (n � 79)
Range 0.001 to 0.125 0.001 to 0.5 0.5 to 2 0.125 to 8 0.125 to �16 0.125 to �16 0.125 to 8 0.008 to �8 0.008 to �8 0.5 to �8
MIC50/MEC50 0.008 0.008 1 1 8 2 1 4 1 8
MIC90/MEC90 0.032 0.125 1 4 �16 8 2 �8 �8 8
GM 0.006 0.012 0.83 1.07 4.21 2.03 1.15 2.04 1.64 5.17

aLULI, luliconazole; LANO, lanoconazole; EFINA, efinaconazole; (VRC), voriconazole; ITC, itraconazole; AMB, amphotericin B; NATA, natamycin.
bEchinocandins: CFG, caspofungin; MFG, micafungin; AFG, anidulafungin.
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agents in the wells ranged from 0.016 to 16 �g/ml for amphotericin B, voriconazole,
itraconazole, efinaconazole, and natamycin; 0.001 to 1 �g/ml for luliconazole and
lanoconazole; and 0.008 to 8 �g/ml for caspofungin, micafungin and anidulafungin.
Stock solutions of drugs were prepared in dimethyl sulfoxide, except for caspofungin
and micafungin, which were dissolved in sterile water and stored at �80°C until used.
The strains were grown on potato dextrose agar (Difco) and incubated at 35°C for 5 to
7 days for adequate sporulation. To obtain final inocula of 0.4 � 104 to 5 � 104 CFU/ml,
suspensions were diluted 1:50 in RPMI 1640 medium. For micafungin, caspofungin, and
anidulafungin, minimum effective concentrations (MECs) were determined microscop-
ically as the lowest concentrations of the agent that resulted in growth of rounded and
compact hyphal forms compared with those in the well of the growth control. For
others drugs, MICs were the lowest concentrations that showed complete inhibition of
visible growth. Microdilution plates were incubated at 35°C, and MICs and MECs were
read after 48 h. Candida parapsilosis (ATCC 22019), Candida krusei (ATCC 6258), and
Aspergillus flavus (ATCC 2004304) were used as quality control strains. Differences of
mean values were determined by Student’s t test with the statistical SPSS package
(version 7.0). P values of �0.05 were considered statistically significant.

The identified species in our study, based on TEF1 partial gene analysis, were
members of the F. fujikuroi species complex (FFSC) (n � 94), consisting of F. proliferatum
(n � 53), F. verticillioides (n � 37), F. thapsinum (n � 1), F. sacchari (n � 1), F. nygamai
(n � 1), and F. fujikuroi (n � 1). We also identified members of other species complexes:
F. oxysporum (n � 11) in F. oxysporum species complex (FOSC), F. lateritium (n � 1) in
F. lateritium species complex (FLSC), F. culmorum (n � 1) in F. graminearum species
complex (FGSC) and F. solani sensu stricto (FSSC) (n � 13), and F. petroliphilum (n � 1)
in F. solani species complex (FSSC) (Table 2).

Table 2 summarizes the in vitro susceptibilities of 47 clinical and 79 environmental
isolates of Fusarium to luliconazole, lanoconazole, and eight common comparator
antifungal agents. Interestingly, Fusarium species demonstrated extremely low MICs to
luliconazole and lanoconazole, with geometric mean (GM) MICs of 0.005 and 0.013
�g/ml, respectively; followed by micafungin, with a GM MEC of 0.51 �g/ml, and
efinaconazole, with a GM MIC of 0.85 �g/ml. MICs/MECs of the other drugs were �1
�g/ml (natamycin, 1.12 �g/ml; anidulafungin, 1.18 �g/ml; voriconazole, 1.37 �g/ml;
caspofungin, 1.35 �g/ml; amphotericin B, 1.9 �g/ml; and itraconazole, 4.08 �g/ml)
(Table 1). While the widest MEC ranges were observed for micafungin (0.001 to �8
�g/ml) and anidulafungin (0.25 to �8 �g/ml), the lowest MIC ranges were found with
luliconazole (0.001 to 0.125 �g/ml) and lanoconazole (0.001 to 1 �g/ml) (Table 1). Of
the three echinocandins, micafungin had the best activity, with a GM MEC that was
�2-log2 dilution steps lower than those of anidulafungin and caspofungin, although
the MEC90 of �8 �g/ml for the clinical isolates would not qualify micafungin as an
agent that can be used as monotherapy for Fusarium.

MIC50 values of luliconazole and lanoconazole against Fusarium isolates were 8- and
7-log2 dilutions steps lower, respectively, than those of amphotericin B and voricona-
zole (MIC50, 2 �g/ml), the drugs of choice for the treatment of invasive fusariosis (13).
These results confirm previous findings of very low MIC values for luliconazole and
lanoconazole compared with those of amphotericin B, voriconazole, and itraconazole
against wild-type and resistant A. fumigatus and melanized fungi (19, 22). Abastabar et
al. (19) and Vaezi et al. (20) reported that the majority of MIC values of lanoconazole and
luliconazole against azole-resistant isolates of A. fumigatus and A. terreus were �0.016
�g/ml and in some isolates even �0.001 �g/ml. In addition, Shokoohi et al. (22)
showed that MIC50, MIC90, and GM MIC values of luliconazole and lanoconazole for
clinical isolates of dematiaceous fungi and relatives were 0.0005, 0.008, and 0.0008
�g/ml, respectively. In the current study, MIC90 values against clinical Fusarium strains
were as follows, in increasing order: luliconazole, 0.032 �g/ml; lanoconazole, 0.064
�g/ml; efinaconazole and natamycin, 2 �g/ml; voriconazole, 4 �g/ml; amphotericin B,
8 �g/ml; and itraconazole, �16 �g/ml; and MEC90 values for anidulafungin, micafungin,
and caspofungin were �8 �g/ml. Moreover, MIC90 values of luliconazole, lanoconazole,
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TABLE 2 In vitro susceptibilities of 10 antifungal drugs against 126 Fusarium isolates from different species complexes

Source and antifungal agent

Susceptibility (n) at MIC/MECa (�g/ml) of:

0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.125 0.25 0.5 1 2 4 8 >16

Fusarium, clinical (n � 47)
Luliconazole 10 6 8 9 8 5 1
Lanoconazole 4 6 4 4 7 8 9 3 1 1
Efinaconazole 1 1 1 1 6 22 15
Voriconazole 1 1 2 9 16 15 2 1
Itraconazole 1 1 1 1 2 42
Amphotericin B 1 2 1 3 8 14 7 6 5
Natamycin 2 1 5 20 19
Caspofungin 1 1 3 1 1 2 38
Micafungin 1 4 1 5 1 1 2 2 2 4 24
Anidulafungin 1 1 2 3 40

Fusarium, environmental (n � 79)
Luliconazole 16 14 6 10 15 11 5 2
Lanoconazole 5 10 12 14 10 13 4 6 4 1
Efinaconazole 3 18 54 4
Voriconazole 2 9 19 21 18 12 1
Itraconazole 1 1 1 3 5 12 56
Amphotericin B 1 10 14 22 20 7 5
Natamycin 1 5 10 35 24 3 1
Caspofungin 1 1 1 1 2 7 16 50
Micafungin 1 2 1 2 2 16 12 11 14 18
Anidulafungin 11 2 3 63

F. fujikuroi complex (n � 94)
Luliconazole 19 13 12 12 20 12 5 1
Lanoconazole 7 12 14 13 12 14 11 6 3 1 1
Efinaconazole 1 4 21 53 15
Voriconazole 3 6 20 24 24 17
Itraconazole 1 2 2 3 4 14 68
Amphotericin B 1 1 12 17 25 23 8 7
Natamycin 1 5 13 40 31 4
Caspofungin 1 1 1 2 1 7 37 44
Micafungin 1 3 2 3 2 3 17 12 12 12 27
Anidulafungin 1 2 1 3 13 9 65

F. solani complex (n � 14)
Luliconazole 3 1 1 3 3 1 2
Lanoconazole 1 1 2 4 3 1 2
Efinaconazole 1 11 2
Voriconazole 2 3 3 3 3
Itraconazole 1 13
Amphotericin B 2 1 1 4 2 3
Natamycin 2 2 5 4 1
Caspofungin 1 2 11
Micafungin 1 1 2 1 2 7
Anidulafungin 1 1 12

F. oxysporum complex (n � 11)
Luliconazole 4 2 2 3
Lanoconazole 1 3 2 1 1 3
Efinaconazole 1 1 1 7 1
Voriconazole 2 4 5
Itraconazole 11
Amphotericin B 1 4 1 2 3
Natamycin 1 3 7
Caspofungin 1 2 1 1 8
Micafungin 2 1 1 1 4
Anidulafungin 2 2 7

F. graminearum complex (n � 1)
Luliconazole 1
Lanoconazole 1 1

(Continued on next page)
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and other tested drugs for the environmental Fusarium isolates were completely similar
to those of the clinical isolates, with the exception of better activities of efinaconazole
(MIC90, 1 �g/ml) in environmental isolates and lanoconazole (0.64 �g/ml) in clinical
isolates (Table 1).

Many studies have reported data on the poor in vitro activity of amphotericin B,
itraconazole, and echinocandins against clinical Fusarium strains, with MIC values
similar to those in our findings (9, 10, 18, 26–28). Regarding the poor outcome with
monotherapy and in view of the reported synergistic interactions of some agents, such
as, liposomal amphotericin B with terbinafine (4), amphotericin B with voriconazole
(29), and natamycin with voriconazole (9), combination therapy is recommended (1,
18). In the current study, all clinical Fusarium isolates showed low MICs of �0.125 �g/ml
for luliconazole and �1 �g/ml for lanoconazole.

Forty-three clinical isolates (91.48%) had MICs of �1 �g/ml for voriconazole, 40
isolates (85.1%) had MICs of �1 �g/ml for amphotericin B, 42 isolates (89.36%) had
MICs of �16 �g/ml for itraconazole, and 38 isolates (80.85%) demonstrated MECs of �8
�g/ml for caspofungin (Table 2). All of the environmental isolates with high MICs/MECs
for azoles, amphotericin B, and echinocandins were inhibited by �0.125 �g/ml of
luliconazole and �0.5 �g/ml of lanoconazole (Table 2). Data on the in vitro activity of
efinaconazole, a novel triazole, against Fusarium species are limited (30, 31). We found
that the in vitro antifungal activity of efinaconazole with a GM MIC of 0.85 �g/ml was
superior to those of amphotericin B, natamycin, other triazoles, and echinocandins,
except for micafungin, which had a GM MEC of 0.51 �g/ml (Table 1). These results agree
with previously published data on efinaconazole versus itraconazole with limited
species selections and fewer isolates (30, 31). We found no significant differences
between Fusarium species complexes regarding susceptibility to luliconazole and
lanoconazole, for which most isolates demonstrated very low MIC values (Table 2).
These two drugs inhibited all isolates studied within the F. solani species complex
(FSSC) at a concentration of 0.125 �g/ml for luliconazole and �0.25 �g/ml for lano-
conazole. In addition, members of the F. fujikuroi species complex (FFSC) were inhibited
at �0.125 �g/ml of luliconazole and �0.5 �g/ml of lanoconazole, except for a single
isolate with an MIC of 1 �g/ml. In addition, all isolates of the F. oxysporum species
complex (FOSC) were inhibited at �0.008 �g/ml of luliconazole and 0.0125 �g/ml of
lanoconazole (Table 2). The echinocandins are not considered to be active against
Fusarium, and the present data support this, especially with MEC90 values of �8 �g/ml,

TABLE 2 (Continued)

Source and antifungal agent

Susceptibility (n) at MIC/MECa (�g/ml) of:

0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.125 0.25 0.5 1 2 4 8 >16

Efinaconazole 1
Voriconazole 1
Itraconazole 1
Amphotericin B 1
Natamycin 1
Caspofungin 1
Micafungin 1
Anidulafungin 1

F. lateritium complex (n � 1)
Luliconazole 1
Lanoconazole 1
Efinaconazole 1
Voriconazole 1
Itraconazole 1
Amphotericin B 1
Natamycin 1
Caspofungin 1
Micafungin 1
Anidulafungin 1

aThe mode in each row is in boldface. MEC only for echinocandins caspofungin, micafungin, and anidulafungin.
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against clinical Fusarium strains, except for a few strains within the F. fujikuroi species
complex (FFSC), followed by F. oxysporum species complex (FOSC). This strain-specific
phenomenon in Fusarium was reported before (10), although testing Fusarium species
routinely against echinocandins was not recommended. We conclude that luliconazole
and lanoconazole exhibit potent activity against clinical and environmental Fusarium
species. These compounds are therefore promising for the treatment of fusariosis.

Accession number(s). The nucleotide sequences of all isolates were deposited in
GenBank under accession numbers MG734576 to MG734653.
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