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Deconvolution of subcellular protrusion
heterogeneity and the underlying actin regulator
dynamics from live cell imaging
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Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the

mechanism of cell protrusion has been understood based on the ensemble average of actin

regulator dynamics. Here, we establish a computational framework called HACKS (decon-

volution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to

deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging.

HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning

algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using

our method, we discover “accelerating protrusion”, which is driven by the temporally ordered

coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological

perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment

associated with accelerating protrusion. Our study suggests HACKS can identify specific

subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal

how actin regulator dynamics are changed by the perturbation.
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Cell protrusion is driven by spatiotemporally fluctuating
actin assembly processes, and is morphodynamically het-
erogeneous at the subcellular level1–3. Elucidating the

underlying molecular dynamics associated with subcellular pro-
trusion heterogeneity is crucial to understanding the biology of
cellular movement since protrusion determines the directionality
and persistence of cell movements or facilitates the exploration of
the surrounding environment4. Recent studies of the vital roles of
cell protrusion in tissue regeneration5,6, cancer invasiveness and
metastasis7–9, and the environmental exploration of leukocytes10

further emphasize the physiological and pathophysiological
implication of understanding the fine molecular details of pro-
trusion mechanisms. Although there has been considerable pro-
gress in analyzing individual functions of actin regulators, the
precise understanding of how these actin regulators are spatio-
temporally acting in cell protrusion is still limited. Moreover, it is
a formidable task to dissect the actin regulator dynamics involved
with cell protrusion because such dynamics are highly hetero-
geneous and fluctuate on both the micron length scale and the
minute time scale11–13.

Advances in computational image analysis on live cell movies
have allowed us to study the dynamic aspects of molecular and
cellular events at the subcellular level. However, the significant
degree of heterogeneity in molecular and subcellular dynamics
complicates the extraction of useful information from complex
cellular behavior. The current method of characterizing molecular
dynamics involves averaging molecular activities at the cellular
level, which significantly conceals the fine differential subcellular
coordination of dynamics among actin regulators. Over the past
decade, hidden variable cellular phenotypes in heterogeneous cell
populations have been uncovered by applying machine learning
analyses14,15; however, these analyses primarily focused on static
data sets acquired at the single-cell level, such as immuno-
fluorescence16, mass cytometry17, and single-cell RNA-Seq18 data
sets. Although some studies have examined the cellular hetero-
geneity of the migratory mode19,20, subcellular protrusion het-
erogeneity has not yet been addressed. Moreover, elucidating the
molecular mechanisms that generate each subcellular phenotype
has been experimentally limited because it is a challenging task to
manipulate specific subclasses of molecules at the subcellular level
with fine spatiotemporal resolution.

To address this challenge, we developed a machine learning-
based computational analysis pipeline that we have called
HACKS (deconvolution of Heterogeneous Activity in Coordina-
tion of cytosKeleton at the Subcellular level) (Fig. 1) for live cell
imaging data by an unsupervised machine learning approach
combined with our local sampling and registration method13.
HACKS allows us to deconvolve the subcellular heterogeneity of
protrusion phenotypes and statistically link them to the dynamics
of actin regulators at the leading edge of migrating cells. Based on
our method, we quantitatively identify subcellular protrusion
phenotypes from highly heterogeneous and non-stationary edge
dynamics of migrating epithelial cells. Each protrusion phenotype
is demonstrated to be associated with the differential temporal
coordination of the actin regulators at the leading edge. Analyzing
pharmacologically perturbed cells further verifies that the fine
temporal coordination of the actin regulators is required to
generate specific subcellular protrusion phenotypes.

Results
HACKS: an overview of the pipeline. To deconvolve the het-
erogeneity of the subcellular protrusion activity and their reg-
ulatory proteins at fine spatiotemporal resolution, we developed a
computational analysis pipeline, HACKS (Fig. 1), which is based
on an unsupervised machine learning method. HACKS allowed

us to (i) identify distinct subcellular protrusion phenotypes based
on a time series clustering analysis of heterogeneous subcellular
protrusion velocities extracted from live cell movies (Figs. 1a–c),
(ii) associate each protrusion phenotype with pertinent actin
regulator dynamics by comparing the average temporal patterns
of protrusion velocities with those of actin regulators (Fig. 1c),
(iii) perform highly specified correlation and classification ana-
lyses of actin regulator dynamics of protrusion phenotypes to
establish their association with fine mechanistic details
(Figs. 1d–f) and (iv) identify specific protrusion phenotypes
susceptible to molecular perturbations, and functionally confirm
the association between protrusion phenotype and the actin
regulator dynamics (Fig. 1g). The framework can provide
mechanistic insight into how the differential coordination of actin
regulator dynamics organizes various subcellular protrusion
phenotypes.

A time series clustering analysis of protrusion velocities.
Sample videos for the analysis were prepared by taking time-lapse
movies of PtK1 epithelial cells expressing fluorescently tagged
actin, Arp3, VASP and a cytoplasmic marker, HaloTag, with a
spinning disk confocal microscope for approximately 200 frames
at 5 s per frame11 (Fig. 1a). Each time-lapse movie contains a
single cell whose leading edge undergoes protrusion–retraction
cycles. After segmenting the leading edge of each cell by multiple
probing windows with a size of 500 by 500 nm13 (Fig. 1a, left),
time series of velocities11 and fluorescence intensities of the tag-
ged molecules12,13 acquired from each probing window were
quantified (Fig. 1a, center and right). After registering protrusion
onset at time zero (t= 0), the time-series were aligned using the
protrusion onset as a temporal fiduciary13 (Fig. 1b). To ensure a
uniform time length of the data for the subsequent clustering
analysis, we selected the first 51 frames (250 s) of protrusion
segments, which is about the average protrusion duration13 from
the pooled velocity time series.

The selected time series of the registered protrusion velocity
contained a substantial amount of intrinsic fluctuations, hinder-
ing the identification of distinct clusters of similar protrusion
activities. Therefore, we first denoised the time series velocity
profile using empirical mode decomposition (EMD)21 and
discretized the data using SAX (symbolic aggregate approxima-
tion, see Methods)22 to reduce the dimensionality and complexity
of the data (Supplementary Note 1). We then extracted distinct
patterns from fluctuating velocity time series by combining the
autocorrelation distance measure with the density peak cluster-
ing23. The distance measures between different time series were
calculated using the squared Euclidean distances between the
corresponding autocorrelation functions (ACFs) of each dis-
cretized time series. This autocorrelation distance partitioned the
fluctuating time series of similar underlying patterns into the
same clusters, enabling us to identify clusters with distinct
dynamic patterns (Supplementary Note 1). Following the ACF
distance measure, we applied the density peak clustering
algorithm, which has been shown to be superior to conventional
k-means in partitioning data with complex cluster shapes23. As a
result, the density–distance graph in Fig. 2g, where cluster centers
are localized in the upper-right region (see Methods for detail),
revealed five distinct clusters of subcellular protrusion activities.
Using the clustering criteria, Davies–Bouldin Index (DBI)24,
average silhouette value, and Calinski–Harabasz pseudo F-
statistic25, we also confirmed that the optimal number of clusters
was five (Supplementary Fig. 3a–c). After the clustering analysis,
average protrusion velocities and the 95% confidence intervals of
the mean were calculated (Fig. 2e). Of note, after we tested
different sets of algorithms, we found that ACF distance was the
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Fig. 1 Schematic representation of the analytical steps of HACKS. a Fluorescence time-lapse movies of the leading edge of a migrating PtK1 cell expressing
flourescent-tagged proteins of interest (an Arp3-HaloTag expressing cell is presented here) was taken at 5 s per frame, and then probing windows (500 by
500 nm) are generated to track the cell edge movement and sample protrusion velocities and fluorescence intensities. b The protrusion distance is
registered with respect to protrusion onsets (t= 0). Time series of protrusion velocities are then aligned. c The protrusion phenotypes are identified by a
time series clustering analysis and associated with actin regulator dynamics. d–f Correlation analysis between time series of the protrusion velocities and
fluorescence intensities. Schematic diagrams of time-lag (d) and time-specific correlation analysis (e) are presented. Classification analysis is performed to
computationally validate the result by predicting protrusion phenotypes based on molecular dynamics. g The hypotheses drawn from the computational
analysis are functionally validated by drug tests. The phenotypes susceptible to pharmacological perturbations are identified based on t-SNE plots. The
drug-sensitive phenotypes are further analyzed by quantifying the drug effects on cluster proportion and the associated molecular dynamics
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most important factor which allowed us to extract these distinct
temporal patterns (Supplementary Figs. 1 and 2, Supplementary
Note 1). Furthermore, we could not identify substantial
differences among the velocity cluster profiles (dotted lines in
Fig. 3b–e) in each molecule (actin, Arp3, VASP, and HaloTag),
confirming that our clustering results are not skewed by a
particular data set. The numbers of cells and probed windows

used in the time series clustering analysis are presented in
Supplementary Table 1.

Identification of distinct subcellular protrusion phenotypes.
The visual inspection of the average velocity profiles of the
identified clusters (Fig. 2e) demonstrated that the overall differ-
ences among the protrusion phenotypes originated from
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differences in the timing and number of peaks the velocity
reached. Whereas Cluster I did not exhibit dramatic changes in
protrusion velocities after reaching its peak at the earlier part of
the protrusion segment (Fig. 2e), the remaining clusters exhibited
substantial acceleration or deceleration in the protrusion velo-
cities with varying timing and number. Clusters II-1, II-2, and II-
3 (Fig. 2e) exhibited differential periodic changes in the accel-
eration and deceleration of protrusion. Conversely, Cluster III
(Fig. 2e) demonstrated persistently accelerating behavior where
protrusion velocities continued to increase until the late phase of
the protrusion. Clusters I, II-1, II-2, II-3 and III comprised 27.7%,
13.3%, 22.7%, 24.5%, and 11.8% of the entire sample, respectively,
and individual cells expressing different fluorescent proteins
exhibited similar tendencies (Fig. 2f, Supplementary Fig. 3h),
suggesting the intracellular origin of protrusion heterogeneity.
Nevertheless, cell-to-cell variability in cluster distribution per-
sisted, suggesting that the clusters may also reflect individual
cellular responses to differential cellular contexts or
microenvironments.

The validity of our clustering result was confirmed by visually
inspecting the velocity activity map (Fig. 2d). Clusters II-1/2/3
(Fig. 2d) and III (Fig. 2d) exhibited clearly distinguishable
patterns, whereas Cluster I (Fig. 2d) contained fluctuating velocity
profiles (See Supplementary Fig. 3g for the full maps). The t-SNE
(Fig. 2h), multidimensional scaling (MDS), silhouette, and order
distance plots (Supplementary Fig. 3d–f) of the clustering results
further confirmed the stability and tightness of Clusters II-1/2/3
and III but suggested residual heterogeneity in Cluster I, which is
in agreement with the velocity activity maps (Fig. 2d). To quantify
the spatial structure of the protrusion phenotypic clusters, we
estimated the conditional probability that the same cluster exists
over the distance from a given cluster (Fig. 2i). As the distance
increases between two neighboring clusters, this conditional
probability in all clusters decreases to their basal levels of the
cluster proportions (Fig. 2i). The conditional probability in
Cluster II-1/2/3 quickly decreased within 2 μm distance whereas
those in Cluster I and III persisted up to 5 μm (Fig. 2i). These data
suggest that Clusters I and III aggregate and act more collectively
compared to Cluster II-1/2/3. In addition to PtK1 cells, we further
performed the same analysis on MCF10A, human mammary
epithelial cells. MCF10A also had very similar subcellular
protrusion phenotypes (Supplementary Fig. 4), suggesting that
the identified subcellular protrusion phenotypes by HACKS are
not limited to a specific cell line.

The visualization of the edge evolution (Fig. 2a), the cluster
assignments evolution (Fig. 2b), and the protrusion velocity map
(Fig. 2c) of the exemplified live cell movie representatively
manifested the morphodynamic features of each subcellular
protrusion phenotype (Supplementary Movie 1). Based on our
observation, Cluster I is named “fluctuating protrusion” because
of the irregularity of its velocity profiles. Since Cluster II-1/2/3
clearly exhibit periodic edge evolution, we refer to Cluster II-1/2/3
collectively as “periodic protrusion”. Notably, Cluster III shows

accelerating edge evolution, and, therefore, we refer to Cluster III
as “accelerating protrusion”.

Differential molecular dynamics of actin regulators. We
hypothesized that the distinctive subcellular protrusion pheno-
types arise from the differential spatiotemporal regulation of actin
regulators. Therefore, we next investigated the relationship
between the velocity profiles of each protrusion phenotype and
the fluctuation of the signal intensities of actin and several actin
regulators for each protrusion phenotype. We selected a set of
fluorescently tagged molecules to be expressed and monitored;
SNAP-tag-actin, HaloTag-Arp3 (tagged on the C-terminus),
which represented the Arp2/3 complex involved in actin
nucleation, and HaloTag-VASP or GFP-VASP, which repre-
sented actin elongation. A diffuse fluorescent marker, HaloTag
labeled with tetramethylrhodamine (TMR) ligands26, was used as
a control signal. The fluorescence intensities of each tagged
molecule were acquired from each probing window along with
the protrusion velocities (Fig. 1a). The time-series of the fluor-
escence intensities of each molecule were then grouped and
averaged according to the assigned protrusion phenotype (Figs. 1c
and 3b–e).

Whereas the molecular dynamics of actin, Arp3 and VASP all
exhibited patterns similar to those of the velocity profiles in
Clusters I and II-1 (Fig. 3b–d, Cluster I/II-1 each), the Arp3
temporal patterns became less correlated with those of protrusion
velocity in Cluster II-2 and II-3 as the frequency of the oscillation
increased (Fig. 3c, Cluster II-1/2/3). This demonstrates that
underlying molecular temporal patterns can be highly variable
depending on the dynamic properties of protrusion activities.
Intriguingly, Cluster III also exhibited distinctive molecular
dynamics in relation to velocity profiles (Fig. 3a–d, Cluster III
each). Whereas the protrusion velocity continued to increase until
the late stages of the protrusion segment in the accelerating
protrusion (Fig. 3a, Cluster III), the actin fluorescence intensity
soon reached its maximum in the early phase and remained
constant (Fig. 3b, Cluster III). This pattern indicates that edge
movement during accelerating protrusion is driven by the
elongation of existing actin filaments rather than de novo actin
nucleation. Conversely, Clusters I and II-1/2/3 exhibited
increased actin intensity at the leading edge along with increased
protrusion velocity (Fig. 3b, Cluster I, II-1/2/3), indicating that
actin nucleation mediates subcellular protrusion.

In accordance with the plateaued actin intensities in Cluster III
(Fig. 3b, Cluster III), the Arp3 intensity remained constant after
reaching its peak in the early protrusion phase (Fig. 3c, Cluster
III), whereas the VASP intensities began to increase at protrusion
onset and continued to increase (Fig. 3d, Cluster III). These
findings suggest that actin elongation by VASP plays a crucial role
in driving accelerating protrusion. Whereas the Arp2/3 complex
has been considered as a major actin nucleator that drives
lamellipodial protrusion27, the Arp2/3 complex seemed to play a

Fig. 2 Subcellular protrusion phenotypes revealed by a time series clustering analysis. a–c A representative cluster assignment on a time-lapse movie of a
PtK1 cell stained with CellMask DeepRed. Edge evolution on 5 s interval (a), cluster assignments of each probing window on every four frame (20 s
interval) (b), and the space-time maps of instantaneous edge velocity (c) of the entire cell edge and the indicated cluster regions. Scale bar: 10 μm. d Raw
velocity maps for Cluster I, II-1, II-2, II-3, and III. All time series are registered with respect to protrusion onset (t= 0). e Average time series of protrusion
velocity registered at protrusion onsets (t= 0) in each cluster. Solid lines indicate population averages. Shaded error bands indicate 95% confidence
intervals of the mean computed by bootstrap sampling. n indicates the number of time series in each cluster. The time lapse movies of 36 cells were used
in this analysis. f Proportions of each cluster in entire samples or individual cells expressing fluorescent actin, Arp3, VASP, and HaloTag, respectively. g
Decision graph of the density peak clustering analysis of protrusion velocities. h A t-SNE plot of the autocorrelation functions of protrusion velocity time
series overlaid with cluster assignments. i Spatial conditional distribution of each cluster. Solid lines indicate population averages. Shaded error bands
indicate 95% confidence intervals of the mean computed by bootstrap sampling
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role in the earlier part of the protrusion in accelerating
protrusion. Approximately 50 s after protrusion onset, the Arp3
intensity reached its peak (Fig. 3c, Cluster III), and the
acceleration temporarily stopped (Fig. 3a, Cluster III). Notably,
the Arp3 intensities began to increase approximately 50 s prior to
the protrusion onset in Cluster III (Fig. 3c, Cluster III), whereas
they began to increase at the onset of the protrusion in Clusters I
and II-1/2/3 (Fig. 3c, Cluster I, II-1/2/3). These findings imply
that there exists specific temporal coordination where the Arp2/3

complex nucleates actin networks in the early phase, and VASP
then elongates actin filaments to drive the later stages of
accelerating protrusion. The specificity of the relationship
between the protrusion phenotypes and the underlying molecular
dynamics was further validated with a control experiment using
HaloTag-TMR (Fig. 3e). Diffused cytoplasmic fluorescence did
not exhibit any cluster-specific pattern. Instead, it inversely
correlated with the protrusion velocity, suggesting that the cell
edges become thinner as the protrusion velocity increases13.
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Fig. 3 Distinctive actin regulator dynamics associated with subcellular protrusion phenotypes. a Ensemble averaged velocity time series of entire samples
and averaged velocity time series sampled in each cluster. All time series are registered with respect to protrusion onset (t= 0). b–e Ensemble averaged
normalized fluorescence intensity time series of entire samples and normalized fluorescence intensity time series in each cluster. All time series are
registered with respect to protrusion onset (t= 0). Solid lines indicate population averages. Shaded error bands indicate 95% confidence intervals of the
mean computed by bootstrap sampling. The dotted lines in b-e indicate protrusion velocity time series associated with the indicated fluorescent proteins. n
indicates the number of time series sampled in each cluster. The numbers of cells used for the analyses are 36 (a), 10 (b), 11 (c), 9 (d) and 6 (e)
respectively. The number of time series sampled and the number of cells imaged for each cluster is summarized in Supplementary Table 1
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Notably, the differential dynamics of Arp3 and VASP were not
observed when the entire time series data set was ensemble
averaged13 (Fig. 3c, d, ensemble average each). These results
demonstrate the power of our computational framework in
revealing the hidden differential subcellular dynamics of actin
regulators involved in the generation of heterogeneous morpho-
dynamic phenotypes.

VASP recruitment correlates with protrusion velocity. To
quantitatively assess the coordination between protrusion velo-
cities and the dynamics of actin regulators, we performed a time-
lag correlation analysis by calculating Pearson’s correlation
coefficients between protrusion velocities and actin regulator
intensities with varying time lags in the same windows and
averaged over different sampling windows (Fig. 1d). For actin and
Arp3, the significant but relatively weak correlations were iden-
tified between the protrusion velocities and the intensities in all
clusters (Fig. 4a, b). Conversely, the correlation of VASP in all
clusters was stronger, particularly the correlation in Cluster III
being the strongest in all clusters (Fig. 4c). Consistent with the
results of cytoplasmic dynamics (Fig. 3e), HaloTag-TMR inten-
sities were negatively correlated with protrusion velocities
(Fig. 4d). Furthermore, a comparison of the maximum correla-
tions in each cluster showed that VASP exhibited significantly
stronger correlations than the Arp2/3 complex in all clusters
(Fig. 4e, p-values in Supplementary Table 3, two-tailed
Kolmogorov–Smirnov (K–S) test). These findings suggest that
VASP may play a more direct role in mediating protrusion
velocities in all clusters than Arp2/3.

Although the above-described conventional time correlation
analysis effectively demonstrated the overall correlation between
molecular dynamics and the protrusion velocity, its ability to
reveal changes in this correlation over time as the protrusion
progresses is limited. In other words, the correlation between the
protrusion velocities and the fluorescence intensities for each
specific time point was not examined in the previous analyses
(Fig. 4a–d). Therefore, we performed sample-based correlation
analyses whereby calculating pairwise Pearson correlation
coefficients, cð Vf gti ; If gtjÞ, between the sample of the protrusion
velocity, Vf gti , at the registered time, ti, and the sample of the
actin regulator intensity If gtj , at the registered time,tj, over the
entire probing window population (Fig. 1e)13. Then, the statistical
significance of the correlations were tested by
Benjamini–Hochberg multiple testing28.

As expected, the pairwise time correlation analysis between the
actin intensities and protrusion velocities (Fig. 4f) further
supported the proposition that accelerating protrusions are
mediated by the elongation of pre-existing actin filaments,
whereas actin nucleation is responsible for non-accelerating
protrusions. The significant regions (the black boundaries in
Fig. 4f) of instantaneous positive correlations between the actin
intensities and protrusion velocities at the leading edge found in
Clusters I and II-1/2/3 (Fig. 4f, Cluster I, II-1/2/3) were absent in
Cluster III (Fig. 4f, Cluster III). Notably, the weak correlation for
actin in Cluster III found in the previous time lag correlation
analysis (Fig. 4a) is consistent with the result of this pairwise time
correlation analysis. This finding suggests that pairwise correla-
tions at specific time points more precisely reveal the various
aspects of the coordination between protrusion velocities and the
underlying molecular dynamics.

Intriguingly, we did not identify a similarly significant
instantaneous correlation between the protrusion velocity and
Arp3 in any cluster (Fig. 4g). Conversely, we identified a
significantly stronger instantaneous correlation between VASP
intensities and protrusion velocities in all clusters in the time-

specific correlation analysis (Fig. 4h). This is consistent with the
previous study such that the edge velocity and lamellipodial
VASP intensity were highly correlated when the leading edges of
B16 melanoma cells had a uniform rate of protrusion29; however
our study provided substantial quantitative evidence from the
samples exhibiting highly heterogeneous and non-stationary edge
movements. This further suggests that VASP compared to Arp2/3
plays a more direct role in controlling the protrusion velocity at
the leading edge in all protrusion clusters. In Cluster I and II-1/2/
3, VASP-dependent actin elongation tightly coordinates with
Arp2/3 complex-mediated actin nucleation because actin exhib-
ited a strong instantaneous correlation with protrusion velocity.
Conversely, the significant and strong instantaneous correlation
between VASP and the protrusion velocity in Cluster III begins to
appear 100 s after protrusion onset (Fig. 4h, Cluster III), along
with no correlation between actin and the protrusion velocity
(Fig. 4f, Cluster III). This suggests that actin elongation by VASP
plays a key role in the late phase of accelerating protrusion while
Arp2/3 still plays a role in the early phase (Fig. 4i, Supplementary
Note 2). We also demonstrated that VASP intensities contained
sufficient information to predict protrusion phenotypes by the
classification analysis (Fig. 4j, k, Supplementary Note 3).

Notably, both the strong correlation between VASP and the
protrusion velocity observed in all clusters and the postulated
mode of VASP in regulating accelerating protrusions suggest that
VASP plays a more critical role in generating differential
protrusion phenotypes. The differences in how VASP and
Arp2/3 polymerize actin further validate our interpretation.
VASP facilitates actin filament elongation by binding to the
barbed ends of actin filaments at the leading edge30–32, whereas
Arp2/3 binds to the sides of the mother filaments and initiates
actin nucleation. Thus, the ability of Arp2/3 to directly control
barbed end elongation is limited33. Because actin elongation at
the barbed end pushes the plasma membrane and generates
protrusion velocity, the strong correlation between VASP activity
and protrusion velocity at the leading edge is plausible.

Deconvolution of heterogeneous drug responses in protrusion.
Our statistical analyses thus far suggest that the early recruitment
of Arp2/3 at the leading edge leads to VASP recruitment to
barbed ends of actin filaments, giving rise to accelerating cell
protrusion. Since Arp2/3 was implicated in the early phase of
accelerating protrusion, we treated PtK1 cells with an Arp2/3-
specific inhibitor, CK66634 (50 μM) to validate the functional role
of Arp2/3. Notably, CK666-treated cells still exhibited highly
active protrusion activities with 50 μM concentration, and they
were visually indistinguishable from the control cells treated with
the inactive compound, CK689. After pooling CK666 and CK689
data together, we performed the time series clustering analysis.
CK666 and CK689-treated cells still exhibited similar temporal
patterns in all clusters (Fig. 5f, Supplementary Fig. 6, Supple-
mentary Movie 2 and 3), even if the protrusion velocities in
Cluster I, II-1, and III were modestly reduced by CK666 (Fig. 5f,
Cluster I/II-1/III). The t-SNE visualization of the ACFs of all
protrusion time series revealed that CK666 (Fig. 5b) affected two
densely populated areas in the control (CK689) cells (the dotted
circles in Fig. 5a, b), and overlaying the cluster assignment in
these t-SNE plots revealed that Cluster III was reduced by CK666
(Fig. 5c, d). The quantification of the proportion of each cluster
confirmed that Cluster III was significantly reduced by the CK666
treatment (Fig. 5e, p= 0.0059, bootstrap sampling). In turn, this
led to the significant increase of Cluster II-1 (Fig. 5e, p= 0.0001,
bootstrap sampling). Intriguingly, the other clusters were not
significantly affected by CK666, suggesting that the reduced
Arp2/3 activities could be compensated by other actin
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regulators35. These results verify that Arp2/3 plays a specific
functional role in accelerating protrusion. Furthermore, these
demonstrate that our HACKS framework enables us to identify
the susceptible clusters, which respond specifically to pharma-
cological perturbations.

Next, to validate the functional role of VASP in accelerating
protrusion (Cluster III), we treated PtK1 cells with low
concentrations (50 and 100 nM) of Cytochalasin D (CyD) to
displace VASP from the barbed ends of actin filaments36–39.
Using immunofluorescence, we confirmed that the CyD
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treatment effectively removed the phosphorylated VASP, which is
a functional form of VASP, from the lamellipodial leading edge of
PtK1 cells (Supplementary Fig. 7). Consistent with our previous
correlation analyses where VASP intensities correlated with
protrusion velocities in all clusters, the time series clustering
analysis using the pooled DMSO and CyD (50, 100 nM) data
revealed that protrusion velocities in all protrusion clusters in the
CyD-treated cells were significantly reduced in a dose-dependent
manner in comparison to DMSO-treated cells (Fig. 6d, Supple-
mentary Fig. 8, Supplementary Movies 4–6). Nonetheless, the
CyD-treated cells retained similar clustering structures, demon-
strating the specificity of the CyD treatment in these low
concentrations. The t-SNE plots of ACFs of each velocity time
series also revealed that two dense areas were affected by the CyD
treatment (the dotted circles in Fig. 6a), which includes the region
of Cluster III (Fig. 6b). The proportion of Cluster III was
significantly but modestly reduced by the CyD treatment (Fig. 6c,
p= 0.043 for 50 nM, 0.018 for 100 nM, bootstrap sampling).

We observed CyD treatment tended to reduce the overall
protrusion velocities. Therefore, we visualized the data distribu-
tions using t-SNE with denoised protrusion velocities instead of
ACFs to further investigate the effects of CyD on Cluster III in
terms of regulation of protrusion velocity. This t-SNE analysis
revealed high-density regions of the subcellular protrusion
velocities which are highly susceptible to the CyD and CK666
treatment (the dotted circles in Fig. 7a, b). Overlaying the cluster
assignments in these t-SNE plots showed that Cluster III
contained a substantial portion of the CyD and CK666-
susceptible regions (Supplementary Fig. 9a). Notably, the t-SNE
plots of Cluster III of the control cells (Supplementary Fig. 9b)
suggest that Cluster III can be largely grouped into two, which
may have differential susceptibilities to CyD and CK666.
Therefore, we further divided Cluster III into two sub-clusters
(Fig. 7c, d) based on denoised protrusion velocities pooled from
CyD and CK666 data sets by a community detection algorithm40

(Supplementary Fig. 9c–e). While both Cluster III-1 and III-2
(Fig. 7g, h) maintained similar temporal patterns, Cluster III-2
had substantially stronger accelerating activities compared to
Cluster III-1 (Fig. 7g, DMSO (Cluster III-1)/DMSO (Cluster III-
2) and Fig. 7h, CK689 (Cluster III-1)/CK689 (Cluster III-2)).
Intriguingly, the t-SNE plots revealed that "strongly accelerating
protrusion" (Cluster III-2) was preferentially affected by the CyD
(Fig. 7c) and CK666 (Fig. 7d) treatment. The quantification of the
proportion of these sub-clusters (Fig. 7e, f) confirmed that
strongly accelerating protrusion (Cluster III-2) was significantly
reduced by the CyD treatment in comparison to DMSO
treatment in a dose-dependent manner (p= 0.024 for 50 nM,
<0.0001 for 100 nM, bootstrap sampling) (Fig. 7e, Cluster III-2),
whereas the weakly accelerating protrusion (Cluster III-1) was
increased (p= 0.006 for 100 nM, bootstrap sampling) (Fig. 7e,

Cluster III-1). Therefore, the average protrusion velocities in
Cluster III in CyD treatment were significantly reduced to be
comparable to Cluster III-1 in DMSO treatment and was
significantly lower than Cluster III-2 (Fig. 7g). Consistently, the
proportion of strongly accelerating protrusion (Cluster III-2) was
significantly reduced by the CK666 treatment (Fig. 7f, p= 0.0026,
bootstrap sampling) and the average velocities of Cluster III in
CK666 treatment were also reduced to those of weakly
accelerating protrusion (Cluster III-1) in CK689 treatment
(Fig. 7h). These data demonstrate HACKS allowed us to
successfully identify the drug-susceptible sub-phenotypes, where
strongly accelerating protrusion is specifically affected by
inhibition of Arp2/3 or VASP.

Next, we further investigated whether dynamics of VASP and
Arp3 in accelerating protrusion is differentially regulated between
Cluster III-1 and Cluster III-2. We divided the intensity time
series of VASP and Arp3 in Cluster III (Fig. 7j, l) into two sub-
clusters and compared their differential dynamics. The recruit-
ment dynamics of VASP in Cluster III-2 exhibited strong
increase, while that of Cluster III-1 exhibited only moderate
elevation, which is within the 95% confidence interval of the
mean (Fig. 7j). On the other hand, Arp3 intensity patterns in
Cluster III-1 and 2 were almost identical (Fig. 7l). This is
consistent with our notion that Arp2/3 is involved in initiating
accelerating protrusion and VASP is important in the output of
accelerating protrusion. To functionally confirm this, we
compared Arp3-GFP fluorescence dynamics at the leading edges
in each cluster with or without 100 nM CyD treatment (Fig. 7m,
n, Supplementary Fig. 10). To this end, we normalized Arp3
intensities at the leading edge by those of the lamella region in the
same cell to quantitatively compare the Arp3 accumulation in
different experimental condition. Under CyD treatment, the Arp3
fluorescence normalized by lamella intensity still started to
increase at the protrusion onset in Cluster III (Fig. 7n). Normal-
ized Arp3 fluorescence continued to increase up to four-fold
more than the DMSO control while the protrusion velocity did
not increase (Fig. 7m). First, this suggests that CyD treatment did
not affect the initial Arp2/3 recruitment to the leading edge in
accelerating protrusion, which proposes that Arp2/3 precedes
VASP in accelerating protrusion. In addition, these data show
that even increasing Arp2/3 recruitment under CyD treatment
could not produce strongly accelerating protrusion without VASP
activity. Therefore, the temporally ordered coordination between
Arp2/3 and VASP is crucial to the strongly accelerating
protrusion. Notably, such molecular temporal coordination was
reported to be involved in cell protrusion12,13,41,42. Particularly,
PI3K has been known to increase after protrusion onset to
stabilize nascent cell protrusion41. Taken together, our HACKS
framework combined with pharmacological perturbations effec-
tively demonstrated that heterogeneous edge movements could be

Fig. 4 Correlation and classification analyses between protrusion velocity and actin regulator dynamics. a–d Time-lag correlation analysis based on
Pearson’s cross-correlation of edge velocity and actin (a), Arp3 (b), VASP (c), and HaloTag (d). Solid lines indicate population averages. Shaded error
bands indicate 95% confidence intervals of the mean computed by bootstrap sampling. The number of samples used for the analysis is identical from
Fig.3b–e. e Comparison and statistical testing of maximum correlation coefficients from a–d in each cluster. The error bar indicates 95% confidence interval
of the mean by bootstrapping. **p < 0.01, ***p < 0.001 and ****p < 0.0001 indicate the statistical significance by two-tailed two-sample
Kolmogorov–Smirnov (KS) test. The p-values are listed in Supplementary Table 3. f–h Time-specific correlation analysis based on pairwise Pearson’s
correlation coefficients of protrusion velocity and fluorescence intensity time series registered relative to protrusion onset. The regions surrounded by the
black lines are statistically significant correlation by Benjamini-Hochberg multiple hypothesis testing. i Pearson’s correlation coefficients between early
Arp3 intensities and late protrusion velocities in each cluster. The error bar indicates 95% confidence interval of the mean by bootstrapping. The numbers
of samples in this analysis are 204 (Cluster I), 112 (Cluster II-1), 161 (Cluster II-2), 178 (Cluster II-3) and 102 (Cluster III) respectively. j–k Classification
analysis of Cluster III against Clusters I/II based on fluorescent intensity time series. Boxplots of the accuracy (j) and Matthews correlation coefficients (k)
represent multiple classification results. RF stands for Random Forest, DNN for Deep Neural Network, and SVM for Support Vector Machine. The central
line indicates median, and both edges of the box each represent 25th and 75th percentiles. The numbers of samples used in these analyses are 934 (actin),
757 (Arp3) and 682 (VASP) respectively
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deconvolved into variable protrusion phenotypes to reveal the
underlying differential regulation of actin molecular dynamics.
We also successfully demonstrated that we could monitor the
changes in actin regulator dynamics induced by functional
perturbation.

Discussion
We have demonstrated that our computational framework
HACKS could effectively deconvolve heterogeneous subcellular
protrusion activities into distinct protrusion phenotypes, establish
an association between the each protrusion phenotype and the
underlying differential actin regulator dynamics, and reveal spe-
cific phenotypes susceptible to pharmacological perturbations.
Although previous studies have examined the spatiotemporal
patterning of cell edge dynamics11,43–45, our study is the first to
propose an effective framework to analyze the temporal hetero-
geneity in protrusion activities at the subcellular level and identify
the subcellular protrusion phenotype. Together with the func-
tional assays, we identified “strongly accelerating protrusion”

susceptible to the pharmacological perturbations. Although pre-
vious studies also described persistent protrusion based on pro-
trusion distance on longer time scales11,13,37,46, we first dissected
protrusion phenotypes at fine spatiotemporal scales and quanti-
tatively characterized persistently “accelerating protrusion”.
Intriguingly, accelerating protrusion was later shown to be
regulated by distinct actin regulator dynamics, although they
accounted for a minor portion of the entire sampled protrusions.
This finding indicates that identifying even a small subset of
phenotypes is crucial to fully understand the mechanism under-
lying heterogeneous cellular behaviors.

We were also able to quantitatively measure how the under-
lying molecular dynamics are coordinated with protrusion phe-
notypes, thereby revealing the hidden variability of molecular
regulatory mechanisms. Elucidating exact regulatory mechanisms
related to protrusion heterogeneity has been difficult partly
because it remains challenging to experimentally perturb a subset
of molecules involved with specific subcellular phenotypes in situ.
To address this challenge, our framework employed highly
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population averages. Shaded error bands indicate 95% confidence intervals of the mean computed by bootstrap sampling. n and n' indicate the number of
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specific computational analyses. The result of our analyses pro-
vided quantitative and detailed information about the differential
coordination between molecular dynamics and the protrusion
phenotype at the subcellular level.

We also demonstrated that we could deconvolve the hetero-
geneity of drug responses of cellular protrusions using our
HACKS framework by mapping protrusion time-series to two-
dimensional phenotypic space using t-SNE and our time series
clustering results. This approach revealed the protrusion pheno-
types susceptible to pharmacological perturbations and func-
tionally validated our hypothesis drawn from the statistical
analysis: the temporally ordered coordination between Arp2/3
and VASP drives the accelerating protrusion. To date, the Arp2/3
complex has been widely accepted as a master organizer of
branched actin networks in lamellipodia that acts by nucleating
actin filaments27, whereas VASP has been thought to be an
elongator of actin filaments or anti-capper of the barbed
ends30,31,35,47. In this study, we focused on the distinct recruit-
ment dynamics of Arp3 and VASP identified in the accelerating
protrusion phenotype (Cluster III). This suggested that Arp2/3-
dependent actin nucleation provides a branched structural
foundation for protrusion activity, and VASP-mediated actin
elongation subsequently takes over to persistently accelerate
protrusions. Our functional studies using CK666 and Cytocha-
lasin D confirmed that this coordination is critical to strongly

accelerating cell protrusion and the recruitment timing and
duration of Arp3 and VASP is finely regulated to generate dif-
ferential protrusion activities. Notably, VASP was reported to
increase cell protrusion activities37,38,46, and has been implicated
in cancer invasion and migration37,48,49. Thus, the coordination
of Arp2/3 and VASP may regulate the plasticity of protrusion
phenotypes, and the functional deregulation of VASP or its iso-
forms in cancer may promote cellular migratory behaviors by
promoting accelerating protrusion.

Furthermore, we consider HACKS is not limited to the ana-
lyses of subcellular protrusion heterogeneity: we anticipate that it
can be expanded to study the morphodynamic heterogeneity of
other types of cytoskeletal structures and membrane-bound
organelles. Together with the further development of unsu-
pervised learning along with an increased repertoire of molecular
dynamics, we expect our machine learning framework to accel-
erate the mechanistic understanding of heterogeneous cellular
and subcellular behaviors.

Methods
Local sampling and event registration. Using a custom-built software pack-
age11,13 written in MATLAB (MathWorks, MA, USA), we performed the following
computational procedures. The threshold-based method was used to segment cell
edges in the fluorescence images, and the cell edge velocity was calculated by
tracking the cell edges using a mechanical model11. The software generated probing
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windows whose initial size was 500 nm by 500 nm along the cell boundary to
locally sample the protrusion velocity and fluorescence intensity. The number of
probing windows then maintained constant throughout the movie. The local
protrusion velocity and fluorescence intensity were quantified by averaging the
values within probing windows. By repeating this procedure in each frame of the
time-lapse movies, we acquired the time series of protrusion velocities and fluor-
escence intensities.

We then identified significant protrusion events on a per-window basis. To
reduce the effects of random fluctuations in the protrusion velocity time series, we

obtained an edge displacement time series for a particular window by integrating
the protrusion velocity over time. The noise of the time series was removed with a
smoothing spline filter using the Matlab function csaps() with a smoothing
parameter of 0.01. The small protrusion and retraction events considered
insignificant in terms of the overall cell edge movement were further eliminated as
follows. First, we identified local maxima/minima (protrusion/retraction onsets) at
the edge displacement time series using the Matlab function findpeaks() and
calculated the net protrusion/retraction distances for each event. A previous study
using the same PtK1 cells showed that the distribution of distances could be
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decomposed into two exponential distributions, indicating small fluctuations and
large movement during protrusion and retraction events13. Thus, small events
whose protrusion distances were less than 720 nm (10 pixels in length) were
discarded from the analysis. In addition, we eliminated short-term switches
between the protrusion and retraction phases within 50 s. After these insignificant
events were removed, the remaining protrusion onsets were used for event
registration.

The protrusion velocity and fluorescence intensities over time in individual
windows were registered by aligning the protrusion onset at t= 0. After the
registration, the negative time indicates the retraction phase, and the positive time
indicates the protrusion phase. Time series in negative time were limited by the
preceding protrusion onset, and time series in positive time were limited by the
subsequent retraction onset.

Treating missing values. Because of image noise, the software could produce
abnormal data in a rare case. In this case, the values should be discarded from the
time series. The following strategy was applied to treat these missing values: the
entire time series was discarded if the number of continuous missing values was
longer than eight. Otherwise, the average value of four values before and after the
missing value was used to estimate the missing value.

De-noising the samples by EMD. For each registered time series, the edge dis-
placement was calculated from the edge velocity using the Matlab function trapz().
EMD21 was then applied to the transformed protrusion edge displacement to
remove noise. Then, the denoised velocity was calculated from the denoised dis-
placement using the Matlab function diff().

Cell edge movement is highly non-stationary. EMD21 is a local and data-driven
de-noising method to decompose non-stationary signals into a series of intrinsic
components. The general procedure of EMD can be described as follows:

(1) Identify all minima and maxima of distance time series, d(t);
(2) Connect the local maxima and minima respectively using an interpolation

method to generate the envelope, e(t);
(3) Compute the average of envelopes, avg tð Þ ¼ ½emin tð Þ þ emaxðtÞ�=2;
(4) Eliminate the average signal of the envelope from d(t) to obtain the residue:

m tð Þ ¼ d tð Þ � avg tð Þ;
(5) Iterate from step (1) to (4) on the residue m(t) until the avg(t) becomes zero.

After EMD, the original signals can be decomposed into intrinsic mode
functions without any loss of information, and the residue is called the trend. For
each component, a de-trended fluctuation analysis is used to measure the self-
affinity as the fractal scaling index (α), which estimates the fractal-like
autocorrelation properties. The value of α is inversely related with the possibility
that the component is originated from noise. In our procedure, the code was
obtained from the previous publication50, and the value of α was empirically
set to 0.33.

Determining the time interval for the clustering analysis. The duration of cell
protrusion is heterogeneous, and some protrusion events are not completely
recorded because of the finite length of the movies. Our clustering analysis focused
on the time series with equal temporal length. Therefore, the time series shorter
than a certain temporal length were discarded from the analysis. We estimated the
optimal temporal length by maximizing the multiplication of the number of
samples and the temporal length. By optimizing these two factors, the best tem-
poral length was approximately 50 and more than 60% of the time series was
retained for the further analysis. Moreover, five frames before the protrusion onset
were also included for the further analysis. Therefore, the time series for the
analysis consisted of 56 frames including the previous five frames before the
protrusion onset and 51 frames after the protrusion onset.

Representing the velocity by SAX. In order to extract the relevant features
related to shape patterns of time series in high dimensions, we applied SAX51 to
our time series dataset to reduce dimensionality and discretize the data. The
general procedure of SAX is summarized as follows:

(1) Manually determine the reduced dimension, N, and the symbolic number, M
(the number of discretization levels).

(2) The time series data across the entire time range are pooled together and
fitted to a Gaussian distribution. Then the entire time series were dis-
cretized into M levels with equal probabilities using the fitted Gaussian
distribution. Each level was represented by a pre-defined symbol.

(3) The time series was divided into N intervals along the time. The average
value was calculated in each interval to represent the raw time series.

(4) The pre-defined symbols obtained in (2) were assigned to each interval based
on the averge value calculated in (3).

(5) Iterate from step (2) to (4) until all samples are represented.

After the SAX representation, all time series data were reduced to low-
dimensional (N) symbolic series data. In this analysis, M was set to four and N was
set to 16. Here, four symbols that range from zero to three were used to calculate

the autocorrelation coefficients. In addition, the symbolic representation process in
SAX also removed noise due to local averaging effects.

Calculating the sample dissimilarity. To measure the dissimilarity of two time
series, the original description of SAX representation proposed an approximate
Euclidean distance of SAX as a dissimilarity measure22. Instead, we used the dis-
similarity measure based on the estimated ACFs52. First, the estimated auto-
correlation vector was calculated, and the squared Euclidean distance between the
autocorrelation coefficients was then used to measure the dissimilarity of two
velocity time series X and Y as follows:

d2ACFðX;YÞ ¼
XL
i¼1

ðACFðXÞi � ACFðYÞiÞ2:

In our implementation, the ACF distance was calculated using the TSdist R
package53. In order to evaluate the requirement of the ACF distance in our
clustering analysis, we compared the clustering performance using different
dissimilarity measures in Supplementary Fig. 1.

Clustering the velocities by Density Peak. After we calculated the pairwise
dissimilarity of the time series, we performed a clustering analysis using the
Density Peak clustering algorithm23. It is desirable that cluster centers have local
density maxima and are separated from other dense regions in feature space. Based
on this notion, Density Peak can generate a density–distance map that can be used
to determine the optimal number of clusters and cluster centers. In addition,
Density Peak can build up hierarchical tree structures of clusters by linking the
samples with higher density but lower distance. Based on the selected number of
clusters and cluster centers, the samples in the hierarchical tree can be divided into
several clusters.

The procedure to generate the density–distance map was as follows: Each
sample was represented by two parameters: local density and minimum distance.
The local density of each sample was estimated by the crowdedness of samples in
its neighboring region. The minimum distance was the distance of the closest
samples with higher density. By plotting these two parameters in two dimensions,
we built up the density–distance map. Based on the definition, the samples with a
high density and distant from other samples with higher density were localized in
the upper-right region of the density–distance map. Therefore, the sparse samples
in the upper-right region were selected as cluster centers visually, and the number
of these cluster centers were determined as the number of clusters. Finally, the
hierarchical tree was divided into several disconnected sub-trees as clusters.

In our implementation, the density around each sample was determined by
calculating the sum of distances with the Gaussian Kernel of the manually selected
radius as follows:

ρ Sið Þ ¼
XN

k¼1;i≠k

eð�
d Si ;Skð Þ

dc Þ2

Here, dc was selected by a grid search method of the range of the sample
dissimilarity to get the good performance of density–distance map. The number of
clusters was manually selected by the visual inspection of the density–distance map.
Moreover, in order to further confirm the number of clusters suggested by
the density–distance map, we also applied three criteria: DBI, Average Silhouette
and Calinski–Harabasz pseudo F-statistic to evaluate the number of clusters
implemented in ClusterSim Package54.

Validating clustering results. We used the following methods to validate our
clustering results.

Ordered dissimilarity map: The distances between samples within the same
clusters should be smaller than those between samples in different clusters.
Therefore, after the samples were grouped by cluster indices and ordered by
dissimilarity, the distance map can be visualized as blocks along the diagonal. In
addition, this method is particularly suitable for Density Peak clustering because
the required input of the density peak clustering method is a dissimilarity matrix.

MDS: Classical MDS55 is a method to visualize the similarity of individual
samples in a data set based on the distance dissimilarity matrix. The MDS
algorithm aims to place each sample in a lower dimensional space under the
constraint that the between-sample distances are preserved as much as possible.
Here, we used the Matlab function, cmdscale().

t-SNE: t-SNE (t-distribution Stochastic Neighboring Embedding)56 is an
advanced dimensionality reduction technique and particularly suitable for
the visualization of high-dimensional datasets. In t-SNE, the probability
distribution of paried samples in original high-dimensional spaces is constructed to
represent the similarity between the samples. Then, t-SNE attempts to find the
similar distribution of paired samples in the low-dimensional space by minimizing
the Kullback-Leibler (K-L) divergence between these two distributions. Here, the
parameters (final dimension, initial-dimension, perplexity) of t-SNE were (2, 10,
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20), meaning that the data set was first reduced to ten dimensions and then
mapped to two dimensions by optimizing the K–L divergences.

Silhouette plot: Silhouette plots57 were used to validate the consistency within
clustered data. For each sample i, a(i) represents the average dissimilarity within
the same cluster, whereas b(i) represents the lowest dissimilarity with the sample
from any other clusters. The silhouette value of the sample i, is calculated as
follows:

s ið Þ ¼ b ið Þ � aðiÞ
maxðb ið Þ; a ið ÞÞ :

The range of s(i) is [−1,1], and larger values indicate better clustering
performance.

Normalizing Actin, Arp2/3, and VASP fluorescence signals. Because differ-
ences in the expression levels of fluorescent proteins and their endogenous non-
fluorescent proteins are not known, we cannot average the registered time series of
raw fluorescence intensity. Moreover, we aimed to determine the recruitment
pattern for a fluorescent protein independent of the absolute level. Therefore,
before a protrusion event was registered, we separately normalized the intensity
time series of each window by min-max scaling as follows:

Inorm w; tð Þ ¼ I w; tð Þ �min I w; tð Þð Þ
maxðI w; tð ÞÞ �minðI w; tð ÞÞ � 1000:

Correlation analysis. The time lag correlation analysis between two time series as
a function of time lag is used to discover the temporal relationship12. Pearson’s
correlation coefficients were calculated using the time series of only protrusion
segments (after protrusion onsets). The 95% confidence intervals for the average
correlation were calculated by bootstrap resampling (Matlab function bootci()).

The time-specific correlation analysis between two activities (velocity and
regulator intensity) is used to exploit their temporal variation13. After the
protrusion velocity and fluorescence intensities were registered with respect to
protrusion onset at t= 0, Pearson’s correlation coefficients (Matlab function
corrcoef()) between the fluorescence intensity at t1 and protrusion velocity at t2
across the samples were calculated across the time points, where t1 and t2 were
measured relative to the protrusion onset. Two sample K–S
(Kolmogorov–Smirnov) test was used to test the significance of the maximum
correlation value in time lag correlation and Benjamini–Hochberg procedure for
controlling the false discovery rate (FDR) was used to show the significance of the
time-specific correlation.

Clustering analysis of drug-treatment data. When we compared the proportions
of each cluster with and without drug treatment, we pooled the registered pro-
trusion velocity time series from the control and drug-treated experiments to
maintain the same cluster boundaries, and then applied our time series clustering
to them under the same clustering criteria. For DMSO/CyD treatment, the para-
meter of Density Peak cluster was 0.71. For CK689/CK666 treatment, the para-
meter of Density Peak cluster was 0.46.

For the GFP-Arp2/3 experiments, where we compared the temporal patterns in
the similar clusters, we applied our time series clustering to the control and CyD
treatment experiment individually. The parameters of Density Peak cluster were
both 0.71.

Identification of the drug-sensitive phenotypes. We pooled the control and
drug-treatment data and visualized the data distribution of denoised velocity time
series using t-SNE56. The initial dimension and the perplexity of the t-SNE were 30
and 50. Using the t-SNE plots, we visually identified the drug-susceptible regions
where the data from the drug treatment were depleted in comparison to the
control. By overlaying the cluster assignments, we identified which clusters were
mainly affected by the drug treatment. We extracted the data belonging to these
drug-susceptible clusters and applied community detection method40 to identify
the sub-clusters. Then we merged these sub-clusters into two clusters based on the
magnitude of the average velocity. In addition, the boundaries of the drug-
susceptible regions were considered to finalize the sub-cluster structure. Finally, the
cluster proportions with and without drug treatment were compared to validate the
drug-sensitive phenotype.

Statistical testing of the proportions of drug-sensitive phenotypes. We
quantified the drug effect based on the cluster proportion. We counted the number
of each cluster in each cell for the control and drug treatment experiments. These
numbers in each cell were resampled using bootstrp() in MATLAB to build 10,000
different bootstrapped data set, and the distribution of the proportion of each
cluster in each experimental set was created. Using these distributions, p-values
were calculated by estimating the probability that the cluster proportion of one
experiment was greater or less than that of the other experiment (one-tailed test).
The 95% confidence intervals of the proportions were estimated by the Matlab
bootci() function.

Spatial distribution of subcellular protrusion clusters. We calculated the con-
ditional probability that the samples within the same cluster co-existed over the
distance as follows. In each iteration, we randomly selected eight movies from the
total 36 movies and then sampled 40 frames in each movie. For a certain distance
or window gaps, k, we calculated the five-by-five occurrence matrices, Mkðcli; cljÞ
for different pairs, cli; clj of five clusters without considering the direction along cell
edges. Based on the occurrence matrix, we calculated the conditional probability of
each cluster pair for different window gaps as follows.

pk clijclj
� �

¼ Mkðcli; cljÞP
cli
Mk cli; clj

� � ; cli; clj ¼ 1; ¼ ; 5:

We averaged the conditional probability pk clijclj
� �

with 500 iterations and the
95% confidence intervals of the mean was estimated by bootstrapping (bootci() in

Matlab).

Evaluating different time series clustering methods. To show the effectiveness
of our time series clustering, three main components, SAX for dimensional
reduction, ACF for dissimilarity measure and Density Peak for clustering, were
evaluated by replacing them with different methods as follows.

(1) Evaluating the role of SAX: Without SAX, ACF was directly applied to the
denoised velocity data set to calculate the ACF distances, implemented in the
TSdist R package53. The Density Peak method was then used for clustering
with the cut-off distance parameter, 0.61. Community detection was used for
clustering with the number of neighbors, 80.

(2) Evaluating the role of ACF distance: The dissimilarity measure was changed
from the ACF distance to the distance metric proposed by SAX, which was
the lower bound of the true Euclidean distance51. Here, eight was empirically
selected as the number of symbols for SAX, and eight symbols ranging from
0 to 7 were used to calculate the dissimilarity. The cut-off distance of the
Density Peak clustering was 0.46.

(3) Evaluating the role of the combination of SAX and ACF: Without
dimensional reduction by SAX, the denoised velocity data set was directly
used to calculate the dissimilarity using the Euclidean distance from the
TSdist R package. The Density Peak method was then used for clustering,
and the cut-off distance for the Density Peak method was 0.46.

(4) Evaluating the role of Density Peak clustering: Instead of Density Peak
clustering, a conventional clustering method, k-means, and community
detection were used for comparison while all other steps remained
unchanged. Since the number of clusters for k-means should be determined
first, two criteria DBI24 and Silhouette criteria57 were used to identify the
number of clusters. In our analysis, the number of clusters for k-means was
set to the optimal number K= 7. Community detection was also applied for
comparison using the number of neighbors, 300 or 350 to generate six or five
clusters respectively.

Classification analyses of actin regulator intensities. To further investigate the
role of VASP in accelerating cell protrusions, we applied the classification approach
to the fluorescence intensity time series with their corresponding protrusion
clusters. For this purpose, we focused on the classification between the non-
accelerating protrusion class (Clusters I/II) and accelerating protrusion class
(Cluster III). First, the fluorescence intensity time series was normalized to have a
mean of zero and a standard deviation of one for each window. We used three
different classification algorithms to measure the performance of the classification,
including random forest (RF)58, support vector machine (SVM)59, and deep neural
networks (DNN)60. The inputs of the classifiers were the normalized fluorescence
intensities of selected frame intervals based on protrusion onset previously, and the
output was the corresponding protrusion class (non-accelerating vs accelerating
protrusion). The supervised learning was performed using the Python Scikit-Learn
toolkit for RF and SVM61 and Keras with Theano engines in Python for DNN.
Because the number of time series in the non-accelerating protrusion class
(Clusters I/II) was larger than those of the time series in the accelerating protrusion
class (Cluster III), we under-sampled the accelerating protrusion class so that the
number of data points in two classes had the same. For reproducible results,
random under-sampling was applied ten times to the non-accelerating protrusion
class using the Imbalanced-learn package62. Cross-validation was performed with
67 and 33% splitting of each sample data set for training and testing. Moreover, the
cross-validations were repeated ten times after randomly shuffling the data in each
iteration. Hence, we performed the training procedures for each fluorescence
intensity data set for 100 times. To assess the performance of the classification, we
used accuracy (Nc/N), where N is the number of total time series and Nc is the
number of the correctly predicted time series, and Matthews correlation coefficient
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(MCC) defined as:

NtpNtn � NfpNfnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNtp þ NfpÞðNtp þ NfnÞðNtn þ NfpÞðNtn þ NfnÞ

q :

Here, Ntp, Ntn, Nfp, and Nfn are the numbers of true positives, true negatives,
false positives and false negatives, respectively. The accuracy and MCC were
calculated using the Python Scikit-Learn toolkit, where the parameters used in
three classifiers are shown in Supplementary Table 5, which were determined by a
grid search approach.

Normalizing GFP-Arp2/3 fluorescence signals. In order to quantitatively
compare the fluorescence intensity of GFP-Arp2/3 between DMSO and CyD-
treated cells, we normalized the Arp3 intensity time series in each cell as follows to
make sure that the normalized intensities of protrusion onset in these two
cases were similar. In each cell, we manually selected the lamella regions, which did
not contain bright fluorescence spots. Then, we calculated the average fluorescent
intensity, Ila in these regions. We also selected background region outside the cell
and the average background intensity, Ib was calculated. Finally, we calculated the
GFP-Arp2/3 fluorescent normalized intensity value, Inorm from the raw intensity, I
in each cell as Inorm ¼ ðI � IbÞ=ðIla � IbÞ.

General statistical methods. The sample size was determined as follows. We
generally used more than 100 probing windows from multiple cells (see individual
figures or figure legends). The number of the probing windows was determined to
be sufficient when the averaged time series displayed a distinct pattern with var-
iations that substantially exceeded the 95% confidence interval.

Inclusion/exclusion of samples was determined as follows. We visually
examined cellular morphology, the level of protein expression, and the number of
nuclei in each cell movie. We performed our analysis using the cells with a flat,
minimally ruffling morphology and wide leading edges, low expression level of
fluorescent proteins, and single nucleus. At this stage, we did not know the cluster
distribution along the cell edges and how the protein dynamics would behave.
Thus, this data selection can be assumed unbiased for the presented analyses.

Justification of statistical tests: we used two-sample K-S (Kolmogorov–Smirnov)
test implemented with the Matlab function kstest2() for statistical testing. The K-S
test does not assume the distribution of the data. The variances of the data between
groups were similar (See each figure). For multiple hypothesis testing in time-
specific correlation analysis, Benjamini-Hochberg procedure for controlling the
FDR was used to provide stronger control of the family-wise error rate. The 95%
confidence interval of the velocity and normalized intensity was calculated using
the bootstrap Matlab function bootci(), and the number of bootstrap samples was
set to 1000.

Cell culture and drug treatment. Cell culture and live cell imaging procedures
were followed according to the previous studies13. All imaging was performed in
imaging medium (Leibovitz’s L-15 without phenol red, Invitrogen) supplemented
with 10% fetal bovine serum (FBS), 0.1 mg ml−1 streptomycin, 100 Uml−1 peni-
cillin, 0.45% glucose, 1.0 Uml−1 Oxyrase (Oxyrase Inc.) and 10 mM Lactate. Cells
were then imaged at 5 s intervals for 1000 s using a 60 × , 1.4 NA Plan Apochromat
objective for spinning disk confocal microscopy.

PtK1 cells were cultured in Ham’s F12 medium (Invitrogen) supplemented with
10% FBS, 0.1 mg ml−1 streptomycin, and 100 Uml−1 penicillin. For the
characterization of actin regulator dynamics (Figs. 2 and 3), cells were transfected
with one of the DNA constructs including HaloTag-VASP (N-term), HaloTag-
Arp3 (C-term), SNAP-tag-Actin, and empty HaloTag by electroporation using
Neon transfection system (Invitrogen) according to the manufacturer’s instructions
(1 pulse, 1400 V, 20 ms) and were grown on acid-washed glass #1.5 coverslips for
2 days before imaging. Prior to imaging, expressed HaloTag or SNAP-tag fusion
proteins were labeled with HaloTag-TMR ligand (Promega) or SNAP-tag-TMR
(New England BioLabs) ligand according to the manufacturer’s instructions.
PtK1 cells were acquired from Gaudenz Danuser lab. They were routinely tested for
mycoplasma contamination.

MCF10A cells were cultured in low‐glucose DMEM:Ham’s F12 nutrient media
supplemented with 5% horse serum, 10 mM HEPES pH 7.4, and a growth factor
cocktail including 20 ng ml−1 EGF, 10 μg ml−1 insulin, 0.5 μg ml−1 hydrocortisone,
and 100 ng ml−1 cholera toxin. Cells were grown on 27-mm glass bottom dishes
(Thermo Scientific, cat. #150682) for 2 days. Cells were serum starved for 24 h and
stimulated with growth media containing 10% horse serum before imaging. For
plasma membrane staining, cells were incubated with 5 μg ml−1 CellMask Orange
(Invitrogen) for 5 min followed by manufacturer’s protocol. MCF10A cells were
acquired from Joan Brugge lab. They were routinely tested for mycoplasma
contamination.

For the drug treatment experiments (Figs. 5–7), PtK1 cells were grown on 27-
mm glass bottom dishes (Thermo Scientific, cat. #150682.) for 2 days and stained
with 5 μg ml−1 CellMask Deep Red (Invitrogen) following manufacturer’s protocol.
GFP-Arp3 expressing PtK1 cells were further selected by G418 before imaging. For
Arp2/3 inhibition experiments, cells were incubated with 50 μM of CK666 or

CK689 (EMD Millipore) for an hour before imaging. For Cytochalasin D
experiments, cells were incubated with DMSO or Cytochalasin D (Sigma) for half
an hour before imaging.

Light microscopy. All microscopy was performed using the set up as follows:
Nikon Ti-E inverted motorized microscope (including motorized focus, objective
nosepiece, fluorescence filter turret, and condenser turret) with integrated Perfect
Focus System, Nikon Plan Apo 1.4 NA DIC optics (60×), Yokogawa CSU-X1
spinning disk confocal head with manual emission filter wheel with Spectral
Applied Research Borealis modification, Spectral Applied Research custom laser
merge module (LMM-7) with AOTF and solid state 445 nm (200 mW), 488 nm
(200 mW), 514 nm (150 mW), 561 nm (200 mW), and 637 nm (140 mW) lasers,
Semrock 405/488/561/647 and 442/514/647 dichroic mirrors, Ludl encoded XY
stage, Ludl piezo Z sample holder for high speed optical sectioning, Prior fast
transmitted and epi-fluorescence light path shutters, Hamamatsu Flash 4.0 LT
sCMOS camera, 37 °C microscope incubator enclosure with 5% CO2 delivery (In
Vivo), Molecular Devices MetaMorph v7.7, TMC vibration-isolation table.

Immunofluorescence. PtK1 cells were seeded on cover slips coated with poly-D-
lysine. Prior to fixation, cells were incubated with 100 nM DMSO or Cytochalasin
D for 30 min. After drug treatment, cells were fixed with 4% paraformaldehyde in
PBS, permeabilized by incubation with 0.1% Triton X-100 in PBS, and subse-
quently blocked with 1% BSA in PBS for 1 h. To verify the cellular localization of p-
VASP and F-actin, cells were incubated with mouse anti-p-VASP antibody (Santa
Cruz, sc-365564) and Alexa Fluor 647 Phalloidin (ThermoFisher, A22287) 1 h in
the dark. The cells were washed with PBS for three times and incubated with anti-
mouse Alexa Fluor 488 (Invitrogen) for 1 h in the dark. The Ptk1 cells were
subsequently washed with PBS for three times and mounted with Gold antifade
reagent (Invitrogen). Imaging was performed using the same spinning disk con-
focal microscope.

Plasmid construction. Mouse VASP was subcloned into pFN21A vector (Pro-
mega) containing an N-terminal fusion to HaloTag. Human Arp3 was subcloned
into the pFC14K vector (Promega) containing a C-terminal fusion to HaloTag
according to the manufacturer’s instructions. A SNAP-tag-actin in C1-vector with
a truncated CMV promoter (kindly provided by Martin Schwartz) was used. GFP-
Arp3 was a gift from Matthew Welch (Addgene plasmid # 8462).

Code availability. The code used in the current study is available from the cor-
responding author upon reasonable request.

Data availability. The data sets used in the current study are available from the
corresponding author on reasonable request.
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