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Abstract: Karst areas are typical ecologically fragile areas, and stony desertification has become
the most serious ecological and economic problems in these areas worldwide as well as a source
of disasters and poverty. A reasonable sampling scale is of great importance for research on soil
science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and
its influencing factors in karst areas are studied at different sampling scales using a grid sampling
method based on geographic information system (GIS) technology and geo-statistics. The rock
exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was
utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m,
750 m × 750 m, and 900 m × 900 m) were used as the subsample sets. The results show that the rock
exposure does not vary substantially from one sampling scale to another, while the average values of
the five subsamples all fluctuate around the average value of the entire set. As the sampling scale
increases, the maximum value and the average value of the rock exposure gradually decrease, and
there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas
of minor stony desertification, medium stony desertification, and major stony desertification in the
Houzhai River Basin are 7.81 km2, 4.50 km2, and 1.87 km2, respectively. The spatial variability of
stony desertification at small scales is influenced by many factors, and the variability at medium
scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial
variability of stony desertification is mainly influenced by soil thickness and rock content.

Keywords: different sampling scales; spatial distribution; stony desertification characteristics; karst;
small watershed

1. Introduction

Soil is a continuum with uneven changes, and soil properties present obvious spatial variability [1].
The foundation of soil science research is to obtain detailed and accurate spatial distribution
information on soil properties [2]. The sampling scale has a decisive influence on the acquisition
accuracy and quantitative expression of soil properties and spatial variability information [3].
Theoretically, the narrower the sampling scale, the lower the prediction error of an interpolation.
If sampling is oversized, it is difficult to guarantee interpolation accuracy [4]. However, excessively
high sampling density will require more manpower, material resources, financial resources and long
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work cycles [5]. How to determine a reasonable sampling density during regional research on soil
science is a key and difficult point of the present research on soil science [6]. Different sampling
scales lead to different characteristics, including different influencing factors and different evolution
mechanisms and processes [7]. Therefore, the key influencing factors can be reliably revealed only if
the sampling scale is in line with the intrinsic scale of the phenomenon to be studied. In karst areas,
the earth surface is greatly uneven, the landscape is fragmented, and the key influencing factors vary
with sampling scale.

The concept of stony desertification was first proposed in the early 1980s, and later, it was defined
as a term representing the process of the transition from vegetation-covered and soil-covered karst
areas to karst landscapes covered by bare rocks [8]. Karst areas in China are typical ecologically fragile
areas, and the problem of stony desertification has become the most serious ecological and economic
problem as well as a source of disasters and poverty in the area [9]. According to the experience in
treating typical stony desertification areas, the treatment requires guidance on the driving mechanisms
and theories at different spatial scales [10]. For example, a great number of studies regarding soil
organic carbon at different scales and in different landforms have been conducted over the past several
decades [11]. However, the results of these studies differ significantly from each other. For instance,
the reported global soil organic carbon storage ranged from 504 Pg to 3000 Pg with a mean value
of 1460.5 Pg. One of the main reasons for this variation is the high spatial variability in the organic
carbon content of soils, which is caused by various landforms and complicated changing geological
conditions [12]. In particular, it is necessary to determine the positive and negative impacts of natural
and human effects on the progress of stony desertification as well as their respective contribution
rates [13]. Therefore, the distribution characteristics of stony desertification and their relations with
environmental factors on different sampling scales are of great importance for the understanding of
the progress of a karst ecosystem and have received widespread attention [14]. At present, the majority
of studies on the spatial distribution of stony desertification are limited to single factors and the spatial
correlation [15,16]. There are very few comprehensive and systematic quantitative analyses of the
impacts of various factors on the spatial distribution of stony desertification, and there are even fewer
studies on problems about differences in scale. In this paper, GIS and geo-statistics are combined to
reveal patterns of the spatial distribution characteristics of stony desertification at different sampling
scales. Multiple stepwise regression and Pearson correlation analysis are used to explore the key
influencing factors of stony desertification characteristics on non-sampling scales. These methods
are aimed at revealing the determinants of the spatial distribution of stony desertification and the
differences among different scales, and the results provide references for the treatment of stony
desertification in karst areas.

2. Materials and Methods

2.1. Study Area

The study region (105◦40′43′′–105◦48′2′′ E, 26◦12′29′′–26◦17′15′′ N) is located in Puding County
in the central part of Guizhou Province in southwestern China [17], including the three towns of
Chengguan (CG), Maguan (MG) and Baiyan (BY), and it covers an area of 75 km2. The elevation is
between 1223.4 and 1567.4 m.a.s.l., and the air pressure is between 806.1 and 883.8 hpa. There are
three major categories of soil: limestone soil, paddy soil and yellow soil. A total of 92.78% of the
available flatlands (excluding construction land and watersheds) is used for cropland, and only 3.49%
of flatlands are left as various forestland and grassland. The other 3.73% of flatlands consist of
uncultivated land. A total of 42.13% of lands on mountains consist of cropland, and 44.95% of lands on
mountains are left for various forestland and grassland. A total of 12.95% of lands on mountains consist
of uncultivated land due to severe environmental conditions and poor geographical characteristics.
The vegetation mainly includes Cupressus funebris Endl., Populus adenopoda Maxim, Toona sinensis
(A. Juss.) Roem., Pyrus pyrifolia Burm Nakai., Catalpa bungei C. A. Mey., Pinus massoniana Lamb., and
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Pyracantha fortuneana (Maxim.) Li. The main crops are Oryzasativa Oryzaglaberrima, Zea mays Linn.
Sp., Glycine max (Linn.) Merr, and Helianthus annuus. There are 7 soil types in the study area: Xan
Udic Fernalisols, Black Lithomorphic Isohumisols, Cab Udi Orthic Entisols, Cab High-fertility Orthic
Anthrosols, Cab Low-fertility Orthic Anthrosols, Cab Medium-fertility Orthic Anthrosols, and Fec
Hydragric Anthrosols.

2.2. Data Source

Sampling plots were designed with a grid-based sampling method, and there was a total of 2755
sampling grids (150 m × 150 m) consisting of 22,057 soil samples. The sampling depth is 100 cm.
The sampling sites were defined as the center of each sampling grid (Figure 1). The soil samples
were air dried, ground and prepared for analysis as required by the laboratory. Rock exposures were
measured by linear interception using tape in the field. Rock exposure was assessed by the average
percentage of rock occupied in 10 m distance, and the texts were repeated for four times in east, west,
north and south direction, respectively.

Figure 1. The location of Houzhai River basin and the distribution of sample sites.

2.3. Classification of Different Grid Scales

The grid scale determines the density and sampling point data. To study the impacts of different
sampling scales on the revelation of spatial variability of soil organic carbon, ArcGIS software is
adopted to extract cells from the 2755 grids at 150 m × 150 m to obtain 802 grids of 300 m × 300 m;
then, these grids were classified into six grid scales: 150 m × 150 m, 300 m × 300 m, 450 m × 450 m,
600 m × 600 m, 750 m × 750 m and 900 m × 900 m (Figure 2). At the same time, to ensure the
reliability of the conclusions and reduce the unreliability resulting from repeated sampling, subsets of
five samples were selected without replacement.
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Figure 2. Plots of soil sample distribution under different sampling scales.

2.4. Calculations and Statistical Analysis

Classical statistical methods can be used to describe some overall characteristics of the coverage
of rock exposures (CRE), but they are unable to characterize its spatial variability. Therefore, this study
used a geostatistical method to quantify the constitutive properties and randomness of the CRE to
analyze the patterns of spatial variation in the CRE more accurately [18].

A semivariance function (h) was used to describe the spatial heterogeneity of the soil properties.
The semivariance function was used to obtain the variation in the semivariance function value with an
increase in the distance of the sample; the scatter plots were fitted with a Gaussian model and other
theoretical models. When the soil properties met a two-order stationary assumption and the intrinsic
hypothesis and when the sample size was large enough, the semivariance theory variation function (h)
formula was used. The semivariance (r(h)) is as follows [19]:

r(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)− Z(xi + h)]2, (1)

where Z is the measured soil property, x is the sample location, and N(h) is the number of pairs
of locations separated by a lag distance h. The semivariogram expresses the relationship between
the semivariance and the lag distance (h). The semivariogram typically increases from a value at
h = 0 (identified as the nugget) to a maximum value (identified as the sill), which is created using
ArcGIS software. The rock exposure of the spatial distribution pattern was determined using a kriging
interpolation method with a spatial interpolation grid.

Statistical analyses were performed using SPSS18.0 (SPSS Inc., IBM Corporation, Chicago, IL,
USA) and Excel2007 (Office 2007, Redmond, WA, USA). A semivariogram model, fitted with GS 9.0+
software (Gamma Design Software, GS + 9.0, LLC Plainwell, MI, USA), was used for ordinary kriging
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interpolation in ArcGIS 9.3 software (ESRI, ArcGIS 9.3, Redlands, CA, USA), rendering a rock exposure
spatial distribution map.

3. Results and Analysis

3.1. Descriptive Statistics for the Coverage of Rock Exposures at Different Sampling Scales

Table 1 provides the statistics on the CRE at different sampling scales. The statistics reveal a wide
gap between the maximum and minimum CRE in the Houzhai River basin, which are 95.00% and
0.00%, respectively. The CRE varied slightly with the sampling scale. The 150 m × 150 m scale has the
highest average CRE at 15.94%, while the 900 m × 900 m scale had the lowest average CRE at 9.89%.
The former is 1.62 times greater than the latter. As the sampling scale increases, the maximum and
average values of CRE gradually decrease while the coefficient of variation increases.

Table 1. Description and statistics of rock exposures under different sampling scales.

Sampling
Scales

Sample
Size Minimum Maximum Mean Standard

Deviation
Coefficient
of Variation Skewness Kurtosis

150 m × 150 m 2755 0.00 95.00 15.94 22.29 139.84 1.33 0.79
300 m × 300 m 802 0.00 92.00 12.89 21.42 166.18 1.90 1.69
450 m × 450 m 357 0.00 88.00 12.18 20.71 170.03 1.35 0.78
600 m × 600 m 200 0.00 85.00 11.97 20.51 171.35 1.99 1.71
750 m × 750 m 128 0.00 75.00 10.22 17.52 171.43 2.29 1.72
900 m × 900 m 91 0.00 73.00 9.89 19.55 197.67 2.52 1.83

The coefficient of variation (CV) is a measure of dispersion of the distribution of a random variable,
i.e., the extent of spatial variability in an attribute indicator. Normally, CV values no greater than
10% indicate low variability, CV values between 10% and 100% indicate moderate variability, and CV
values greater than 100% signify high variability. The CV in the CRE across the Houzhai River basin
ranges from 139.84% to 197.67% (Table 1), suggesting high CRE variability at various sampling scales.
This result indicates that the coverage of rock exposures exhibits significant spatial variation within the
study area. The average CRE values for the five subsamples fluctuate around the average CRE for each
sample set, indicating that the statistical characteristics of the subsamples are consistent with those of
the sample and, thus, are representative despite the small number of sampling points in each sample.
The CV in CRE first increases and then decreases with increasing sampling scale. Moreover, the CRE is
normally distributed in each sample set and all subsamples in terms of both skewness and kurtosis.

3.2. Semivariograms Describing the Coverage of Rock Exposures at Different Sampling Scales

The CRE data obtained at different sampling scales were fitted with semivariograms using GS+7.0
Software (Table 2). As seen in Table 2, the CRE values across the study area follow an exponential
distribution at different sampling scales. The 150 m × 150 m sample set was used as the reference, and
the semivariograms for the five sample subsets were then compared against the semivariogram for
the sample set. It was found that the codomain of CRE decreases steadily with increasing sampling
scale. This result is possible because a larger sampling scale is associated with a smaller number of
samples and thus lower levels of uniformity in the indicators considered. The nugget effect (C0) is
usually used to measure the variation due to experimental error and negative deviation from actual
sampling scale, i.e., spatial heterogeneity caused by random factors. Table 2 shows that the C0 peaks
in the 150 m × 150 m sample set and declines with increasing sampling scale. This result indicates
that the amount of variation caused by random factors tends to decrease as the sample scale increases,
possibly because a decrease in sampling scale will increase the number of random factors involved
and the complexity of the causes of variability, and thus, more secondary causes will be neglected.
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Table 2. Semi-variance model of rock exposures and its fitting parameters under different sampling scales.

Sampling Scales Model Type Nugget (C0) Sill (C0 + C) Range/m C0/C0 + C R2 RMSE

150 m × 150 m Index 0.088 0.172 2960 0.512 0.848 0.673
300 m × 300 m Index 0.076 0.152 2350 0.500 0.831 0.612
450 m × 450 m Index 0.068 0.272 2630 0.250 0.772 0.478
600 m × 600 m Index 0.062 0.243 2140 0.255 0.636 0.281
750 m × 750 m Index 0.043 0.196 1970 0.219 0.779 0.222
900 m × 900 m Index 0.041 0.187 1860 0.219 0.782 0.228

The nugget coefficient of the semivariogram, which is defined as C0/C0 + C, is 0.512 for the
150 m × 150 m sample set and 0.500 for the 300 m× 300 m sample set. The nugget coefficient is smaller
than 0.5 at the scale of 450 m × 450 m, and it begins to decrease as the sampling scale further increases.
This result suggests a strong spatial dependence of CRE at sampling scales greater than 450 m × 450 m.
This result is possible because the spatial dependence caused by structural and random factors at small
scales is covered by that at larger scales. Therefore, an increase in sampling scale can strengthen the
effects of structural factors and thereby lead to variability in spatial patterns within a certain region.

3.3. Spatial Characteristics of Rocky Desertification in a Small Catchment Area in Karst

Based on the spatial characteristics of the coverage of bedrock exposures in the Houzhai River
basin and methods of rocky desertification classification provided by previous research [20], this study
classifies the extent of rocky desertification in this area into the following grades: (1) non-karst region
(NSD) unaffected by rocky desertification: coverage of bedrock exposures < 20%; (2) potential rocky
desertification (PSD): 20% ≤ coverage of bedrock exposures < 30%; (3) light rocky desertification
(LSD): 30% ≤ coverage of bedrock exposures < 50%; (4) moderate rocky desertification (MSD):
50% ≤ coverage of bedrock exposures < 70%; and (5) severe rocky desertification (HSD): 70% ≤
coverage of bedrock exposures < 90%. The data from the present study show that at the scale of
150 m × 150 m, slight, moderate, and severe rocky desertification cover areas of 7.81 km2, 4.50 km2,
and 1.87 km2, respectively, in the Houzhai River basin.

Rocky desertification in the study area is distributed primarily in the peak-cluster depressions
from the northwest to the southeast. As the sampling scale increases, the distribution of severe rocky
desertification varies significantly in the southeastern region, while the distribution of moderate rocky
desertification varies little (shown in Figure 3). The northern and central parts of the study area
exhibit extensive rocky desertification shrinkage, while the coverage of rocky desertification decreases
sporadically in the northern part. The expansion of severe rocky desertification is concentrated in the
Yuyangzhai and Dayouzhai villages in the southeast and the Chenqi, Houshan, and Zhaojiatian villages
in the north. The trend in the extent of rocky desertification with the number of samples can better
characterize the actual evolution of rocky desertification. All variations in the rocky desertification of
different grades found in the study area are driven by a combination of natural and human factors.
The factors affecting rocky desertification vary with sampling scale. Therefore, determining the
different driving factors behind the variations can facilitate more reasonable sampling in research on
rocky desertification.
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Figure 3. Spatial distribution of rocky desertification under different sampling scales:
(a) 150 m × 150 m sampling scale; (b) 300 m × 300 m sampling scale; (c) 450 m × 450 m sampling scale;
(d) 600 m × 600 m sampling scale; (e) 750 m × 750 m sampling scale; (f) 900 m × 900 m sampling scale.
NSD is non-karst region; PSD is potential rocky desertification; LSD is slight rocky desertification; MSD
is moderate rocky desertification; HSD is severe rocky desertification.

3.4. Factors Affecting the Characteristics of Rocky Desertification at Different Sampling Scales

As the grade of rocky desertification depends on the CRE, this study uses the factors affecting the
CRE to characterize the factors affecting rocky desertification (Table 3). A Pearson correlation analysis
shows that at the scale of 150 m × 150 m, the CRE has extremely significant and positive correlations
with slope and elevation (p < 0.01), and the correlation coefficients are 0.893 and 0.991, respectively.
The correlation with soil thickness is extremely significant and negative (p < 0.01), and the correlation
coefficient is −0.913. A significantly positive correlation exists between the CRE and slope position
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(p < 0.05), and the correlation coefficient is 0.480. The correlations between the CRE and soil bulk
density and rock content were not significant (p > 0.05). At the scale of 300 m × 300 m, the CRE has a
significantly negative correlation with soil thickness (r = −0.732) (p < 0.05) and significantly positive
correlations with elevation (r = 0.512) and rock content (r = 0.610) (p < 0.05). The correlations with
slope (r = 0.721) and slope position (r = 0.913) are extremely significant and positive (p < 0.01). There is
no obvious correlation between CRE and soil bulk density. At the scale of 450 m × 450 m, the CRE has
extremely significant and positive correlations with slope, elevation, rock content, and slope position
(p < 0.01, r = 0.763, 0.813, 0.913, and 0.680, respectively). At the scale of 600 m × 600 m, the CRE shows
an extremely significant and positive correlation with rock content (p < 0.01, r = 0.684). The CRE
has significant, positive correlations with slope and slope position (p < 0.05), and the correlation
coefficients are 0.503 and 0.406, respectively. There is no significant correlation between the CRE and
other factors. At the scale of 750 m× 750 m, the CRE is positively and significantly correlated with rock
content and slope position (p < 0.05), and the correlation coefficients are 0.780 and 0.741, respectively.
At the scale of 900 m × 900 m, the CRE has an extremely significant and negative correlation with soil
thickness (p < 0.01, r = −0.637) and a strong positive correlation with slope position (p < 0.05), and the
correlation coefficient is 0.501.

Table 3. Correlation matrix of rock exposures and its influencing factors under different sampling scales.

Sampling Scale Slope Elevation Soil Thickness Soil Bulk Density Rock Content Slope Position

150 m × 150 m 0.893 ** 0.991 ** −0.913 ** −0.862 0.510 0.480 *
300 m × 300 m 0.721 ** 0.512 * −0.732 * −0.602 0.610 * 0.913 **
450 m × 450 m 0.763 ** 0.813 ** 0.416 0.402 0.913 ** 0.680 **
600 m × 600 m 0.503 * 0.453 0.436 0.436 0.684 ** 0.406 *
750 m × 750 m 0.421 0.112 0.462 0.302 0.780 * 0.741 *
900 m × 900 m 0.689 0.363 −0.637 ** 0.412 0.496 0.501*

** Indicates that the correlation is significant when the confidence level (double measure) is 0.01; * the correlation is
significant when the confidence level (double measure) is 0.05.

The regression equations fitted to the CRE data are shown in Table 4. The values of the coefficient
of determination (R2) reveal that the distribution of soil bulk density has the poorest fit at all sampling
scales, which indicates a relatively weak correlation between soil bulk density and the CRE. As the
scale increases, the distributions of topographic factors (elevation and slope) and rock content improve
in the goodness of fit to the CRE. Overall, an increase in the sampling scale improves the goodness
of fit of the equations. The data obtained at a large scale (e.g., 900 m × 900 m) can describe the
relationships between CRE and the factors more accurately, while the data acquired at a small
scale (e.g., 150 m × 150 m) is less able to reflect their relationships due to the influence of complex
microtopography. Therefore, decreasing the sampling scale may decrease the goodness of fit between
the CRE and various influencing factors.

It is clear from the aforementioned findings that the key driving factors behind the spatial
variability in the CRE differ depending on the sampling scale. At small scales (150 m × 150 m,
300 m × 300 m and 450 m × 450 m), the spatial variations in the CRE are affected by a combination
of slope, elevation, soil thickness, and the CRE. At a medium scale (600 m × 600 m), the spatial
variations in the CRE depend on slope, rock content, and CRE. At large scales (750 m × 750 m and
900 m × 900 m), soil thickness and the CRE are the key factors influencing the variability in the CRE.
As the sampling scale increases, the structural features attributed to the concentration of multiple
complex factors over short distances are hidden by the factors that affect CRE over longer distances,
such as soil thickness and the CRE. This result explains why the topographic factors that have relatively
stable and continuous distributions (soil thickness and the CRE) show stronger correlations with the
CRE at large scales.
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Table 4. Optimal fitted equations of factors influencing rock exposures at different sampling scales.

Sampling Scale Index The Optimal Fitted Equation for Rock Exposures R2

150 m × 150 m

Slope y = 0.0112x + 12.539 0.263
Elevation y = 0.166x + 1288.201 0.287

Soil thickness y = 0.0212x + 11.592 0.272
Soil bulk density y = −0.0255Ln(x) + 1.1502 0.011

Slope position y = 0.1x2 + 0.031x + 9.358 0.382
Rock content y = 1.3256Ln(x) − 1.4693 0.369

300 m × 300 m

Slope y = 0.0194x + 22.384 0.343
Altitude y = 0.0194x + 1425.084 0.298

Soil thickness y = 0.0194x + 15.084 0.349
Soil bulk density y = 1.2081Ln(x) + 11.31 0.017

Slope position y = 0.2x2 + 0.0048x + 5.695 0.439
Rock content y = 1.2682Ln(x) − 12.225 0.428

450 m × 450 m

Slope y = 0.0231x + 10.148 0.391
Altitude y = −2.3608x + 1314.8 0.317

Soil thickness y = −0.0216x + 17.978 0.361
Soil bulk density y = 1.3498Ln(x) + 12.466 0.018

Slope position y = 0.2x2 − 0.1014x + 0.2054 0.463
Rock content y = −3.2414Ln(x) + 21.321 0.474

600 m × 600 m

Slope y = 0.0182x + 24.713 0.412
Altitude y = 0.131x + 1001.571 0.331

Soil thickness y = 43.525 − 0.950x + 0.105x2 0.372
Soil bulk density y = 1.2014Ln(x) + 13.823 0.020

Slope position y = 0.0003x2 + 0.0681x + 15.567 0.514
Rock content y = 1.0924Ln(x) + 21.854 0.548

750 m × 750 m

Slope y = 0.1313x + 23.153 0.497
Altitude y = 0.101x + 1033.201 0.395

Soil thickness y = −0.1625x + 65.293 0.619
Soil bulk density y = 3.1781Ln(x) + 15.597 0.022

Slope position y = 0.002x2 − 0.0855x + 16.946 0.587
Rock content y = 0.1313x + 22.053 0.649

900 m × 900 m

Slope y = 0.2669x − 0.0397 0.516
Altitude y = 0.136x + 1083.201 0.491

Soil thickness y = 0.1325x + 24.78 0.673
Soil bulk density y = 0.9136Ln(x) + 21.2 0.029

Slope position y = 0.0023x2 − 0.1766x + 17.997 0.645
Rock content y = 0.8333Ln(x) + 21.429 0.703

4. Discussion

4.1. Relations between Sampling Scale and Stony Desertification

In general, there are two kinds of understandings about study scales: one is to conduct studies at
multiple scales within a fixed study area by encrypting or broadening the sample number, and the
other is to conduct studies at multiple scales by changing the study areas from small to large. The two
methods reveal different factors or processes and have different characteristics [21]. In some studies on
the effects of soil attributes at multiple scales the first method has been utilized. However, the majority
of researchers have utilized the second method. They study the sampling scale affect by expanding
the study area. This method put emphasis on deduction based on results of studies at different
area, and tries to reveal the relationship between sampling scale and study area [22–24]. The second
method cannot meet the demands of multiscale studies within a fixed area to reflect the global scope.
Then, a scale can only reflect the information of local soil characteristics within the sampling range,
and it is unable to describe global soil characteristics at different sampling scales [25]. However,
it is inevitable that changes to scale will lead to fluctuations in variability, resulting in deviations
between apparent variations and real variations [26]. In particular, the karst areas cannot reflect the
factors that influence stony desertification areas very well [27]. In view of this, small watersheds were
taken as the objects and the study were carried out in an approximately 75 km2 area in this study.
The first method can more effectively reflect soil information on different scales within the entire basin.
With a comprehensive grid sampling method being used in the basin, a comparison was made among
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different sampling scales that are evenly distributed throughout the basin, which effectively avoids the
overgeneralization of the results from studies at small and medium scales.

Karst stony desertification is one of the main types of land desertification [28]. Karst stony
desertification occurs in fragile ecological environments and is driven by extremely unreasonable
human activities [29,30]. The degradation of land productivity is the essence and the appearance of
similar desert landscapes is the symbol of stony desertification [31]. The interference of unreasonable
human activities exacerbates the evolution and progress of landscape fragmentation in karst landscapes
that are characterized by stony desertification. Therefore, accurately reflecting the spatial distribution
patterns of stony desertification areas plays an important role in research on stony desertification [32].
To better describe the spatial variability, it is of practical significance to accurately visualize the
relations between spatial distribution and sampling scale in stony desertification areas [33]. The spatial
distribution characteristics of stony desertification in the Houzhai River Basin are closely related to
the topography and geomorphology of the watershed, of which there are mainly peaks and low-lying
lands in the east, mountains in the north, south and southwest, and mainly plains dotted with a few
hills in the middle and west. Corresponding to the topographical and geomorphologic features, stony
desertification in this watershed is mainly concentrated in the peaks and low-lying lands in the east,
the mountainous areas in the north, south and southwest, as well as the buttes in the middle and west.

4.2. Influencing Factors of Stony Desertification at Different Sampling Scales

The results show that with the increase in the study scale, the spatial correlation of rock exposure
changes from moderate to strong; at the same time, in studies at large scales, the correlations between
the gradient, elevation and gradient position and the rock exposure are weakened, and rock contents
and soil thickness become the key factors influencing stony desertification in studies at large scales.
This conclusion has been widely recognized by other experts, and Wang Dian Jie et al. also believe that
different topographic factors act on different scales and the impacts of gradient and elevation are mainly
manifested at small and medium studies [34]. With the increase in the study scale, the correlation
between rock contents and soil properties is more significant. Chen Shengzi et al. believe that the scale
variance at large scales increases with fluctuations as the scale increases, and at this moment, stochastic
effects have no obvious influences on soil properties [35].

The gradient and rock exposure of Houzhai River Basin increase with the rise in elevation, while
the soil thickness decreases accordingly. It is well known that geographical and climatic conditions
at high elevations are poor and not usually suitable for plant growth. However, due to the lack of
arable lands, soil at high elevations in the basin is still used for food production, which eventually
aggravates the evolution of stony desertification in karst areas. Through a comprehensive analysis, it
was found that the gradient, rock exposure, and soil thickness were the main factors that determined
the degree of stony desertification [36]. Stony desertification is a serious problem in the Houzhai River
Basin. Gradient and elevation are important factors that lead to soil erosion and stony desertification.
The larger the gradient, the more serious the soil erosion caused by overland runoff, thus resulting
in stony desertification. As the elevation increases, the environmental conditions become worse,
including increases in the gradient and reductions in soil thickness. The vegetation condition becomes
worse, and the soil and water conservation capacities at high elevations are relatively weak. In addition,
in this study, it is also discovered that the key factors influencing the spatial variability of rock exposure
vary with sampling scale. At small scales, the rock exposure is influenced by many factors; at medium
scales, it is influenced by gradient, rock contents and rock exposure; and at large scales, the soil
thickness and rock exposure are the key factors that influence the spatial variability of rock exposure.

5. Conclusions

In this paper, there were some differences in assessment of rock exposure at different scales.
The average rock exposure is 15.94% at the scale of 150 m × 150 m, which is the largest, and the
average rock exposure is 9.89% at the scale of 900 m × 900 m, which is the smallest. With the increase
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in sampling scale, the maximum value and the average value of rock exposure decreased gradually
while the coefficient of variability increased. At the scale of 150 m × 150 m, the areas of minor stony
desertification, medium stony desertification and major stony desertification in the Houzhai River
Basin are 7.81 km2, 4.50 km2, and 1.87 km2, respectively. The key factors influencing the spatial
variability of rock exposure vary with sampling scale. At small scales (150 m × 150 m, 300 m × 300 m,
and 450 m × 450 m), the spatial variability of rock exposure is influenced by gradient, elevation,
and soil thickness; at medium scales (600 m × 600 m), it is impacted by gradient and soil gravel
content; and at large scales (750 m × 750 m and 900 m × 900 m), soil thickness is the key factor
influencing the variability of rock exposure. There is about 22.0 million km2 of earth surface belonging
to the karst landform. This study will present a scientific reference in accurate determination of
sampling scale in karst areas.
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