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Abstract

Recent studies have found an association between functional variants in TREM2 and PLD3 and 

Alzheimer’s disease (AD), but their effect on cognitive function is unknown. We examined the 

effect of these variants on cognitive function in 1,449 participants from the Wisconsin Registry for 

Alzheimer’s Prevention, a longitudinal study of initially asymptomatic adults, age 36–73 at 

baseline, enriched for a parental history of AD. A comprehensive cognitive test battery was 

performed at up to five visits. A factor analysis resulted in six cognitive factors that were 
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standardized into z scores (~N [0, 1]); the mean of these z scores was also calculated. In linear 

mixed models adjusted for age, gender, practice effects, and self-reported race/ethnicity, PLD3 
V232M carriers had significantly lower mean z scores (p=0.02), and lower z scores for Story 

Recall (p=0.04), Visual Learning & Memory (p=0.049), and Speed & Flexibility (p=0.02) than 

non-carriers. TREM2 R47H carriers had marginally lower z scores for Speed & Flexibility 

(p=0.06). In conclusion, a functional variant in PLD3 was associated with significantly lower 

cognitive function in individuals carrying the variant than in non-carriers.
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1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia, accounting for 60–80% of 

dementia cases. Over 5 million Americans have AD and that number is expected to increase 

to nearly 14 million by 2050 due to the projected increase in the number of older Americans 

(Alzheimer’s Association, 2016). AD is the sixth leading cause of death in the United States 

and the only of the top ten causes of death with no way to prevent, cure, or impede its 

progression (Alzheimer’s Association, 2013). There are currently few known risk factors 

that are highly predictive of AD. Individuals with a family history of AD are known to be at 

increased risk for developing the disease, and the ε4 allele of the apolipoprotein E gene 

(APOE) is also a well-established risk factor. Carrying one copy of the APOE ε4 allele 

results in a three-fold higher risk of developing AD than those with two copies of the more 

common ε3 allele, and those with two copies of the ε4 allele have an 8- to 12-fold higher 

risk (Holtzman, et al., 2012, Loy, et al., 2014).

Recent genome-wide association studies (GWAS) have identified 19 additional genetic 

regions that are associated with AD (Lambert, et al., 2013, Naj, et al., 2011). While 

potentially important for risk prediction, the genetic variants in these regions are of unknown 

function and have modest odds ratios (OR) ranging from 1.1 to 1.2 per risk allele. Moreover, 

these variants together explain a relatively small portion of the full genetic contribution to 

AD (Ridge, et al., 2013). GWAS have typically focused on common genetic variants, with 

minor allele frequencies ≥5%, as these were historically the types of variants included on 

genome-wide chips. However, recent sequencing studies have identified three functional low 

frequency (minor allele frequency 0.5–5%) variants with a more substantial effect (OR of 

approximately 2–5) on risk for AD: R47H in the triggering receptor expressed on myeloid 

cells 2 gene (TREM2) [(Guerreiro, et al., 2012);(Jonsson, et al., 2012)], and V232M and 

A442A (splice site variant) in the phospholipase D family, member 3 gene (PLD3) 

(Cruchaga, et al., 2013). We sought to examine the effect of these variants on cognitive 

performance in a longitudinal study of middle-aged adults who were cognitively healthy at 

enrollment and enriched for a parental history of AD.
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2. Methods

2.1. Study population

Study participants were from the Wisconsin Registry for Alzheimer’s Prevention (WRAP), a 

longitudinal study of initially asymptomatic adults, age 36–73 at baseline, that allows for the 

enrollment of siblings and is enriched for a parental history of AD (i.e., a biological parent 

with either autopsy-confirmed AD, probable AD as defined by NINCDS-ADRDA research 

criteria (McKhann, et al., 1984), or dementia due to AD based on the Dementia 

Questionnaire (DQ) (Ellis, et al., 1998)). Details of the study design and methods have been 

previously described (Engelman, et al., 2014, La Rue, et al., 2008, Sager, et al., 2005). 

Baseline recruitment began in 2001 with initial follow up after four years and subsequent 

ongoing follow up every two years or until a participant receives a clinical diagnosis of AD, 

at which point they are no longer followed. Data from up to five study visits were available 

for the current analyses. A total of 1,449 WRAP participants had genotypic data for the low 

frequency variants analyzed in the current study. This study was conducted with the approval 

of the University of Wisconsin Institutional Review Board and all subjects provided signed 

informed consent before participation.

2.2. Neuropsychological assessment

The WRAP cognitive test battery assesses many domains and has been previously described 

(Darst, et al., 2015, Sager, et al., 2005). For these analyses, we used one composite variable 

estimating cognitive functioning at age 54 (the mean age at baseline) and six factor scores 

representing longitudinal functioning across memory and executive function domains.

2.2.1. Composite Progression Score—A composite index, named progression score 

(PS), was computed using a set of eight cognitive measures, including Trails A and B 

(Reitan and Wolfson, 1985), Digit Span Forward and Digit Span Backward (Wechsler, 

1997), Rey Auditory Verbal Learning Test (AVLT) summed score across five learning trials 

(Lezak, et al., 2004), AVLT delayed recall (Lezak, et al., 2004), Boston Naming Test 

(Kaplan, et al., 1983), and the Mini-Mental State Examination (Folstein, et al., 1975). Visits 

with fewer than four of these measurements were excluded. We applied the PS model 

(Bilgel, et al., 2015, Jedynak, et al., 2012) to align individuals along a linear cognitive 

trajectory based on their longitudinal cognitive measure profiles, adjusting for inter-

individual differences in rates of change, with a higher PS indicating greater overall 

cognitive decline across the eight measures. We accounted for correlations among cognitive 

measures and constrained the progression scores to increase linearly with age within each 

individual. To remove confounding effects of age at entry into WRAP, the progression score 

was estimated at age 54, the mean age at baseline.

2.2.2. Longitudinal Factor Scores—A factor analysis of the neuropsychological test 

scores was performed as described previously (Dowling, et al., 2010, Jonaitis, et al., 2015, 

Koscik, et al., 2014). The resulting factor scores were standardized into z scores (~N [0, 1]), 

using means and standard deviations obtained from the whole sample at baseline (visit 1) or 

visit 2 for a subset of tests that were first administered at this visit. There were four cognitive 

factor z scores for memory (Immediate Memory, Verbal Learning & Memory, Story Recall, 
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and Visual Learning & Memory) and two for executive function (Working Memory and 

Speed & Flexibility). Tests comprising each of these factors have been previously described 

(Darst, et al., 2015). Due to the small number of individuals carrying the functional variants, 

these six factor scores were also averaged to create a summary cognitive measure of the 

factor scores for each individual. Consequently, we did not adjust for multiple comparisons 

when examining the mean z score and used the individual cognitive factor scores to inform 

which domains were driving the association with the mean z score.

2.3 DNA Collection, Genotyping, and Quality Control

DNA was extracted from whole blood samples as described previously (Engelman, et al., 

2013). Genotyping of the TREM2 variant R47H (rs75932628) and PLD3 variants V232M 

(rs145999145) and A442A (rs4819; splice site variant) was performed using competitive 

allele-specific PCR based KASP™ genotyping assays (LGC Genomics, Beverly, MA). The 

quality control process has been described previously (Darst, et al., 2016). The PLD3 splice 

site variant, A442A, was monomorphic in our sample. Consequently, no genetic association 

analysis could be performed on this variant. The other PLD3 variant and the TREM2 variant 

were in Hardy-Weinberg equilibrium.

2.4. Statistical analysis

Differences in allele frequencies between those with a parental history of AD and those 

without were tested using a Fisher’s exact test. TREM2 and PLD3 associations with each of 

the cognitive factor scores and the PS at age 54 were tested using linear mixed models (SAS 

PROC MIXED) by comparing carriers of one of the rare variants to non-carriers of either. 

For each cognitive factor score, models included fixed effects for age, gender, practice 

effects, and self-reported race/ethnicity and random effects for family (siblings) and 

participant (repeated measures). For the PS, the model included fixed effects for gender and 

race/ethnicity (age was not adjusted for as it was used to calculate the PS) and a random 

effect for family. To visually display the cognitive factor z scores, adjusted mean z scores (a 

weighted average of the predicted z scores across all classes of gender and race/ethnicity, 

and for the average age) were calculated and plotted for TREM2 R47H and PLD3 V232M 

carriers, as well as for APOE ε4 homozygotes, ε4 heterozygotes, and non-carriers of any of 

these three risk variants, using the LSMEANS statement in PROC MIXED with the OM 

option to weight the average of the predictions to be proportionate to the input data set. This 

was especially important for race/ethnicity, which was not evenly distributed in the WRAP 

cohort. All analyses were performed in SAS v9.4 and used a p value threshold of < 0.05 to 

determine significance.

3. Results

Characteristics of the 1,449 participants, according to TREM2 and PLD3 carrier status, are 

shown in Table 1. No participants carried both the TREM2 R47H (T allele) and PLD3 
V232M (A allele) low frequency variants. There were no significant (p < 0.05) differences in 

the characteristics between carriers of either variant and non-carriers. Of the 16 participants 

who carried the TREM2 variant, 15 were non-Hispanic Caucasian, 1 was Hispanic, and none 
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were African American or another race/ethnicity. All 13 PLD3 carriers were non-Hispanic 

Caucasian.

Presence of the TREM2 R47H variant was associated with AD parental history status; all 

sixteen participants with R47H were in the parental history group (Table 2). Patterns 

appeared similar for the relationship between PLD3 V232M and AD parental history.

In linear mixed models, PLD3 carriers had significantly lower mean z scores, and lower z 
scores for Story Recall, Visual Learning & Memory, and Speed & Flexibility than non-

carriers (Table 3; results for APOE ε4 count are shown for comparison). TREM2 carriers 

had marginally lower z scores for Speed & Flexibility (p = 0.06). While the PS at age 54 was 

higher for both TREM2 and PLD3 carriers, indicating greater disease progression, these 

differences were not statistically significant. Adjusted mean z scores for the six cognitive 

factors for TREM2 carriers, PLD3 carriers, as well as for APOE ε4 homozygotes, ε4 

heterozygotes, and non-carriers of any of these three risk variants are shown in Figure 1.

4. Discussion

Functional low frequency variants in TREM2 are established risk factors for AD and an 

additional variant in PLD3 has been reported (Cruchaga, et al., 2013), but their effect on 

cognitive function in the years prior to the typical onset of AD is unknown. We examined the 

effect of these variants on cognitive performance in a longitudinal study of middle-aged 

adults who were cognitively healthy at enrollment, the majority of whom had a parental 

history of AD. The TREM2 R47H variant was found in 15 non-Hispanic Caucasians and 1 

Hispanic, all with a parent who had AD. The PLD3 V232M variant was only found in non-

Hispanic Caucasians and was twice as common in individuals with a parental history of AD 

than in those without a parental history. Although both variants were generally associated 

with lower cognitive function in carriers of either variant than in non-carriers, only carriers 

of the PLD3 variant had significantly lower cognitive function than non-carriers.

Our study population was intentionally enriched for individuals with a parental history of 

AD (72% of participants). While the carrier percentages in the parental history group were 

1.5% for TREM2 R47H (T allele) and 1.1% for PLD3 V232M (A allele), the percentages in 

the participants with no parental history of AD were 0% and 0.5%, respectively. The 

TREM2 R47H carrier percentage is 0.4% in the Exome Aggregation Consortium database 

(ExAC; N = 60,145; accessed 11/15/16) (Lek, et al., 2016) and 0.5% in the Genome 

Aggregation Database (gnomAD; N = 140,485; beta mode available at http://

gnomad.broadinstitute.org; accessed 11/15/16; includes samples from the Alzheimer’s 

Disease Sequencing Project and from ExAC). The PLD3 V232M carrier percentage was 

0.6% in ExAC (N = 57,683) and 0.7% in gnomAD (N = 141,023). Taken together, for both 

variants, the percent of individuals carrying the low frequency risk variant was higher in 

WRAP participants with a parental history of AD than in WRAP participants without a 

family history or in publicly available reference databases, illustrating the statistical power 

to be gained from a study design focusing on individuals with a family history of AD, in 

which low frequency risk variants are likely to be more prevalent.
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Our cohort is 89% non-Hispanic Caucasian, with only 113 African Americans and 34 

Hispanics, however, despite these small sample sizes, we did observe one Hispanic carrier of 

the TREM2 R47H variant. In gnomAD, the largest compilation of large-scale sequencing 

projects, the TREM2 R47H (T allele) was carried by 0.7% of Latinos (n = 18,221), 0.5% of 

Europeans (non-Finnish; n = 62,674), and 0.1% of Africans (n = 12,921). This higher carrier 

frequency in Latinos and lower carrier frequency in Africans is consistent with our 

observation. Moreover, our lack of PLD3 V232M (A allele) carriers in any group other than 

non-Hispanic Caucasian is not surprising given that the carrier percentage in gnomAD for 

this variant is 2.5 to 5 times higher for Europeans (non-Finnish; 1%) than for Latinos (0.4%) 

or Africans (0.2%).

PLD3 V232M carriers (six of whom were APOE ε4 heterozygotes [Table 1]) had least 

square mean (predicted) cognitive z scores that were lower than both APOE ε4 

heterozygotes and homozygotes across all six cognitive factors (Figure 1). This suggests that 

the effect of the PLD3 V232M variant on cognition may be even stronger than carrying two 

copies of the APOE ε4 allele. However, this requires replication in other longitudinal studies 

of cognitive function.

Although our findings show consistency across multiple cognitive factors, many of our 

findings were not statistically significant, and those that were would not survive a correction 

for multiple testing. This is likely due to the rarity of the variants assessed, but could also be 

because our relatively young (early 50’s at baseline) population may not yet have 

experienced enough cognitive decline. It will be crucial to validate these findings with an 

external population, particularly one that has a larger number of carriers for these rare 

variants. Further, in order to determine how these variants influence the pathology of AD, it 

will also be essential to evaluate their influence on β-amyloid and tau, as the accumulation 

of both occurs long before an AD diagnosis.

In conclusion, our results support previous findings that show an increased AD risk in 

carriers of low frequency functional variants in TREM2 and PLD3 by suggesting that these 

variants may also be associated with lower cognitive function, likely due to an AD 

trajectory. This is particularly notable for the rare PLD3 variant, which is a less established 

AD risk factor. While these functional variants are found at low frequencies in the 

population, their effect on risk for AD is much larger than common variants found through 

GWAS. In fact, their effect on cognition may be similar to, if not greater than, that of the 

APOE ε4 allele. Further research is necessary in order to assess the influence of these rare 

variants on other crucial neurological changes such as the accumulation of β-amyloid and 

tau that are biomarkers of AD pathology.
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Highlights

3–5 must be included, 85 character max including spaces/highlight, only core 

results covered

Those with a parental history of AD more commonly carried PLD3 V232M or 

TREM2 R47H.

Carriers of PLD3 V232M had significantly lower mean z scores and lower z 
scores for Story Recall, Visual Learning & Memory, and Speed & Flexibility than 

non-carriers.

Cognitive effects of PLD3 V232M or TREM2 R47H may be similar to or greater 

than APOE
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Figure 1. Mean Adjusted Cognitive Function by Risk Allele Carrier Status
Adjusted (for age, gender, practice effects, and race/ethnicity) mean z scores for the six 

cognitive factors for TREM2 R47H (T allele) carriers (light gray), PLD3 V232M (A allele) 

carriers (medium gray), APOE ε4 heterozygotes (dark gray), APOE ε4 homozygotes (very 

dark gray), and non-carriers of any of these three risk variants (white). Z scores were 

standardized (~N [0, 1]), using means and standard deviations obtained from the whole 

sample at baseline. Error bars indicate standard error of the mean.
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Table 1

WRAP Participant Characteristics at Baseline, Mean (SD) or n (%)

Characteristic
TREM2 (R47H)
Carriera (n=16)

PLD3 (V232M)
Carriera (n=13) Non-carrier (n=1,413)

Age (years) 52.4 (5.6) 51.8 (8.9) 53.8 (6.6)

Gender (female) 13 (81.3) 10 (76.9) 898 (70.0)

Race/ethnicity

 Caucasian 15 (93.8) 13 (100.0) 1,253 (88.8)

 African American 0 0 113 (8.0)

 Hispanic 1 (6.3) 0 33 (2.3)

 Other 0 0 12 (0.9)

Years of Education 15.3 (2.8) 15.7 (3.1) 16.2 (2.3)

APOE Genotype

 ε2/ε2 0 0 5 (0.4)

 ε2/ε3 1 (6.3) 3 (23.1) 113 (8.0)

 ε2/ε4 1 (6.3) 0 46 (3.3)

 ε3/ε3 6 (37.5) 4 (30.8) 742 (52.5)

 ε3/ε4 7 (43.8) 6 (46.2) 447 (31.6)

 ε4/ε4 1 (6.3) 0 60 (4.2)

a
No participants carried both the TREM2 and PLD3 variants; seven participants had a missing genotype for either TREM2 or PLD3 and are not 

included in this table. Minor/risk allele for TREM2 R47H was T; minor/risk allele for PLD3 V232M was A.
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Table 2

Carrier Frequency (n) by Parental History of AD

Gene (variant) No parent with AD (n=409) Parent with AD (n=1040) p valuea

TREM2 (R47H) 0.00 (0) 0.015 (16) 0.009

PLD3 (V232M) 0.005 (2) 0.011 (11) 0.54

a
Fisher’s exact test of the difference in allele frequency in individuals without versus with a parent with AD.
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Table 3

Association Between Risk Variant and Cognitive Function

Cognitive Function

β ± SE (p value)

TREM2 (R47H)
(n=1,446)

PLD3 (V232M)
(n=1,445)

APOE ε4 count

Composite Progression Score

 Progression Score at age 54a 0.19 ± 0.29 (0.52) 0.46 ± 0.33 (0.16) 0.11 ± 0.05 (0.04)

Longitudinal Factor Scores

 Mean of six Factor Scores −0.14 ± 0.16 (0.38) −0.41 ± 0.18 (0.02) −0.10 ± 0.03 (0.002)

 Immediate Memory −0.12 ± 0.20 (0.56) −0.23 ± 0.23 (0.32) −0.07 ± 0.04 (0.06)

 Verbal Learning & Memory −0.002 ± 0.22 (0.99) −0.22 ± 0.25 (0.37) −0.09 ± 0.04 (0.03)

 Story Recall −0.16 ± 0.24 (0.49) −0.55 ± 0.26 (0.04) −0.14 ± 0.05 (0.002)

 Visual Learning & Memory −0.06 ± 0.22 (0.78) −0.49 ± 0.25 (0.049) −0.08 ± 0.04 (0.05)

 Working Memory −0.15 ± 0.23 (0.51) −0.26 ± 0.27 (0.34) −0.11 ± 0.04 (0.01)

 Speed & Flexibility −0.39 ± 0.20 (0.06) −0.54 ± 0.24 (0.02) −0.06 ± 0.04 (0.11)

Linear mixed model, adjusting for age, gender, practice effects, and race/ethnicity, and accounting for within-family (sibling) correlations and 
within-individual correlations from up to 10 years of follow up.

a
Linear mixed model, adjusting for gender and race/ethnicity, and accounting for within-family (sibling) correlations.
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