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A 5-year-old male presented to the Undiagnosed Diseases Network (UDN) with a history of 

global developmental delay, postnatal microcephaly, hypotonia, jerking movements 

concerning for seizures, minimal speech, severe gastroesophageal reflux disease (GERD), 

dysmorphic features, and partial agenesis of the corpus callosum on brain magnetic 

resonance imaging (MRI).

The patient was born at term following an uncomplicated pregnancy. Birth weight and length 

were in the 30th and 20th percentile respectively; head circumference at birth was unknown 

but not reported to be abnormal. He had poor feeding in the newborn period and GERD was 

diagnosed in the first month of life. Weight gain and height progressed normally. Head 

circumference measured at the 6th percentile at five weeks of age and fell below the 3rd 

percentile at three months.

Reduced muscle tone and truncal hypotonia were first appreciated at six months of age, as 

were mild motor delays. His first words were spoken at 11 months of age, but he was slow to 

gain vocabulary. Of note, he had no regression of developmental milestones.

Unexplained spasms concerning for seizures began at 12 months of age. Thought to 

correlate with gastrointestinal discomfort and gas, the episodes were characterized by 

extension and body stiffening followed by a scream, hyperextension of arms, head turn, and 

opisthotonic posturing. In the absence of epileptiform activity on electroencephalogram 

(EEG), his neurologists favored myoclonic spasms over seizures. Over time, the spells 
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evolved to be more consistent with dyskinetic and choreiform movement. In addition to his 

myoclonic spasms, the patient also experienced myoclonic jerks characterized by downward/

inward hyperextension of the arms. Trials of various anticonvulsants showed only marginal 

effect. He had intermittent hand stereotypies.

The patient’s medical history was significant for intermittent esotropia, mild obstructive 

sleep apnea, and dysmorphic features including: mild pectus excavatum, epicanthal folds, 

widely-spaced teeth, high-arched palate, telecanthus, and broad mouth. Throughout his 

workup, the patient underwent extensive diagnostic imaging and laboratory studies (Table 1; 

available at www.jpeds.com). There was no reported family history of similarly affected 

individuals. Both medical and biochemical geneticists who evaluated him indicated that his 

constellation of features was suggestive of an underlying genetic etiology, but not consistent 

with any known syndrome. With all evaluations failing to reveal an underlying etiology, the 

medical geneticist recommended whole exome sequencing (WES). Unfortunately, access to 

WES on a clinical basis was unavailable due to lack of insurance coverage by a commercial 

insurance provider. As a result, the child’s rare disease remained undiagnosed and the family 

was left without answers.

The Undiagnosed Diseases Network

Approximately 25–30 million individuals in the United States are living with a rare disease.

(1) Many children with rare diseases remain undiagnosed throughout life, leading to excess 

medical care, expensive diagnostic odysseys, and frustration for patients and their families.

(2,3) Advances in genomic technology have allowed for more comprehensive genetic 

analyses of patients with rare diseases.

In an effort to better characterize patients with rare and undiagnosed diseases, the National 

Institutes of Health launched a single-site project, the Undiagnosed Diseases Program, to 

improve our understanding of the etiology of these disorders. Following initial success, the 

program expanded to encompass additional clinical and research institutions, thus 

establishing the Undiagnosed Diseases Network.(4) The UDN is a network of investigators 

across 13 institutions designated to serve public need by bringing expertise in clinical 

diagnostics, translational research, and multi-omics technologies to solve medical mysteries 

(Figure 1).

Delineated by the NIH Common Fund, the UDN’s main objectives are 3-fold: (1) to improve 

the level of diagnosis and care for patients with undiagnosed diseases; (2) to facilitate 

research into the etiology of undiagnosed diseases; and (3) to create an integrated and 

collaborative research community to identify improved options for optimal patient 

management. With these goals in mind, the UDN began accepting applications in September 

2015.

The UDN accepts applications from both pediatric and adult patients. Applicants are eligible 

if they have a condition with at least one objective clinical finding that remains undiagnosed 

despite thorough evaluation by a healthcare provider. The most common disease domains of 

applicants include neurology, musculoskeletal, and allergy/immunology. Participation in the 

Reuter et al. Page 3

J Pediatr. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



UDN requires consent to store and share information and biomaterials among both UDN 

centers and collaborating research institutions. A UDN-wide committee of clinicians reviews 

each patient prior to acceptance into the study. Patients are seen at one of the seven clinical 

sites by expert clinicians for an evaluation that often spans several days. Specific evaluations 

and additional research studies are determined on a case-by-case basis by UDN clinician-

scientists (Figure 2).

Teams of clinicians and medical researchers join together to conduct precise clinical 

evaluations, analyze genomic data, and pursue state-of-the-art follow-up studies to 

understand complex disease mechanisms. Ultimately, the UDN aims to reduce the burden of 

undiagnosed diseases on patients, families, and providers. In this report, we use the case 

example above to illustrate the function and mission of the UDN.

Evaluation at a clinical site of the UDN

Initial evaluation

Upon exhausting all clinically available diagnostic evaluations, the treating medical 

geneticist referred the patient to the UDN with the hope of revealing a unifying diagnosis. 

The patient’s parents submitted an application to the UDN via the online portal (http://

gateway.undiagnosed.hms.harvard.edu) with the required short medical practitioner referral 

letter. The patient’s application, one of 1918 applications received by the UDN, was then 

subject to detailed medical record review and discussion with a multi-disciplinary team of 

experts at one of the seven UDN clinical sites. The patient’s application was one of 824 

accepted to date. The site expert review panel and the network-wide panel accepted this 

patient’s case for enrollment in the UDN.

Once accepted and regardless of socioeconomic status, patients receive the benefit of 

extensive clinical evaluations with appropriate specialists in addition to access to clinical and 

translational research studies including genomic testing when appropriate. The initial 

encounter for this patient consisted of an in-person research study consent with a genetic 

counselor and clinical research coordinator, and blood and urine sample collection for 

genomic and metabolomic analyses. DNA was extracted from blood from the patient and his 

unaffected parents, who served as controls, to perform trio WES analysis via the CLIA-

certified exome sequencing core (Table II; available at www.jpeds.com). Clinical variant 

interpretation by the sequencing lab was guided by American College of Medical Genetics 

and Genomics recommendations.(5) In parallel, research personnel at the clinical site 

applied a variety of computational algorithms for genomic analysis with the goal of 

increasing the likelihood of finding a molecular diagnosis for this patient. Relevant findings 

on genetic testing would guide subsequent clinical evaluations with physicians.

Genetic and clinical evaluations

Trio WES of this patient and his unaffected parents revealed two variants: a de novo 
heterozygous truncating variant in the FOXG1 gene (c.624C>A; p.Tyr208X; NM_005249.4; 

GRCh37) and a maternally inherited heterozygous missense variant in the SCN5A gene (c.

3911C>T; p.Thr1304Met; NM_198056.2; GRCh37). The FOXG1 variant had been 
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previously reported in a patient with FOXG1 syndrome.(6) The SCN5A variant had been 

previously reported in patients with a variety of inherited cardiac arrhythmia syndromes, 

including long QT syndrome,(7–10) Brugada syndrome,(11) sudden infant death syndrome 

(SIDS),(12) and lone atrial fibrillation,(13) some of which carry a risk of sudden cardiac 

death.

Interpretation of FOXG1 variant—Clinical evaluation of the FOXG1 variant included 

deep phenotyping by a medical geneticist and a neurologist specialized in movement 

disorders. From there, close clinical comparisons were made to investigate if FOXG1 variant 

was sufficient to explain the patient’s constellation of features (Table 3). Team discussion 

with referring providers led to a consensus that the evidence supported a diagnosis of 

FOXG1 syndrome.

FOXG1 syndrome, or congenital Rett syndrome, is a rare autosomal dominant 

neurodevelopmental disorder characterized by global developmental delay without 

regression, hypotonia, movement disorders, GERD, and microcephaly. Brain imaging often 

reveals hypogenesis or agenesis of the corpus callosum, delayed myelination, and cortical 

malformations. Symptom onset is usually within the first months of life.

The FOXG1 gene was first associated with disease in a series of patients diagnosed with the 

congenital variant of Rett syndrome, for whom prior analysis of MECP2 or CDKL5 was 

uninformative.(14) Since then, approximately 80 cases of have been reported in the 

literature.(14–28) Although initially designated as “congenital variant Rett syndrome” due to 

overlap of many clinical findings and molecular mechanisms,(29) current understanding of 

the phenotype leaves most clinicians favoring “FOXG1 syndrome.” Frameshift, truncating, 

nonsense and missense variants have been identified throughout the FOXG1 gene in affected 

individuals.(25) Chromosomal deletions encompassing FOXG1 and its regulatory regions at 

14q12 have also been described.(15–17,19,30–34) Thus far, all reported pathogenic variants 

have occurred de novo. However, there are families reported with multiple affected children, 

suggesting germline mosaicism.(35)

Interpretation of SCN5A variant—Pathogenic variants in the SCN5A gene (OMIM: 

600163) cause primary arrhythmia syndromes and dilated cardiomyopathy in an autosomal 

dominant inheritance pattern with incomplete penetrance and variable expressivity, at times 

presenting as sudden cardiac death.(36) Clinical cardiovascular genetic counselor review of 

the SCN5A variant revealed conflicting case data, insufficient segregation data in a 

published family,(7) and higher-than-expected frequency in general population control 

samples (ExAC allele frequency: 35/126,116 European Non-Finnish alleles),(37,38) all of 

which bring into question the pathogenicity of the variant. Although the SCN5A variant was 

reported as medically actionable by the sequencing laboratory, the clinical cardiovascular 

genetics expert team considered it a variant of uncertain significance, citing lack of sufficient 

evidence of pathogenicity. As such, use of the SCN5A variant to guide predictive risk-

assessment for family members was not recommended unless additional evidence supporting 

pathogenicity was obtained.
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The uncertainty of the reported SCN5A variant warranted a baseline evaluation by a clinical 

electrophysiologist to assess for any clinical manifestations of these conditions. This was 

especially important in light of prior seizure-like episodes which at initial UDN evaluation 

were unclear to be all myoclonic spasms or distinct seizure episodes with possible cardiac 

etiology.(39) The patient was asymptomatic from a cardiovascular standpoint and an 

electrocardiogram, echocardiogram, and 48-hour rhythm monitoring were all within normal 

limits for age. Although there was no evidence for SCN5A-related disease at that time, due 

to the age-dependent penetrance of the syndromes associated with pathogenic variants in this 

gene, we recommended consideration of ongoing periodic cardiac surveillance including 

electrocardiograms, echocardiograms, and rhythm monitoring to mitigate risk of sudden 

cardiac death. We also recommended the patient’s mother seek a cardiology evaluation 

because the SCN5A variant was inherited maternally.

Throughout the cardiology work-up of the patient, the clinical providers communicated 

openly with the UDN team to understand the interpretation of the SCN5A variant and relay 

back their clinical assessments.

The UDN clinicians and team of referring providers disclosed the molecular diagnosis of 

FOXG1 syndrome and the SCN5A variant of uncertain significance to the patient’s family at 

a joint visit. The patient’s clinical care transitioned back to the referring providers.

Role of the Undiagnosed Diseases Network

This case epitomizes the diagnostic odyssey and potential value of comprehensive clinical 

and research evaluations for patients with undiagnosed diseases. Prior to enrollment in the 

UDN, this patient and his family went four years without an explanation for his clinical 

symptoms despite clinical evaluations by a wide range of providers. The differential 

diagnosis was broad and included serine biosynthesis disorders, Coffin-Lowry syndrome, 

Allan-Herndon-Dudley syndrome, Sandifer syndrome, and Angelman syndrome. 

Unfortunately, insurance barriers limited access to additional diagnostic testing (specifically, 

WES) that could have aided providers in pinpointing a diagnosis earlier.

Impact of molecular diagnostic testing

An important outcome of achieving a genetic diagnosis for this patient was newly informed 

management of his neurologic symptoms. Prior to evaluation through the UDN and for 

much of his early life, the etiology of his involuntary movements was not well understood. 

In fact, only recently have researchers been able to better delineate the movement disorders 

associated with FOXG1 syndrome.(40) Following molecular diagnosis, our patient 

established care with a movement disorder specialist and began a regimen of medication 

(clonazepam), which has led to a marked reduction of symptoms.

Although the evolution of his abnormal movement spells is still ongoing, he is now cared for 

by a neurologist who is familiar with FOXG1 syndrome and its associated neurologic 

features. Although it occurs for a minority of patients, identification of secondary findings 

reported on WES is a real possibility. The “medically actionable” SCN5A variant, upon 

closer interpretation by genetics professionals and in light of cardiology evaluations, was not 
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found to correlate with overt clinical disease. This case demonstrates the UDN’s approach to 

genetic findings of uncertain significance by modeling the importance of appropriate 

referrals, clinical correlation, and review of all reported genetic findings on WES.

Advancing understanding of rare disease

The patient’s thorough clinical phenotyping and molecular testing was supplemented by 

additional computational tools and resources utilized in the UDN which could have pointed 

clinical providers to a more specific differential diagnosis for our patient. Such tools include 

publicly available automated genotype-phenotype tools such as PhenoTips. Integrated into 

the UDN workflow, the PhenoTips software uses Human Phenotype Ontology terms 

describing the clinical presentation of patients.(41) The algorithm creates an output 

suggesting additional diagnostic testing and clinical features to consider. It also matches the 

inputted terms against Online Mendelian Inheritance in Man to prioritize syndromes which 

have the most phenotypic similarity. The output list of relevant syndromes can guide clinical 

and molecular analysis, including if there should be consideration of two distinct genetic 

conditions. In our patient’s case, FOXG1 syndrome was second on the PhenoTips automated 

differential and was used in both clinical and research curation of the patient’s whole exome 

sequencing data.

Clinical correlation of genotype and phenotype for our patient remained challenging even 

when more than 80 cases of FOXG1 syndrome had been reported in the literature. In 

general, understanding the clinical characteristics of a rare disease is even more arduous 

with a single patient. To address this challenge, the UDN harnesses emerging social media 

tools such as Matchmaker Exchange (http://www.matchmakerexchange.org/)(42) and 

participant webpages to promote data sharing and to connect individuals with similar 

phenotypes or genotypes. The efforts to match individuals with overlapping clinical features 

and candidate genes have resulted in characterization of new gene-disease relationships 

through small, cohort-based studies.(43)

Similarly, the UDN encourages patient and family participation in rare disease organizations 

which seek to provide support to their members, and to promote awareness and interest in 

the research community. The UDN referred the patient’s family to the International FOXG1 

Foundation (foxg1.org), an organization for ~300 families and their ‘foxes,’ which has a 

strong focus on member connection, education, and engagement of the research community. 

In many cases, these patient and parent-run organizations are able to encourage research, by 

recruiting prominent clinical and research scientists to act as advisory members, promoting 

awareness of current research efforts, and fostering relationships between institutions and 

scientists with similar interests. The UDN recognizes that increased connections between 

rare disease advocates, clinicians and patients alike, will improve our understanding of 

undiagnosed diseases.

Integration of clinical and research evaluations

The UDN’s ability to both provide clinical care consultations and support ongoing research 

sets it apart from other multi-institution initiatives into rare disease. Beyond the clinical and 

scientific resources available, a patient’s successful participation in the UDN relies on open 
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communication and collaboration with the referring clinical providers. The relationship 

between clinical providers and members of the UDN is one that promotes the two-way 

sharing of information. From the initial referral letter, to the team discussions on clinical and 

research findings, to involvement in the ultimate results disclosure and follow up, the 

referring providers are invited to give input throughout the process, as illustrated in our 

patient’s case.

Because the UDN is not structured to follow patients long term for clinical care, there is a 

natural transition of care back to the referring providers. As patients continue to be cared for 

by their home clinicians, any new clinical information is communicated back to the research 

teams. The UDN prioritizes team-based care, multidisciplinary research collaborations, and 

partnerships with treating physicians.

Opportunities for translational research

Although this patient’s case highlights 3 main strengths of the UDN, in depth phenotypic 

evaluation, thorough genomic evaluation, and coordination of patient care, other patients 

benefit from the additional research opportunities the UDN provides. For cases in which 

WES does not provide a molecular diagnosis, resources exist within the UDN to investigate 

the relationship between candidate genes and disease. The UDN’s wide-reaching clinical 

and research network allows for the characterization and validation of candidate variants and 

genes. For example, the Model Organisms Screening Core can develop mouse or zebrafish 

knockout models of candidate genes.(44) Studies of functional effects of uncertain genetic 

variants including in-vitro assays utilizing patient-derived cells(45) and mRNA 

transcriptional analysis(46) can provide further clues into disease mechanisms to support 

emerging gene-disease relationships. Other multi-omics profiling includes metabolomics, 

which can characterize baseline trends of thousands of metabolites in an affected individual 

compared with unaffected controls, in addition to healthy versus disease states, to suggest 

aberrant molecular pathways that may be contributing to disease. Patients without strong 

suspicion for a genetic etiology, such as those with unexplained immunologic conditions, 

may benefit from detailed immune profiling as part of their participation in the UDN. 

Through these cutting-edge techniques, the investigators that make up the UDN can more 

precisely diagnosis and understand the mechanisms of rare diseases.

Implications for Pediatric Practice

This case report highlights ongoing state-of-the-art approaches the UDN employs to solve 

medical mysteries. Collaborations within and outside of the UDN, among expert clinicians, 

biomedical researchers, informaticians, geneticists, and engaged patients and their families, 

are expanding the spectrum of diagnosed diseases and benefiting various patient populations 

spanning multiple disease domains. The UDN is one of the first and largest initiatives to 

pioneer the integration of translational research and emerging diagnostic techniques into 

clinical care for patients with undiagnosed diseases. The lessons learned from the UDN will 

conceivably inform the wider medical community as such tools and technologies are 

increasingly available to practicing clinical providers. Efforts are underway within the UDN 

to increase collaboration with clinical providers and patients nationwide.
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Figure 1. 
Geographical representation and structure of Undiagnosed Diseases Network clinical and 

research sites as of September 28th, 2017.
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Figure 2. 
Sample workflow of patient application and participation in the UDN.
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Table 1, online only

Summary of Diagnostic Evaluations

Exam Type Exam Result

Genetics labs Karyotype (550 bands) Normal male - 46,XY

Array CGH Normal male–arr(1–22)x2,(XY)x1

Fragile X Normal–32 CGG repeats

Prader Willi-Angelman methylation Normal

7q11.23 FISH for Williams syndrome Normal

Biochemical labs Amino acids, plasma (2012) Normal

Carnitine, plasma (2012) Total carnitine: 80nmol/mL (nl 36–68), Free carnitine: 71nmol/mL 
(nl 27–49)

Acylcarnitine (2012) Normal acylcarnitine profile

Pyruvate (2012) Slightly elevated: 1.6 (nl 0.7–1.4)

Lactate 2012 Slightly elevated: 3.3 (nl 0.6–3.2)

Organic acids, urine (2012) Pattern not consistent with specific IEM

Prolactin (2012) Normal

Carbohydrate def. transferrin (2013) Normal

CSF Cell count (2013) Normal

CSF Glucose (2013) Normal

CSF Protein (2013) Low: <10 (nl 15–60 mg/dL)

CSF Neurotransmitters (2013) Slightly low homovanillic acid: 258 (nl 294-1115nmol/L)

Amino acids, urine (2013) Normal

Amino acids, plasma (repeat - 2013) Normal

Creatine, plasma (2013) High: 119.2 (nl 28–102umol/L)

Guanidinoacetate, plasma (2013) Elevated: 4.4 (nl 0.3–1.6umol/L); not in the range associated with 
classic guanidinoacetate methyltransferase deficiency

Oligosaccharides, urine (2013) Broad light band of material within an intermediate migration. 
Could be the result of medication. Pattern was observed once in a 
patient with glycogen storage disease but was not a consistent 
finding.

Homocysteine (2013) Normal

Guanidinoacetate, plasma and urine (repeat 
2013)

Elevated in plasma: 2.1 (nl 0.3– 1.6umol/L)

Creatine, plasma and urine (2013) Slight elevation in urine: 913 (nl 20– 900mmole/mole creatine)

Acylcarnitine (2013) Normal

Carnitine (2013) Normal

Creatine kinase (2013) Normal

CSF amino acids Normal

Free T3 (2016) Normal

Reverse T3 (2016) Slightly elevated: 24.5 (nl 8.3– 22.9ng/dL)

Diagnostic Radiology CT Head (9mo) Normal

MRI Brain (11mo) Partial agenesis of the anterior corpus callosum; Delayed 
myelination of frontal lobes for patient's age
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Exam Type Exam Result

MRI Brain (22mo) Hypoplastic rostrum of the corpus callosum; Incomplete 
myelination of the subcortical white matter of the bilateral frontal 
and temporal lobes

MRI Brain (27mo) Abnormal appearance of the white matter of the cerebral 
hemispheres most prominently involving the frontal lobes; 
Prominent perivascular spaces throughout the bilateral cerebral 
hemispheres; Hypoplastic genu of the corpus callosum.

MR Spectroscopy (27mo) NAA appears to be below normal for age; creatine is readily 
observed in all spectra; no evidence for elevated lactate

FL Barium Swallow Question of one episode of aspiration with solid Consistency 
(cookie)

FL Upper GI exam Normal

XR Chest Normal

Other studies EEGs, multiple No epileptiform activity or focal abnormalities

Sleep study (36mo) Mild obstructive sleep apnea

pH probe Confirmed GERD

Echocardiogram Normal
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Table 2; online only

Whole exome sequencing metrics for proband, mother, and father.

Proband Mother Father

Bases covered at >20x 35,361,835 35,227,910 35,335,258

Average coverage 140x 130x 134x

Number of reads 113,645,796 104,581,354 109,752,884

Percent of reads aligned 98.85% 98.86% 98.74%
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Table 3

Clinical correlation of patient characteristics with FOXG1 syndrome

Clinical Findings Patient Published FOXG1 cases19,25

Pregnancy/Birth Parameters Normal pregnancy/birth Normal pregnancy/birth

Growth Parameters Microcephaly noted at 3 months (−5.2 SD at present) Deceleration of OFC noted before 1yo
Microcephaly

Development Absent speech Absent speech

Sits/stands with support Late or absent sitting/walking

Absent walking

Brain abnormalities Partial agenesis of the corpus callosum
Hypomyelination of the subcortical white matter involving frontal 
and temporal loves
Prominent perivascular spaces

Hypogenesis/agenesis of corpus callosum
Reduced white matter volume
Simplified gyral pattern, pachygyria

Behavior/sleep Insomnia Poor sleep

Excess irritability and crying

Inappropriate laughing

Motor/dyskinesias Episodic myoclonic jerks
Complex spells of brief dystonic posturing +/− repetitive 
myoclonus
Tongue protrusions
Hand stereotypies
Drooling

Dyskinesias (chorea, dystonia)
Spasticity
Stereotypic hand movements
Drooling
Bruxism

Seizures/Epilepsy Infantile spasms Seizures

EEGs: no epileptic activity

Gastrointestinal/Respiratory Severe GERD GERD

Constipation Constipation

Feeding difficulty Feeding difficulties

Obstructive sleep apnea Obstructive sleep apnea

Aspiration

Musculoskeletal Truncal hypotonia Hypotonia

Pectus excavatum Kyphosis

Pes planus

Ophthalmologic Strabismus Strabismus

Nystagmus
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