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The exact mechanism to orchestrate the action of hundreds
of dynein motor proteins to generate wave-like ciliary beating
remains puzzling and has fascinated many scientists. We present
a 3D model of a cilium and the simulation of its beating in a fluid
environment. The model cilium obeys a simple geometric con-
straint that arises naturally from the microscopic structure of a
real cilium. This constraint allows us to determine the whole 3D
structure at any instant in terms of the configuration of a sin-
gle space curve. The tensions of active links, which model the
dynein motor proteins, follow a postulated dynamical law, and
together with the passive elasticity of microtubules, this dynam-
ical law is responsible for the ciliary motions. In particular, our
postulated tension dynamics lead to the instability of a symmetri-
cal steady state, in which the cilium is straight and its active links
are under equal tensions. The result of this instability is a stable,
wave-like, limit cycle oscillation. We have also investigated the
fluid–structure interaction of cilia using the immersed boundary
(IB) method. In this setting, we see not only coordination within a
single cilium but also, coordinated motion, in which multiple cilia
in an array organize their beating to pump fluid, in particular by
breaking phase synchronization.

motile cilia | Hopf bifurcation | symmetry breaking |
phase desynchronization | fluid transport

Motile cilia are hair-like organelles extending from the sur-
faces of eukaryotic cells and are characterized by their

rhythmic wave-like motion. Most motile cilia have a “9 + 2”
axoneme architecture, which refers to 9 peripheral doublet “AB”
microtubules surrounding a central pair of singlet microtubules.
Dynein motor proteins, responsible for force generation, extend
from each A tubule of an outer doublet toward the B tubule of
the adjacent doublet. Along each A tubule, the dynein motors
are regularly spaced in groups with a period of 96 nm (1). The
motor proteins generate relative sliding of the adjacent doublets
by ATP-fueled cycles of attachment, translocation, and detach-
ment along the B tubule of their target doublet. This active
sliding interacts with the passive resistance from the other axone-
mal components, including the radial spokes and nexin links, and
also with the basal body to produce the ciliary beat, yet it is still
unclear how the organized motion of a cilium emerges sponta-
neously from the combined action of the hundreds of individual
dynein motor proteins.

This question has been addressed in several different ways.
The geometric factors that may regulate the dynein motor pro-
teins include sliding displacement, curvature, and interdoublet
distance as reviewed in ref. 2. In curvature-based models, the
dynein motors are deactivated when the local curvature exceeds
a specified threshold (3–5). In these models, the direction in
which the dynein motors move and the sign of curvature are
opposite on two sides of the axoneme with respect to the beat-
ing plane. In sliding control models, linearity between the sliding
displacements and the shear forces is assumed (2, 6–8), and this
has been combined with a two-state model of the dynein motor
involving strongly and weakly bound states depending on the slid-
ing displacement (8, 9). The geometric clutch model (10, 11)
postulates that the interdoublet distance is responsible for the

activation of the dynein motors. This distance depends on the
transverse force, which develops across the structure in the beat-
ing plane when the structure is bent. The active bending and
the passive bending of the cilium have an opposite effect on the
transverse force, and this antagonism generates the ciliary beat-
ing. In another class of models, the cilium is treated as a slender
body, and the dynein motors are not modeled in detail. Instead,
an internal engine is postulated to generate the beat pattern of
the cilium (12–14).

Our model is based on a geometrical constraint that restricts
the deformation of the cilium and on a postulated dynamical
law for the tension generated by a dynein motor. The geo-
metrical constraint allows us to retain important aspects of
the microstructure of the cilium while reducing the dfs of the
model to those of a single centerline space curve. The postu-
lated dynamical law allows the tension generated by each dynein
motor to evolve independently but in a manner that depends on
the length of the link formed by that dynein motor and hence, on
the deformation of the structure as a whole. The dynein motors
in our model are, therefore, coupled to each other through the
structure of the cilium, and this coupling is indirectly respon-
sible for their coordination. The model cilium has an unstable
symmetrical steady state, in which the cilium is straight and all
motors are under equal tension. The instability of this steady
state leads to the emergence of a globally stable limit cycle
oscillation, which is the ciliary beat.

The interpretation of ciliary beating as a limit cycle oscilla-
tion around an unstable steady state was proposed in ref. 8. The
authors presented a local drag model of a 2D cilium driven by
two-state molecular motors (9). The instability of the steady state
of the model cilium was shown to involve a Hopf bifurcation. Our
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model is 3D, and our postulated dynamical law governing the
tension of an individual dynein motor is continuous rather than
discrete.

In ciliary arrays, neighboring cilia interact with each other via
surrounding fluid, and this leads to the emergence of phase syn-
chronization and metachronal waves, in which a constant phase
difference is maintained between adjacent cilia. The hydrody-
namic interactions between cilia have been studied analytically
and numerically with various models of cilia from minimal mod-
els capturing the essential features of ciliary beating (15–20) to
more detailed models to simulate the beating shape of real cilia
(12, 14, 21–24). In particular, metachronal coordination of arrays
of cilia is believed to be connected to efficient pumping of fluid,
which is the principal function of motile cilia. The efficiency of
pumping fluid in a ciliary array has been studied by using mag-
netically actuated artificial cilia (25, 26), a model of cilia with
active bending forces (23), or a model with an optimized beat
shape for pumping efficiency (21). These studies address the
pumping efficiency in relation to phase difference, wave vec-
tor, and interciliary spacing. In both studies of 1D (25, 26) and
2D ciliary arrays (21, 23), the metachronal wave pumps fluid
more effectively than synchronized ciliary beating, and simplectic
metachronal waves, which propagate in the same direction as the
power stroke, are generally more efficient in fluid transport than
antiplectic waves, which propagate in the opposite direction.

In contrast to previous works focusing on the emergence in
phase difference in orthoplectic rows [running in the same or
opposite direction as the ciliaty beat (27)], here, we present
simulation results showing emergence of multiple phases (i.e.,
symmetry breaking) in a diaplectic row (which is perpendicular
to the beating plane of the cilia) (27). In this simulation, we find
that symmetry breaking is essential for effective fluid transport.

Model
According to the 9 + 2 arrangement of the microtubules, we
model the configuration of a cilium as 11 discretized space curves
in R3 with N + 1 points each, {X(i)

k }
9
i=1 and {Xc,1

k , Xc,2
k }, k =

0, 1, · · · ,N , where {X(i)
k }

9
i=1 corresponds to the nine doublet

microtubules at the periphery of the cilium and{Xc,1
k , Xc,2

k } corre-
sponds to the central pair of microtubules that run along the inside
of the cilium. For simplicity of the description of the structure,
we introduce the imaginary centerline curve, Xk , defined as Xk =

(Xc,1
k + Xc,2

k )/2, k = 0, 1, · · · ,N , which we can regard as model-
ing the central pair of microtubules. Note, in particular, that k = 0
corresponds to one end of the model cilium anchored at the bot-
tom, and for each k , the collection of nine points, X(1)

k , · · · , X(9)
k

with Xk , can be thought of as a cross-section of the model cilium.

Geometric Constraint. We assume that all of the microtubules are
inextensible, so that the distance between adjacent nodes along
each microtubule remains constant. That is,

|Xk −Xk−1|= |X(j)
k −X(j)

k−1|=H [1]

for the centerline (which has no superscript), for the periph-
eral doublet microtubules j = 1, · · · , 9, and for all levels k =
1, · · · ,N . The distance H is set equal to 96 nm, which is the peri-
odicity of the dynein motors along the microtubules. Motivated
by the microstructure of the cilium, we imposed the minimal
additional assumption that, at each cross-section, the point of
the centerline, Xk , is the centroid of the nine points of peripheral
curves; that is,

Xk =
1

9

9∑
j=1

X(j)
k . [2]

This assumption does not, by itself, say anything about the shape
or size of the various cross-sections (they might not even be pla-

nar). When constraints [1] and [2] are combined, however, it
can be shown (Supporting Information) that the configuration of
each cross-section is a rigid translation of the base cross-section
of the model cilium. We assume, moreover, that the base cross-
section of the cilium is planar and has the form of a fixed, regular
nonagon. That is, for all j s and ks,

X(j)
k = Xk +

(
X(j)

0 −X0

)
. [3]

Note that Eq. 3 allows neither twist nor tilt of the different
cross-sections of the cilium and implies that the configuration
of the entire cilium is completely determined by that of its cen-
terline. This enables us to retain the detailed structure of the
cilium in our model and yet to describe its motion more sim-
ply in terms of the motion of the centerline. Since the base
cross-section is a planar and regular nonagon, the whole struc-
ture can be thought of as a freely jointed chain of regular
nonagons. Although the centerline is freely jointed, the nona-
gons themselves are constrained to move rigidly and by transla-
tion only.

In our model, the relative sliding of adjacent peripheral dou-
blet microtubules happens automatically as the local orientation
of the centerline changes. This consequence of our geomet-
ric constraints is derived in Supporting Information. It is shown
there that, as the direction of the centerline changes, its rate of
change induces a proportional relative sliding velocity of adja-
cent peripheral curves of the model. The relative sliding velocity
varies sinusoidally around each cross-section, being zero in the
direction in which the tangent to the centerline is changing and
having the opposite sign on either side of that direction. All of
these quantities and therefore, the relative sliding velocities can
be different in the different cross-sections of the model cilium.

Forces. The motion of the cilium is driven by the active dynein
motors coupled to the passive elasticity of the structure. We
model the dynein motor proteins by active links connected
between two points of the adjacent peripheral curves, X(j)

k and
X(j+1)

k−1 , j = 1, · · · , 9 but j 6= 5, with periodic arithmetic on j .
In most cilia, there is one pair of adjacent peripheral doublet
microtubules, conventionally labeled X(5) and X(6), which are
permanently linked to one another by 5-6 bridges and cannot
slide relative to each other (28, 29). The microtubule doublets
numbered 5 and 6 are positioned so that a line joining them
at their base is nearly parallel to a similar line joining the cen-
tral microtubules at their base. These nearly parallel lines are
approximately perpendicular to the plane in which the cilium
beats. Indeed, it is the rigidity of the connections joining the
peripheral doublets 5 and 6 and also, the rigidity of the connec-
tions between the central microtubules that mechanically restrict
the beating to occur in a single plane. We model the 5-6 bridges
as stiff linear springs connecting X(5)

k , X(6)
k−1 and X(5)

k−1, X(6)
k . The

passive elasticity of the cilium as a whole is modeled by treating
the centerline as an elastic beam. As a consequence of the geo-
metric constraint described above, which restricts the motion of
each nonagon to a rigid translation, we find that all forces applied
to any node on one of the peripheral doublet microtubules can
be applied directly to the centerline node at the same level (30).
The model cilium in fluid interacts with the fluid only via its cen-
terline, but the peripheral nine curves of the model still play
an important role as a scaffold for the dynein motors (and for
the passive 5-6 bridges). The force applied to the fluid by the
centerline node Xk may be summarized as

Fk = Fbeam
k + F5-6 bridge

k +

9∑
j=1,j 6=5

Fdynein,(j)
k , [4]
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A B C-1 C-2 C-3

D-1 D-2 D-3

Fig. 1. (A) Structure of the model cilium showing centerline (blue), peripheral doublet microtubules (green), and dynein links (red). (B) The beating cycle
of a single model cilium in fluid. (C and D) Tensions in the passive 5-6 bridges (green) and dynein links (red on one side of the cilium and blue on the other
side). C1 and D1 show initial tensions, which are zero in C1 and randomly chosen in D1. C2 and D2 show tensions at a selected time after the limit cycle has
been reached. C3 and D3 show the development of tension over time in selected levels (20, 50, and 80 of 100 levels) of the model. In C3, the initial tensions
are all zero, and the tensions remain the same as each other within any one level until about 6× 10−3 s, at which time the symmetry breaks and the ciliary
beat begins. In D3, the initial tensions are random, and the beat begins immediately. Despite this transient difference, the eventual beat patterns are the
same in the two cases (Movies S1 and S2).

where Fbeam
k is the elastic force at node k of the centerline gener-

ated by the bending and stretching of the centerline beam. Note
that the stretching modulus is large enough that the beam is
effectively inextensible as assumed in deriving our geometrical
constraint. The force Fbeam

k is minus the gradient of the elastic
energy function

E beam[X] =

N−1∑
k=1

(KB )k
2

∣∣∣∣Xk−1− 2Xk + Xk+1

H 2

∣∣∣∣2H
+

N∑
k=1

KS

2

(
|Xk −Xk−1|

H
− 1

)2

H , [5]

where KB is the bending modulus and KS is interpreted as the
extension modulus. To simulate the asymmetric beat of a cil-
ium, in which the power stroke is different from the recovery
stroke, we have found it necessary to make the bending modu-
lus depend on the direction of curvature as defined by the sign
of the triple scalar product of three vectors: the local curvature
vector of the centerline, the local tangent vector to the center-
line, and a constant reference vector that is orthogonal to the
plane of the ciliary beat. Note that the reference vector can
be defined in terms of the structure of the cilium (for exam-
ple, as the vector connecting the base of microtubule doublet
number 5 to the base of microtubule doublet number 6). This
aspect of the model is discussed in greater detail in Supporting
Information.

The active links in our model generate tension governed by the
following differential equation:

dT
(j)
k

dt
=β

(
Kk

(
L

(j)
k

)2
−T

(j)
k

)
, [6]

where T
(j)
k is the tension in the link joining nodes X(j)

k and X(j+1)
k−1

for k = 1, · · · ,N and j = 1, · · · , 4, 6, · · · 9 with periodic subscript
arithmetic. On the right-hand side of this equation, L(j)

k = |X(j)
k −

X(j+1)
k−1 | is the instantaneous length of the link, and β and Kk are

given constants, of which Kk is level-dependent (hence, the sub-

script k) (Supporting Information). The level dependence of Kk

is not essential for spontaneous oscillation, but it is needed to
make the time-dependent shape of the cilium realistic. With Kk

independent of k , the tip of the cilium seems to lead instead of
lag, but with Kk decreasing as a function of k , the model cil-
ium is driven more from the base, as in reality. The constant β
has units of 1/time, and the constant Kk has units of force per
length squared. Note the important point that each active link
independently obeys Eq. 6 and that the only information avail-
able to any active link about the state of the cilium as a whole
at any given time is the instantaneous length of that particular
link, L(j)

k . This is not much to go on; nevertheless, it turns out to
be enough to tell the link what to do to participate in a coordi-
nated wave-like beating pattern. The motivation for Eq. 6 comes
from a toy model, described in Supporting Information, in which
a rigid rod hinged at its base is held in the vertical position by
two guy wires under tension. The stability of the vertical equi-
librium depends on the tension law of the guy wires. If the wires
are under constant tension, the vertical equilibrium is unstable; if
the tension is proportional to the length of the wire, the vertical
equilibrium is neutrally stable, and if the tension is proportional
to the square of the length or indeed, to any power of the length
greater than one, the vertical equilibrium is stable. Our postu-
lated dynamical law for the tension, [6], contains aspects of the
first and third cases. On a fast timescale, Eq. 6 simply asserts that
the tension is prescribed (by its instantaneous value, since Eq. 6
requires T to be a continuous function of time, even if L changes
suddenly) regardless of length, but on a slow timescale, it makes
the tension proportional to the square of the length. (Any power
greater than one could be used here, as shown in Eqs. S32–S36,
but we choose the power two for simplicity.) Indeed, when this
equation is used to govern the guy wires of the toy model and
when the parameters of that model are appropriately chosen, the
result is a limit cycle oscillation about the vertical configuration.

Although the detailed mechanism by which dynein generates
tension is unknown, the prevailing view (29, 31) is that this pro-
cess involves cycles of attachment and detachment linked to
ATP hydrolysis, like the cross-bridge cycle in muscle (32). We
do not attempt to model the details of this process, however,
and instead, we consider only the resulting tension, which we
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A-1 A-2 A-3 B

Fig. 2. Symmetry breaking in a diaplectic row of cilia. (A) Configuration of cilia (black curved lines) at selected times from two points of view. Red dots
are fluid markers, some of which mark the floor (which is also a ceiling of the periodic domain). Rectangular box shows one unit cell of the periodic
computation. The cilia (black curved lines) are initially synchronized (A1). The symmetry starts to break in A2, and by the time shown in A3, the cilia have
adopted multiple phases (Movie S3). (B) Flux of fluid (positive to the left) generated by the beating cilia. Upper (red curve) shows instantaneous flux, and
Lower (black curve) shows cumulative flux. The upward trend in the cumulative flux begins only after the symmetry has broken and the cilia have adopted
multiple phases.

model in a phenomenological way, although we do give a possi-
ble mechanistic interpretation of Eq. 6 in Supporting Information.
In particular, in our model, the whole group of dynein motors
within a given 96-nm unit cell of an A tubule is represented by a
single link that is permanently attached to the next B tubule in
the next lower cross-section of the model (Fig. 1A).

Cilia in Fluid. We model the fluid–structure interaction of cilia
by the immersed boundary (IB) method (33), with the following
equations of motion:

ρ
∂u
∂t

+∇p =µ4u + f, [7]

∇· u = 0, [8]

f(x, t) =
∑
k

− ∂E

∂Xk
(X,T )δa(x−Xk (t)), [9]

dXk

dt
=

∫
Ω

u(x, t)δa(x−Xk (t))dx, [10]

E(X,T ) =Ep(X) +
∑
l

TlLl(X), [11]

dTl

dt
=β

(
KlL

2
l (X)−Tl

)
. [12]

Eqs. 7 and 8 are the incompressible time-dependent Stokes equa-
tions with fluid velocity u(x, t), pressure p(x, t), and applied
force per unit volume f(x, t), which model the influence of the
cilia on the fluid. Here, x∈Ω, which we take to be a rect-
angular box in R3 with periodic boundary conditions, but we
break the periodicity in the vertical direction in the manner
discussed in Supporting Information. The term ρ ∂u

∂t
has little

effect but is included to avoid a technical issue concerning the
time-independent Stokes equation in periodic domains (Eqs.
S68–S71). Inclusion of this term does not adversely affect the
time step restriction for numerical stability, because our imple-
mentation is implicit (34) as described in Eqs. S55–S67. Eqs.
11 and 12 define the elastic energy of the model cilia. In these
equations, X denotes the collection of all of the positions of cen-
terline nodes, any one of which is denoted Xk . (Recall that other
nodes of the model cilia have coordinates determined by those
of the centerline nodes.) Similarly, T denotes the collection of

all of the active tensions, any one of which is denoted Tl . The
length of the corresponding link in the model is denoted Ll(X)
to emphasize that this length is determined by the configuration
of the centerline nodes as a consequence of our geometric con-
straints. In Eq. 11, Ep(X) includes all of the passive contributions
to the elastic energy (i.e., the energy E beam defined by Eq. 5 and
also, the elastic energy of the 5-6 bridges), and the sum over l
defines the contributions of the active links. The energy of an
active link at any given time is proportional to the length of that
link, because the tension is a state variable, which has a particular
value at any time t , regardless of the length of the link at that
time. Thus, the energy function at any particular time is that of a
constant tension link. In Supporting Information, Eq. 6 is given a
mechanistic interpretation in terms of the making and breaking
of constant tension links. Eqs. 9 and 10 are interaction equations
that describe the influence of the cilia on the fluid and that of
the fluid on the cilia. In Eq. 9, ∂E

∂Xk
is the gradient of the elastic

energy with respect to the position of the point Xk , and − ∂E
∂Xk

is
the force applied by node k of the model cilium to the surround-
ing fluid. The function δa is a regularized version of the Dirac
delta function (Eqs. S51–S54). It defines the way in which the
force is distributed over the neighborhood of the point Xk . The
parameter a , which has units of length, determines the size of
the region that receives force from any given node. We empha-
size that this is a physical parameter of our model related to the
physical radius of the cross-section of a cilium (35). In particular,
the parameter a should be held fixed as the numerical parame-
ters of the model, like mesh width and time step, are refined. In
Eq. 10, the velocity of centerline node k is defined as a weighted
average of the fluid velocity on its neighborhood. Note that the
same function δa is used here as in Eq. 9. This ensures that∑

k

− ∂E

∂Xk
· dXk

dt
=

∫
Ω

f(x, t)u(x, t)dx [13]

(i.e., that the power applied to the fluid by the cilium is correctly
accounted for in the fluid equations).

Results
In this section, we report the results of two computer experi-
ments. The first one involves a single model cilium immersed
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in fluid, and in the second one, we consider the fluid-mediated
interaction of multiple cilia.

Single Cilium in Fluid. We put the cilium in a rectangular box of
fluid with periodic boundary conditions, but the periodicity in the
z direction is broken by a floor/ceiling as explained above. The
dimensions of the box are dx = 15µm, dy = 3.75µm, and dz =
15µm, and the length of the cilium is L= 10µm. The motion of
the cilium is in the xz plane, with the power stroke in the negative
x direction. Because of the periodicity in the x and y directions,
we can think of the model cilium as one member of an infi-
nite carpet of cilia arranged in a rectangular array, but note that
the members of this array are, by definition, synchronized with
each other.

In this study, we compare two different initial conditions. In
both of them, the initial configuration of the cilium is straight
and vertical, but in the first case, the initial tensions of the dynein
links are all zero, whereas in the second case, the initial tensions
are randomly chosen (Fig. 1 C1 and D1).

Despite this difference in initial conditions, the long-term
behavior is the same in both cases (except for phase). Both cilia
settle into the same limit cycle oscillation, as shown in Fig. 1 C3
and D3. This limit cycle shows a realistic ciliary beat with clearly
distinct power and recovery strokes (Fig. 1B). At early times,
however, we see a clear and qualitative distinction between the
behaviors of the two model cilia. In the first case, in which the
initial tensions are all zero, the system has to break symmetry
to move, and this takes some time to occur. Thus, the tensions
build up gradually while remaining nearly equal to each other
within any given level of the cilium. This is shown in Fig. 1C3
(up to t = 6× 10−3 s). During this early time, there is almost no
motion of the cilium as a whole. Near t = 6.0× 10−2 s, the sym-
metry breaks, and the cilium starts to beat. In the second case
(Fig. 1D3), there is no need to break symmetry, because the ini-
tial tensions are random, and the cilium quickly and smoothly
settles into its limit cycle oscillation.

The comparison of these two cases illustrates clearly the self-
organizing character of the beat of the model cilium, in which
hundreds of dynein motors coordinate successfully without any
explicit coordination mechanism.

Multiple Cilia in Fluid. The computer experiment described in this
subsection is similar to those of the previous subsection, but
the dimensions of the fluid box are different (dx = 2.34µm, dy =
30µm, dz = 22.5µm), and now, the box contains an array of 16
equally spaced model cilia arranged in a diaplectic row (i.e., a
row that runs orthogonal to the beat plane) along the y axis of
the domain. The distance between adjacent cilia in this row is
dy/16 = 1.875µm. Because of the assumed periodicity in the x
and y directions, we can think of this simulation as modeling an
infinite carpet of cilia arranged in a rectangular array, just as we
could in the previous case. Here, however, there is less enforced
synchrony. We still have synchrony by definition among the cilia
in every orthoplectic row (parallel to the x axis and therefore,
to the beat plane), but in a given diaplectic row, there are 16
independent model cilia, which may synchronize or not depend-

ing on their own internal dynamics and on their fluid-mediated
interaction.

The initial conditions here are the same as those of the first
case above: zero initial dynein tension with the cilia straight and
vertical. Thus, we expect and find an initial pause after which
the cilia start to beat, and we observe that their early beat-
ing is synchronized. After a few beats, however, the synchrony
spontaneously breaks, and the different cilia adopt different
phases.

This symmetry breaking turns out to have an important effect
on the ability of the ciliary array to pump fluid. Before the sym-
metry breaking, the cilia are unable to exhibit a clear distinction
between their power and recovery strokes (Fig. 2B). To under-
stand this, note that the asymmetrical beating pattern that pumps
fluid requires the tips of the cilia to move down toward the cell
boundary to which the cilia are attached (which is a no-slip pla-
nar boundary in our simulation) during part of the beat cycle,
so that the tips can be closer to the cell boundary during the
recovery stroke than during the power stroke. This downward
motion is inhibited by fluid incompressibility and viscosity when
the cilia are close together and synchronized. Symmetry breaking
alleviates this effect.

Summary and Conclusions
We have introduced a phenomenological model of a motile
cilium, in which ciliary beating is driven by actively generated
dynein tensions governed by a postulated dynamical law. Under
two simple geometric constraints motivated by the inextensibility
of microtubules and the centering of the central pair as main-
tained by the radial spokes of the cilium, we show that the entire
configuration of the cilium can be expressed in terms of the
configuration of its centerline.

A significant feature of our model is that the hundreds of
dynein motors within a single cilium coordinate their tensions
spontaneously to produce the ciliary beat as an emergent limit
cycle oscillation. To emphasize this, we have shown that the same
ciliary beat emerges regardless of initial conditions, in particular
starting from zero initial tensions or from random initial ten-
sions of the dynein motors. In the former case, there is a delay
before beating starts, during which the dynein links of the model
develop tension synchronously and the cilium does not move.
The symmetry then breaks suddenly, and the beat is initiated. In
the latter case, with random initial tensions, there is no need for
symmetry breaking and hence, no delay before the cilium starts
to beat.

We have also studied the fluid–structure interaction of mul-
tiple cilia by the IB method. In particular, we have considered
the interactions that occur within a diaplectic row. In this setting,
we see spontaneous symmetry breaking, in which the cilia adopt
multiple phases, despite being started in the same initial state.
Only after the symmetry breaks are the cilia able to pump fluid.
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8. Camalet S, Jülicher F (2000) Generic aspects of axonemal beating. New J Phys 2:1–

23.
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