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Quantifying the functional relations between the nodes in a net-
work based on local observations is a key challenge in studying
complex systems. Most existing time series analysis techniques
for this purpose provide static estimates of the network prop-
erties, pertain to stationary Gaussian data, or do not take into
account the ubiquitous sparsity in the underlying functional net-
works. When applied to spike recordings from neuronal ensem-
bles undergoing rapid task-dependent dynamics, they thus hinder
a precise statistical characterization of the dynamic neuronal func-
tional networks underlying adaptive behavior. We develop a
dynamic estimation and inference paradigm for extracting func-
tional neuronal network dynamics in the sense of Granger, by
integrating techniques from adaptive filtering, compressed sens-
ing, point process theory, and high-dimensional statistics. We
demonstrate the utility of our proposed paradigm through the-
oretical analysis, algorithm development, and application to syn-
thetic and real data. Application of our techniques to two-photon
Ca2+ imaging experiments from the mouse auditory cortex reveals
unique features of the functional neuronal network structures
underlying spontaneous activity at unprecedented spatiotempo-
ral resolution. Our analysis of simultaneous recordings from the
ferret auditory and prefrontal cortical areas suggests evidence for
the role of rapid top-down and bottom-up functional dynamics
across these areas involved in robust attentive behavior.

Granger causality | adaptive filtering | functional network dynamics |
point processes | sparsity

Converging lines of evidence in neuroscience, from neuronal
network models and neurophysiology (1–8) to resting-state

imaging (9–11), suggest that sophisticated brain function results
from the emergence of distributed, dynamic, and sparse func-
tional networks underlying the brain activity. These networks are
highly dynamic and task-dependent, which allows the brain to
rapidly adapt to abrupt changes in the environment, resulting in
robust function. To exploit modern-day neuronal recordings to
gain insight into the mechanisms of these complex dynamic func-
tional networks, computationally efficient time series analysis
techniques capable of simultaneously capturing their dynamicity,
sparsity, and statistical characteristics are required.

Historically, various techniques such as cross-correlogram (12)
and joint peristimulus time histogram (13) analyses have been
used for inferring the statistical relationship between pairs of
spike trains (12–14). Despite being widely used, these meth-
ods are unable to provide reliable estimates of the underlying
directional patterns of causal interactions among an ensemble of
interacting neurons due to the intrinsic deficiencies in identifi-
cation of directionality, low sensitivity to inhibitory interactions
(15), and susceptibility to the indirect interactions and latent
common inputs.

Methods based on Granger causality (GC) analysis have
shown promise in addressing these shortcomings and have thus
been used for inferring functional interactions from neural data
of different modalities (16–19). The rationale behind GC analy-
sis is based on two principles: the temporal precedence of cause

over effect and the unique information of cause about the effect.
Given two time series {Xt ,Yt}Tt=1, if including the history of Yt

can improve the prediction of Xt+1, it is implied that the his-
tory of Yt contains unique information about Xt , not captured
by other covariates. In this case, we say that Yt has a G-causal
link to Xt .

Numerous efforts have been dedicated to extending the bivari-
ate GC measure to more general settings, such as the conditional
form of GC in ref. 20 for multivariate setting, and several
frequency-domain variants of GC (21–23). Despite significant
advances in time series analysis using GC and its variants, when
applied to neuronal data, the existing methods exhibit several
drawbacks.

First, most existing methods for causality inference provide
static estimates of the causal influences associated with the
entire data duration. Although suitable for the analysis of sta-
tionary neural data, they are not able to capture the rapid
task-dependent changes in the underlying neural dynamics. To
address this challenge, several time-varying measures of causality
have been proposed in the literature based on Bayesian filtering
and wavelets (24–30). Second, there are very few causal inference
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approaches to take into account the sparsity of the functional
networks (31–33). As an example, authors in ref. 31 introduced a
method for sparse identification of functional connectivity pat-
terns from large-scale functional imaging data. Despite their
success in inferring sparse connectivity patterns, these techniques
assume static connectivity structures.

Third, most existing approaches are tailored for continuous-
time data, such as electroencephalography (EEG) and local field
potential recordings, which limits their utility when applied to
binary neuronal spike recordings. These methods are generally
based on multivariate autoregressive (MVAR) modeling, with
a few nonparametric exceptions (30, 34). Some efforts have
been made to adapt the MVAR modeling to neuronal spike
trains (17, 35, 36). For instance, the binary spikes were pre-
processed in refs. 17 and 35 via a smoothing kernel, which
significantly distorts the temporal details of the neuronal dynam-
ics. In addition, the frequency-domain GC analysis techniques
implicitly assume that the data have rich oscillatory dynamics.
Although this assumption is valid for steady-state EEG responses
or resting-state recordings, spike trains recorded from cortical
neuronal ensembles often do not exhibit any oscillatory behavior.

To address the third challenge, point process modeling and
estimation have been successfully used in capturing the stochas-
tic dynamics of binary neuronal spiking data (37, 38). This
framework has been particularly used for inferring functional
interactions in neuronal ensembles from spike recordings (32,
38–42). A maximum likelihood (ML)-based approach was intro-
duced in ref. 38 based on a network likelihood formulation of the
point process model; a model-based Bayesian approach based
on point process likelihood models with sparse priors on the
connectivity pattern was introduced in ref. 32. Among the more
recent results, an information-theoretic measure of causality is
proposed in ref. 41; a static GC measure based on point pro-
cess likelihoods is proposed in ref. 40. However, a modeling and
estimation framework to simultaneously take into account the
dynamicity and sparsity of the G-causal influences as well as the
statistical properties of binary neuronal spiking data is lacking.

In this paper, we close this gap by developing a dynamic
measure of GC by integrating the forgetting-factor mechanism
of recursive least squares (RLS), point process modeling, and
sparse estimation. To this end, we first exploit the prevalent
parsimony of neurophysiological time constants manifested in
neuronal spiking dynamics, such as those in sensory neurons with
sharp tunings, as well as the potential low-dimensional struc-
ture of the underlying functional networks. These features can
be captured by point process models in which the cross-history
dependence of the neurons is described by sparse vectors. We
then use an exponentially weighted log-likelihood framework
(43) to recursively estimate the model parameters via sparse
adaptive filtering, thereby defining a dynamic measure of GC,
which we call the adaptive GC (AGC) measure.

The significance of sparsity in our approach is twofold. First,
while the functional networks may not be truly sparse, they can
often be parsimoniously described by a sparse set of significant
functional links. Our models can indeed capture these significant
links through sparse cross-history dependence. Second, sparsity
enables stable estimation in the face of limited data. This is par-
ticularly important for adaptive estimation, where the goal is
to reliably estimate a large number of cross-history parameters
using short, effective observation windows.

We next develop a statistical inference framework for the pro-
posed AGC measure by extending classical results on the analysis
of deviance to our sparse dynamic point process setting. We pro-
vide simulation studies to evaluate the identification and tracking
capabilities of our proposed methodology, which reveal remark-
able performance gains compared with existing techniques, in
both detecting the existing G-causal links and avoiding false
alarms, while capturing the dynamics of the G-causal interactions

in a neuronal ensemble. We finally apply our techniques to two
experimentally recorded datasets: two-photon imaging data from
the mouse auditory cortex under spontaneous activity and simul-
taneous single-unit recordings from the ferret primary auditory
(A1) and prefrontal cortices (PFC) under a tone-detection task.
Our analyses reveal the temporal details of the functional inter-
actions between A1 and PFC under attentive behavior as well
as among the auditory neurons under spontaneous activity at
unprecedented spatiotemporal resolutions. In addition to their
utility in analyzing neuronal data, our techniques have potential
application in extracting functional network dynamics in other
domains beyond neuroscience, such as social networks or gene
regulatory networks, thanks to the plug-and-play nature of the
algorithms used in our inference framework.

Theory and Algorithms
Preliminaries and Notations. We use point process modeling to
capture neuronal spiking statistics. A point process is a stochas-
tic sequence of discrete events occurring at random points in
continuous time. When adapted to the discrete time domain,
point process models have proven to be successful in captur-
ing the statistics of neuronal spiking (37, 44–46). Our analysis
in this paper is based on discrete point process models, in which
the observation interval T is discretized to T : =dT /∆e bins of
length ∆. By choosing ∆ small enough, the resulting neuronal
data transform into a binary sequence {nt}Tt=1. The statistics of
this sequence can be fully characterized by its conditional inten-
sity function (CIF) denoted by λt , representing the neuron’s
instantaneous firing rate at time bin t conditional on all of the
data and covariates up to time t . The binary spiking sequence
can be modeled by a conditionally independent Bernoulli process
with success probability of λt∆.

Suppose that at time bin t the effective neural covariates
are collected in a vector xt∈RM . Such covariates include the
neuron’s spiking history, the history of the activity of other neu-
rons, and extrinsic stimuli. A dynamic generalized linear model
(GLM) with logistic link function for this neuron’s CIF (43) is
given by

λt∆ : = logit−1 (ω′t xt

)
, [1]

where logit−1(z ) : = 1
1+exp(−z)

, for z ∈R, is the logistic func-
tion, and ωt denotes the time-varying parameter vector of
length M at time t , characterizing the dynamics of the under-
lying neuronal encoding process. We consider a multiscale
window-based model for ωt with piecewise constant dynamics
within windows of length W ≥ 1 samples. To this end, we seg-
ment the spiking activity {nt}Tt=1 to K : = dT/W e windows of
length W bins and assume that ωt =ωk for all t ∈ [(k − 1)W +
1, . . ., kW ], where k = 1, . . .,K . For notational convenience, we
denote the spiking activity associated with time window k by a
vector nk : = [n(k−1)W+1,n(k−1)W+2, . . .,nkW ]′, the CIF vector
by λk : = [λ(k−1)W+1,λ(k−1)W+2, . . .,λkW ]′, and the matrix of
covariates by Xk : = [x(k−1)W+1, x(k−1)W+2, . . ., xkW ]′ with rows
corresponding to the covariate vectors. We assume that the
parameter vectors {ωk}Kk=1 are sparse.

To capture the adaptivity manifested in the spiking dynam-
ics, we use the forgetting factor mechanism of RLS algorithms
(47) and combine the data log-likelihoods up to time k using an
exponential weighting scheme (43):

`βk (ω) : = (1−β)

k∑
i=1

βk−i(n′i Xiω− 1′W log(1W + exp(Xiω))
)
,

[2]

where ω denotes a generic parameter vector, 0<β≤ 1 is the
forgetting factor parameter, and 1W is the vector of all-ones
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of length W . When applied to vectors, the functions log(·) and
exp(·) are understood to act in an elementwise fashion.

The parameter vectors ωk for k = 1, 2, . . .,K can be effi-
ciently estimated from the data using a sparse adaptive point
process filter, referred to as `1–PPF1 (43). The `1–PPF1 algo-
rithm estimates the sparse time-varying parameter vectors from
point process observations in an online fashion by recursively
maximizing a sequence of `1-regularized exponentially weighted
log-likelihoods via a proximal algorithm:

ω̂k = argmax
ωk

{
`βk (ωk )− γ‖ωk‖1

}
, [3]

where γ≥ 0 is a regularization parameter and can be selected
analytically or through cross-validation (43). Statistical confi-
dence regions for the estimates ω̂k can be computed using
a recursive nodewise regression procedure (43). Throughout
the rest of paper, we use the `1–PPF1 algorithm for adaptive
parameter estimation.

The AGC Measure. Consider simultaneous spike recordings from
an ensemble of C neurons indexed by c = 1, 2, · · · ,C , denoted
by {{n(c)

t }Tt=1}Cc=1 over the time bins t = 1, · · · ,T . At time t ,
the spiking statistics of each neuron (c) are modeled via the
CIF formulation of Eq. 1 using a sparse modulation param-
eter vector ω(c)

t = [µ
(c)
t ,ω

(c,1)′

t ,ω
(c,2)′

t , · · · ,ω
(c,C)′

t ,θ
(c)
t ]′ con-

sisting of a scalar baseline firing parameter µ(c)
t , a collection

of sparse history dependence parameter vectors {ω(c,c̃)
t }Cc̃=1 of

size MH , in which ω
(c,c̃)
t represents the contribution of the

spiking history of neuron (c̃) to the CIF of neuron (c), and
θ
(c)
t accounts for the stimulus modulation vector (e.g., receptive

field). Let h
(c)
t,i : =

∑t−1−bi−1

j=t−1−bi
n
(c)
j be the spike count of neu-

ron (c) within the i -th spike counting window of length WH ,i ,
where bi : =

∑i
j=1 WH ,j for i = 1, 2, · · · ,MH and b0 = 0. The

covariates associated with the ensemble activity are given by
xt : =[1, h(1)′

t , h(2)′

t , · · · , h(C)′

t , s′t ]
′, where h(c)

t : = [h
(c)
t,1 , h

(c)
t,2 , · · · ,

h
(c)
t,MH

]′ denotes the history of spike counts of neuron (c) within
nonoverlapping windows of WH = [WH ,1, . . .,WH ,MH ] up to a
lag of LH : =

∑MH
i=1 WH ,i , and st∈RMs is the vector of neu-

ral stimuli in effect at bin t . We refer to this model, where
the history of all of the neurons in the ensemble is taken
into account, as the full model. Fig. 1 shows an example of
the neuronal ensemble and the corresponding covariates for
C = 3.

To assess the G-causal influences, a likelihood-based GC mea-
sure has been proposed in ref. 40 for point process models.
Consider neuron (c) as the target neuron with an observation

1

3 2

Fig. 1. An example of the neuronal ensemble model for C = 3 neurons and
WH,i = 1, ∀ i. The CIF of neuron (2) can be expressed as λ(2)

t ∆ = logit−1(µ(2)
t +

ω(2,1)′
t h(1)

t +ω(2,2)′
t h(2)

t +ω(2,3)′
t h(3)

t + θ(2)′
t st).

vector n(c) : =[n
(c)
1 ,n

(c)
2 , · · · ,nT

(c)]′. Let H(c) denote the his-
tory of the covariates of neuron (c). The parameter vector and
covariate history of neuron (c) after excluding the effect of neu-
ron (c̃) are denoted by ω(crc̃) and H(crc̃), respectively, and
compose the so-called reduced model. The log-likelihood ratio
statistic associated with the G-causal influence of neuron (c̃) on
neuron (c) can be defined as

F (c̃ 7→ c) : = s
(
ω̂(c,c̃)) log

L(ω̂(c)| n(c),H(c))

L(ω̂(crc̃)| n(c),H(crc̃))
, [4]

where L(ω̂|n,H) denotes the likelihood of estimated parame-
ter vector ω̂ given the observation sequence n and the history
of the covariatesH, and s(ω) : = sign(

∑
l ωl). Based on this for-

mulation, the GC effect from neuron (c̃) to neuron (c) can be
measured as the reduction in the point process log-likelihood
of neuron (c) in the reduced model as compared with the full
model. Note that the signum function determines the effective
excitatory or inhibitory nature of this influence.

Most existing formulations of GC leverage the MVAR model-
ing framework (20–29, 31, 35), which pertains to data with linear
Gaussian statistics. The GC measure in Eq. 4, however, benefits
from the likelihood-based inference methodology and covers a
wide range of complex statistical models. Both the MVAR-based
GC measure and its log-likelihood-based point process variant
of ref. 40 assume that the underlying time series are stationary
(i.e., the modulation parameters are all static). In many scenarios
of interest, however, the underlying dynamics exhibit nonsta-
tionarity. An example of such a scenario is the task-dependent
receptive field plasticity phenomenon (43, 48, 49). In addition,
ML estimation used by these techniques does not capture the
underlying sparsity of the parameters and often exhibits poor
performance, when the data length is short or the number of
neurons C is large.

To account for possible changes in the ensemble parameters
and their underlying sparsity, we introduce the AGC measure,
which is capable of capturing the dynamics of G-causal influences
in the ensemble. To this end, we make two major modifications
to the classical GC measure. First, we leverage the exponentially
weighted log-likelihood formulation of Eq. 2 to induce adaptivity
into the GC measure. Second, we exploit the possible sparsity
of the ensemble parameters. Replacing the standard data log-
likelihoods in Eq. 4 by their sparse adaptive counterparts given
in Eqs. 2 and 3, we define the AGC measure from neuron (c̃) to
neuron (c) at time window k as

F (c̃ 7→ c)
k ,β : = sk (ω̂

(c,c̃)
k )

(
`βk (ω̂

(c)
k )− `βk (ω̂

(crc̃)
k )

)
. [5]

Although these modifications bring about crucial advantages in
capturing the functional network dynamics in a robust fashion,
they require construction of a statistical inference framework in
order for the proposed AGC measure to be useful. We address
these issues in the forthcoming section.

Statistical Inference of the AGC Measure. Due to the stochastic
and often biased nature of GC estimates, nonzero values of
GC do not necessarily imply existence of G-causal influences.
Hence, a statistical inference framework is required to assess the
significance of the extracted G-causal interactions.

Consider two nested GLM models, referred to as full and
reduced models, with parameters ω(F) : =ω(c) and ω(R) =

ω(crc̃), respectively, in which the latter is a special case of
the former. To assess the significance of a GC link, one can
test for the null hypothesis H0 :ω=ω(R) against the alterna-
tive H1 :ω=ω(F). The commonly used test statistic is referred

Sheikhattar et al. PNAS | vol. 115 | no. 17 | E3871



to as the deviance difference of the two models and is defined
as D(ω̂(F); ω̂(R)) : = 2

(
`(ω̂(F))− `(ω̂(R))

)
, where `(·) is the log-

likelihood and ω̂(F) and ω̂(R) denote the parameter estimates
under the full and reduced models, respectively. The deviance
difference for the likelihood-based GC is twice the right-hand
side of Eq. 4, modulo the signum function.

To perform the foregoing hypothesis test, the distributions of
the deviance difference under the two hypotheses need to be
characterized. Although these distributions are known for the
classical GC measure (50–52), they cannot be readily extended
to our AGC measure for two main reasons. First, the log-
likelihoods are replaced by their exponentially weighted counter-
parts, which suppresses their dependence on the data length N
due to the forgetting factor mechanism. Second, unlike ML esti-
mates, which are asymptotically unbiased, the `1-regularized ML
estimates are biased and hence violate the common asymptotic
normality assumptions.

To address these challenges, inspired by recent results in high-
dimensional regression (53, 54), we define the adaptive de-biased
deviance as

Dk ,β(ω̂k ;ωk ) : =
1 +β

1−β

(
2
(
`βk (ω̂k )− `βk (ωk )

)
− ˙̀β

k (ω̂k )′῭
β

k (ω̂k )−1 ˙̀β
k (ω̂k )

)
, [6]

where ˙̀β
k (·) and ῭β

k (·) are the gradient vector and Hessian matrix
of the exponentially weighted log-likelihood function `βk (·), and
ωk and ω̂k denote the true and estimated parameter vector at
time window k , respectively. The adaptive de-biased deviance is
composed of two main terms: The first term is twice the exponen-
tially weighted log-likelihood ratio statistic, which is analogous
to the standard deviance difference, whereas the second is a bias
correction term. The bias correction term compensates for the
effect of the `1-regularization bias imposed in favor of enforc-
ing sparsity in the estimate ω̂k . The effect of forgetting factor
mechanism appears in the form of the scaling (1 +β)/(1−β).
Finally, we define a test statistic referred to as adaptive de-biased
deviance difference:

D
(c̃ 7→ c)
k ,β : =Dk ,β(ω̂

(c)
k ;ω

(c)
k ) − Dk ,β(ω̂

(crc̃)
k ;ω

(crc̃)
k ). [7]

In what follows, we will mainly work with D
(c̃ 7→ c)
k ,β , as opposed

to its biased version given by F (c̃ 7→ c)
k ,β in Eq. 5. Note that

F (c̃ 7→ c)
k ,β = 1

2
sk (ω̂

(c,c̃)
k )

(
D

(c̃ 7→ c)
k,β

1+β
+B

(c̃ 7→ c)
k ,β

)
, where B

(c̃ 7→ c)
k ,β is

the difference of the bias terms of the full and reduced models.
There are four major challenges in inferring a GC influence

from D
(c̃ 7→ c)
k ,β : (i) efficient computation of D

(c̃ 7→ c)
k ,β from the

data, (ii) determining the distribution of D
(c̃ 7→ c)
k ,β under the

absence and presence of a GC link, (iii) controlling the false
discovery rate (FDR), and (iv) assessing the significance of the
detected GC links. We will address these challenges in the

remainder of this section. Fig. 2 shows a schematic depiction of
the overall inference procedure, which we will discuss next.
(i) Recursive computation of the AGC. The computation of the
adaptive de-biased deviance differences D

(c̃ 7→ c)
k ,β for all of the

possible |C| links and at all times k is required for our statistical
analysis. Therefore, in order for the analysis to scale favorably
with the network size C and the data length K , it is crucial
to develop an efficient framework for the computation of the
AGC measure. The RLS-inspired exponential weighting of the
log-likelihoods in Eq. 2 indeed paves the way for the recursive
computation of the AGC measure. The recursive procedure for
computing `βk (ω̂k ) for a generic estimate ω̂k is given in Algorithm
S3 in SI Appendix, section 3, from which the AGC measure of
Eq. 5 can be computed. This step comprises the recursive AGC
computation block in Fig. 2.
(ii) Asymptotic distributional analysis of the AGC. Let M (F) and
M (R) denote the dimensions of ω(c) and ω(crc̃), respectively. In
Theorem S1 in SI Appendix, section 1 we establish the following
result under mild technical conditions: As β→ 1,

i) in the absence of a GC link from (c̃) to (c), D
(c̃ 7→ c)
k ,β →

χ2(M (d)), and
ii) in the presence of a GC link from (c̃) to (c), if the correspond-

ing cross-history coefficients scale at least as O
(√

1−β
1+β

)
, then

D
(c̃ 7→ c)
k ,β →χ2

(
M (d), ν

(c̃ 7→ c)
k

)
,

where M (d) : =M (F)−M (R) is the dimensionality difference of
the two nested models, and ν

(c̃ 7→ c)
k > 0 is the corresponding

noncentrality parameter at time window k .
Theorem S1 has two main implications. First, it establishes that

our proposed adaptive de-biased deviance difference statistic
admits simple asymptotic distributional characterization. Given
that these asymptotic distributions form the main ingredients of
the forthcoming inference procedure, the second block in Fig.
2 serves to highlight the significance of adaptive de-biasing. As
shown in SI Appendix, section 3, the bias B

(c̃ 7→c)
k ,β can also be

computed in a recursive fashion.
Second, given that for ν(c̃ 7→ c)

k = 0 the noncentral chi-squared
distribution coincides with the chi-squared distribution, the non-
centrality parameter plays a key role in separating the distri-
butions under the null and alternative hypotheses: When the
deviance difference is close to zero, the null hypothesis H0

is likely to be true (i.e., no GC link). When the deviance
difference is large, the alternative H1 is likely to be true
(i.e., a GC link exists) (See Remark 2 in SI Appendix, sec-
tion 1, for further discussion.) The noncentrality parameter
ν
(c̃ 7→ c)
k , however, is a complicated function of the true val-

ues of the parameters and cannot be directly observed. In
the next two subsections, we initially assume that an estimate
ν̂
(c̃ 7→ c)
k is at hand, and later on derive an algorithm for its

estimation.
The output of the second block in Fig. 2 is the de-biased

deviance differences corresponding to all pairs of neurons
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Fig. 2. Schematic depiction of the inference procedure for the AGC measure.
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(shown in 2D as deviance difference maps). In the next two sub-
sections we will show how to translate the deviance differences
to statistically interpretable AGC links.
(iii) FDR control. First, we use part i of the result of Theorem S1 to
control the FDR in a multiple hypothesis testing framework. To
this end, we use the Benjamini–Yekutieli (BY) procedure (55).
The BY procedure aims at controlling the FDR, which is the
expected ratio of incorrectly rejected null hypotheses, or namely
“false discoveries,” at a desired significance level α.

To identify significant GC interactions while avoiding spu-
rious false positives, we conduct multiple hypothesis tests on
the set of |C| : =C × (C − 1) pairwise possible GC interactions
C : = {(c̃ 7→ c) | c̃, c = 1, . . .,C , c 6= c̃} among the C neurons at
each time step k . The null hypothesis H

(c̃ 7→ c)
0,k corresponds to

lack of a GC link from neuron (c̃) to (c) at time step k . Thus,
rejection of the null hypothesis amounts to discovering a GC link
(c̃ 7→ c) at time step k . We first compute D

(c̃ 7→ c)
k ,β for all possible

links in C. Based on Theorem S1, under null hypothesis H (c̃ 7→ c)
0,k

we have D
(c̃ 7→ c)
k ,β →χ2(M (d)) as β→ 1. Hence, by virtue of con-

vergence in distribution, for β close to 1, thresholding the test
statistic results in a consistent approximation to limiting the
false positive rate: H (c̃ 7→ c)

0,k is rejected at a confidence level of

1−α, if D(c̃ 7→ c)
k ,β >F−1

χ2(M (d))
(1−α), where F−1

χ2(M (d))
(·) is the

inverse CDF of a χ2 distribution with M (d) degrees of free-
dom. Using the BY procedure, we can thus control the mean
FDR at a rate of ᾱ : = (|C|+1)α

2|C| log |C| for all tests (Fig. 2, third
block). Algorithm S1 in SI Appendix, section 2, summarizes this
procedure.
(iv) Test strength characterization via noncentral χ2 filtering and
smoothing algorithm. Next, we use part ii of the result of The-
orem S1 to assess the significance of the tests for the detected
GC links. Under the alternative hypothesis, Theorem S1 implies
that H (c̃ 7→ c)

1,k :D
(c̃ 7→ c)
k ,β →χ2

(
M (d), ν

(c̃ 7→c)
k

)
as β→ 1. Hence, by

virtue of convergence in distribution, the false negative rate can
be estimated by η(c̃ 7→ c)

k : = Fχ2(M (d),ν̂k )

(
F−1

χ2(M (d))
(1−α)

)
, at a

confidence level of 1−α, where Fχ2(M (d),ν̂k )
(·) represents the

CDF of a noncentral χ2 distribution with M (d) degrees of free-
dom and the estimate ν̂k of the noncentrality parameter ν(c̃ 7→ c)

k .
To quantify the significance of an estimated GC link, we use the
Youden’s J -statistic, which is an effective measure often used for
summarizing the overall performance of a diagnostic test. The
J-statistic in our setting is given by

J
(c̃ 7→ c)
k : = 1−α−Fχ2(M (d),ν̂k )

(
F−1

χ2(M (d))
(1−α)

)
, [8]

for a fixed significance level α. Note that the J-statistic can take
values in [0, 1]. The case of J

(c̃ 7→ c)
k being close to one repre-

sents high sensitivity and specificity of the test statistic, which
coincides with large values of noncentrality. One advantage of
the J-statistic over the conventional P value is that it accounts
for both type I and type II errors. In the context of GC analy-
sis, the J-statistic for each possible link can serve as a normalized
indicator of how reliable the detected link is. For consistency,
we assign a value of J (c̃ 7→ c)

k = 0, when the null hypothesis is not
rejected.

It remains to estimate the unknown noncentrality parame-
ters ν(c̃ 7→ c)

k given the observed deviance differences D
(c̃ 7→ c)
k ,β .

Under the assumption that ν(c̃ 7→ c)
k changes smoothly in time,

this can be carried out efficiently by a noncentral χ2 fil-
tering and smoothing algorithm, which is given by Algorithm
S2 in SI Appendix, section 2. Given these estimates, the

J-statistics for the rejected nulls can be computed at ᾱ (Fig. 2,
fourth block), as summarized in Algorithm S1 in SI Appendix,
section 2.

Algorithm 1: AGC Inference from Ensemble Neuronal Spiking
Input: Spike trains {{n(c)

t }
T
t=1}

C
c=1 and parameters Θ.

1. for c, c̃ = 1, . . .,C ,c̃ 6=c do
2. Recursively estimate the sparse time-varying modulation

parameter vectors {ω̂(c)
k }

K
k=1 and {ω̂(crc̃)

k }Kk=1 corresponding
to full and reduced GLMs using `1–PPF1 (43),

3. Recursively compute the adaptive de-biased deviance differ-
ences {D(c̃ 7→ c)

k ,β }Kk=1 (Algorithm S3),
4. Perform noncentral χ2-squared filtering and smoothing to

estimate the noncentrality parameters {ν̂(c̃ 7→ c)
k }Kk=1 from

{D(c̃ 7→ c)
k ,β }Kk=1 (Algorithm S2),

5. for k = 1, . . ., K do
6. Apply BY rejection rule to the ensemble set of GC tests to

control FDR at rate α (Algorithm S1),
7. Compute AGC maps Φ̂k ∈ [−1, 1]C×C based on the J -

statistics as (Φ̂k )c,c̃ : = sk

(
ω̂

(c,c̃)
k

)
J

(c̃ 7→ c)
k (Algorithm S1).

Output: AGC maps{Φ̂k}Kk=1.

Summary of Advantages over Existing Work. Algorithm 1 sum-
marizes the overall AGC inference procedure. Choices of the
parameters Θ involved in Algorithm 1 and its computational
complexity are discussed in SI Appendix, sections 4–6. Before
presenting applications to synthetic and real data, we summarize
the advantages of our methodology over existing work:

i) Sparse dynamic GLM modeling provides more accurate esti-
mates of the parameters (43), and hence more reliable detec-
tion of the GC links, as compared with existing static methods
based on ML. We examine this aspect of our methodology in
SI Appendix, section 8, using an illustrative simulation study;

ii) Relating the noncentrality parameters to the test strengths of
the detected GC links is not used by existing techniques. In
light of Theorem S1 and the need for estimating the noncen-
trality parameters, we devised a noncentral χ2 filtering and
smoothing algorithm to exploit the entire observed data for
obtaining reliable estimates;

iii) Exponential weighting of the log-likelihoods admits con-
struction of adaptive filters for estimating the network
parameters in a recursive fashion, which significantly reduces
the computational complexity of our inference procedure;
and

iv) Characterization of AGC via the J-statistic as a normalized
measure of hypothesis test strength for each detected GC
link can be further used for graph-theoretic analysis of the
inferred functional networks. By viewing the J-statistic as a
surrogate for link strength, the AGC networks can be refined
by thresholding the J-statistics, and access to the distribution
of the J-statistics in a network allows one to perform further
hypothesis tests regarding the network function (56).

In the next section, we illustrate these advantages by com-
paring our methodology with two representative techniques for
inferring functional network dynamics.

Applications
A Simulated Example. We consider a network of C = 8 function-
ally interconnected neurons whose connectivity pattern evolves
in time. As illustrated in Fig. 3A, the network dynamics undergo
three main states, each covering one-third (40 s) of the simu-
lation period: (i) the first static state, where neuron (1) plays
a dominant role, causally influencing all other neurons; (ii) the
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Fig. 3. Functional network dynamics inference from simulated spikes. (A)
Three states of the functional network evolution, where neurons (ver-
tices) are interacting through static (solid edges) or dynamic (dashed edges)
causal links of inhibitory (open circles) or excitatory (filled circles) nature.
(B) One realization of simulated spikes within windows of 1 s selected at
{40, 60, 120} s. (C) Estimated noncentrality ν̂k across time corresponding
to four selected GC links (color-coded in network map), along with the
shifted deviance differences Dk −M(d) (black traces) and the 95% confi-
dence regions for each estimated trace ν̂k (colored traces). (D) Four panels
of estimated J-statistics Jk corresponding to the selected GC links. (E) Perfor-
mance comparison of the causal inference methods: (i) the proposed AGC
method (second row), (ii) the static GC method in ref. 40 (third row), and
(iii) the functional connectivity method in ref. 38 (last row), along with the
true causality maps (first row). Each panel represents the estimated 8× 8
causality map at a specific time.

intermediate dynamic state, where neuron (1) loses the domi-
nant role to neuron (5), as its causal influences smoothly decay,
while a new set of causal interactions from neuron (5) to all of
the other neurons emerge; and (iii) the final static state, where
all of the causal links from neuron (1) are completely vanished
and the links from neuron (5) are stabilized. The network also
comprises three static causal links, for example, (3 7→ 7), which
remain constant throughout.

An observation period of T = 120 s is discretized to K = 120 k
bins of length ∆ = 1 ms. We use a point process model with
Bernoulli spiking statistics to generate the binary spike trains
for all neurons, where the CIF is modeled given the dynamic
GLM of Eq. 1. The details of the parameter selection and esti-
mation are given in SI Appendix, section 5. Fig. 3B shows a
realization of the simulated spike trains indicated by black ver-
tical lines for all eight neurons within three sample windows
of length 1 s, with end points at {40, 60, 120} s, selected from

the three segments of the simulation. Note that the G-causal
pattern of Fig. 3A is unknown to the estimator, and is to be
inferred from the simulated spike trains. Fig. 3C shows the time
course of the estimated noncentrality parameters ν̂k and their
95% confidence intervals obtained by the noncentral χ2 filtering
and smoothing algorithm associated with four selected GC links:
(i) (1 7→ 4) a dynamic weakening GC link (red), (ii) (5 7→ 2)
a dynamic strengthening GC link (blue), (iii) (8 7→ 6) a static
link (green), and (iv) (8 7→ 2) a nonexisting GC link (magenta).
Black traces show the shifted observed deviances Dk −M (d).
Fig. 3D represents the time course of the estimated J -statistics
plotted in four separate panels, where the FDR is controlled at a
rate α= 0.1.

In Fig. 3C, the estimates of ν̂k corresponding to the three
existing GC links take significant values, correctly identifying
the G-causal interactions, while ν̂k takes values close to zero
for the nonexisting link, implying no significant G-causal inter-
action. The time course of changes for both dynamic links and
the static link is closely tracked by the noncentrality parameters,
albeit with an apparent delay. This delay is due to the choice of
the effective window length and highlights the trade-off between
estimation accuracy and delay. While it is possible to reduce this
delay by choosing smaller effective windows, for the sake of accu-
racy of parameter estimation, and thereby robust detection of
the AGC links, we have chosen the effective window length to be
10 s (a fraction of the 40-s transition period) to incur a tolera-
ble delay. The aforementioned performance is echoed in the test
strengths quantified by the J -statistics shown in Fig. 3D. Even
though the noncentrality parameters in Fig. 3C track the changes
of the network parameters much faster, the J-statistics may lag
behind due to the conservative statistical thresholds set by the
FDR control procedure. By choosing a higher FDR level, the J-
statistics will capture the changes much faster, but at the expense
of possibly more false discoveries. It is noteworthy that our pro-
posed method distinguishes the direct GC links from the indirect
ones, as it correctly detects the direct GC links (8 7→ 6) and
(6 7→ 2) but rejects the existence of the corresponding indirect
link (8 7→ 2).

The top row in Fig. 3E shows the ground truth G-causal maps
plotted at nine time instances (three per segment). Each map
Φ represents an 8× 8 color-coded array showing the excitatory,
inhibitory, and no-GC links in red, blue, and green, respectively.
The AGC maps estimated by our method are shown in the
second row, where each entry (Φ̂k )c,c̃ represents the J -statistic

J
(c̃ 7→ c)
k of the estimated GC link (c̃ 7→ c), where the excitatory

or inhibitory nature of the links is determined by the sign of the
AGC measure, accounting for the aggregate cross-history contri-
bution, and is not indicative of the morphological identity of the
connections.

We compare the AGC maps with two other methods: the static
GC method of ref. 40 (third row), and the functional connec-
tivity analysis of ref. 38 (final row). To adapt these methods to
the time-varying setting, we used nonoverlapping window seg-
ments whose length is chosen to match the effective window
length Neff : = W

1−β
of our method. Within each window, the

signed binary functional connectivity is estimated using the meth-
ods outlined in refs. 38 and 40. The true model order and the
same significance level are used for all methods (see SI Appendix,
section 5, for more details). Fig. 3E (last two rows) shows the
connectivity maps obtained by refs. 38 and 40. On a qualitative
level, Fig. 3E reveals the favorable performance of our pro-
posed framework in terms of both identification and tracking of
the GC influences. The method of ref. 40 results in both high
false positive and false negative errors and fails to track the GC
dynamics due to highly variable parameter estimates. Similarly,
the method of ref. 38 shows poor false positive rejection and
tracking performance.
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Fig. 4. Performance comparison of AGC inference with the methods of refs.
40 and 38 in terms of TDR (green) and FAR (red) for the three segments
of the simulation period. Boxes represent the mean and 90% confidence
intervals. Asterisks indicate significant difference with effect size of r≥ 0.8
(Wilcoxon signed-rank test, P< 0.001). AUC values corresponding to the
ROC performance of the three algorithms are reported at the bottom (see
SI Appendix, section 7 for more details).

To quantify the foregoing performance comparison, we
repeated the simulation for R = 500 realizations of spike trains
randomly generated based on the network dynamics in Fig. 3A.
Fig. 4 represents the performance results in terms of true detec-
tion rate (TDR) and false alarm rate (FAR), which are shown
in green and red, respectively. Boxes represent the mean and
90% confidence intervals. Based on the Wilcoxon signed-rank
test with P < 0.001, our method has a significantly lower FAR
compared with both ref. 38 (effect sizes of r = 1 for all seg-
ments) and ref. 40 (r = 0.8, 0.86 and 0.98 for the three segments,
respectively). Our achieved TDRs are also significantly higher
than those of ref. 40 (r = 0.73, 0.996 and 0.94 for the three
segments, respectively) and are only outperformed by ref. 38
in the middle segment (r = 0.19, 0.86 and 0.27 for the three
segments, respectively). By varying the significance levels for
all of the algorithms, we also evaluated their receiver operat-
ing characteristic (ROC) performance, whose area under the
curve (AUC) values for the three segments are indicated in
Fig. 4. Further details on the comparison procedure as well as
assessing the robustness of our method to the choice of param-
eters are given in SI Appendix, section 7. It is noteworthy that
our method is the only one with consistently low FAR (< 1%),
while maintaining high TDR. Finally, both methods in refs. 38
and 40 output binary connectivity maps, as opposed to AGC,
which provides normalized continuous-valued test strengths of
the detected GC links. In the spirit of easing reproducibil-
ity, we have archived a MATLAB implementation that fully
generates Fig. 3 on GitHub (https://github.com/Arsha89/AGC
Analysis).

Application to Real Data: Spontaneous Activity in the Mouse Auditory
Cortex. In this section, we apply our proposed method to exper-
imentally recorded neuronal population data from the mouse
auditory cortex. We imaged the spontaneous activity in the audi-
tory cortex of an awake mouse with in vivo two-photon calcium
imaging (see SI Appendix, section 13 for details of the experimen-
tal procedures). Within an imaged field of view, the activity of
Ncells = 219 neurons is recorded at a sampling rate of fs ≈ 30 Hz
for a total duration of T ≈ 22 min. Spike trains are inferred from
the fluorescence traces using the constrained-foopsi technique
(57). For GC inference, a subset of C = 20 neurons exhibiting
high spiking activity were selected, as many of the neurons in
the ensemble are relatively silent. The FDR is controlled at a
rate of α= 0.005 for testing the |C|= 380 possible GC links.
Fig. 5 A and B show the time course of the noncentrality esti-
mates and J -statistics for four selected candidate GC links,
respectively. These representative GC links consist of a persis-

tent link (6 7→ 4) (blue), two transient links (1 7→ 18) (red) and
(2 7→ 12) (green), and an insignificant link (8 7→ 9) (magenta).
Fig. 5 C and D show four snapshots of the AGC map estimates,
respectively in the matrix form and as a network overlaid on the
slice, at time-stamps {8.33, 11.66, 16.66, 22.22} min. Other than
the three color-coded significant links, the rest of the detected
G-causal links are indicated by black arrows.

The detected G-causal maps are considerably sparse (maxi-
mum ∼ 16 out of 380 possible links), with a few persistent GC
links and a multitude of transient links emerging and vanishing
over time (Movies S1 and S2). The sparsity of the AGC maps is
consistent with sparse activity in auditory cortex (58). A care-
ful inspection of the spatial pattern of the AGC links reveals
that the detected links correspond to distances in the range of
[150, 200] µm. These distances are consistent with in vitro mea-
surements of the spatial patterns of intralaminar connectivity
within the mouse auditory cortex (59), showing a significant peak
in the connection probability within the mean radial range of
[120, 200] µm. These results indicate that the proposed AGC
method is able to detect underlying connectivity patterns among
neurons.

Application to Real Data: Ferret Cortical Activity During Active
Behavior. Studies of the PFC have revealed its association with
high-level executive functions such as decision making and atten-
tion (60–62). In particular, recent findings suggest that PFC is
engaged in cognitive control of auditory behavior (62), through
a top-down feedback to sensory cortical areas, resulting in
enhancement of goal-directed behavior. It is conjectured in
ref. 63 that the top-down feedback from PFC triggers adap-
tive changes in the receptive field properties of A1 neurons
during active attentive behavior, to facilitate the processing
of task-specific stimulus features. This conjecture has been
examined in the context of visual processing, where top-down
influences exerted on the visual cortical pathways have been
shown to alter the functional properties of cortical neurons
(64, 65).

A

B

C

D

Fig. 5. Adaptive G-causal interactions among ensemble of neurons in
mouse auditory cortex under spontaneous activity. The time course of
estimated GC changes for four selected GC links obtained through (A) non-
centrality parameter ν̂k and (B) J-statistics Jk. (C) AGC map estimates Φ̂k at
four selected points in time, marked by the dashed vertical lines in the top
panel. (D) network maps overlaid on the slice, showing cells with black cir-
cles and the selected cells highlighted in cyan. The detected GC links are
depicted in black directed arrows and colored for the selected links.
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To examine this conjecture at a single-unit level, we apply our
proposed AGC inference method to single-unit spiking activi-
ties from an ensemble of neurons simultaneously recorded from
two cortical regions of A1 and PFC in ferrets during a series of
passive listening and active auditory task conditions. In this appli-
cation, we sought to reveal the significant task-specific changes
in the G-causal interactions within or between PFC and A1
regions at the single-unit level during active behavior. We used
the spike data recordings from a large set of experiments (more
than 35) conducted on three ferrets for GC inference analysis
(data from the Neural Systems Laboratory, Institute for Sys-
tems Research, University of Maryland, College Park, MD).
During each trial in an auditory discrimination task, the ferrets
were presented with a random sequence of broadband noise-like
acoustic stimuli known as temporally orthogonal ripple combi-
nations (TORCs) along with randomized presentations of the
target tone. Ferrets were trained to attend to the spectrotempo-
ral features of the presented sounds and discriminate the tonal
target from the background reference stimuli (see ref. 63 for
details of the experimental procedures). Due to their broad-
band noise-like features, the TORCs and the corresponding
neural responses admit efficient estimation of the spectrotempo-
ral tuning of the primary auditory neurons via sparse regression
(43, 66).

Fig. 6 shows our results on a selected experiment in which a
total number of C = 9 single units were detected through spike
sorting (five units in A1 and four units in PFC). The selected
experiment consists of three main blocks: passive listening pre-
task, active task, and passive listening post-task, composed of
R = 4, 4, and 6 repetitions, respectively. Within each repetition,
a complete set of 30 randomly permuted TORCs were pre-
sented along with a randomized presentation of the target tone
at f = 2.5 kHz. Fig. 6A shows the activity of all of the units dur-
ing the first repetition of each block, separated by vertical dashed
lines. Fig. 6B shows the time courses of the inferred J -statistics,
where each row represents the significant incoming GC links
from all of the other units. Each unit and its significant outgoing
GC links are color-coded uniquely as labeled on the right side
of each panel. For brevity, the significant GC links that show a
degree of persistence during at least one block of the experiment

are plotted. Fig. 6C depicts the representative network maps of
the GC links among the nine units during the three main blocks,
where each significant GC link from panel Fig. 6B is indicated
by a directional link. Finally, Fig. 6D exhibits snapshots of the
STRFs of all of the five A1 units, taken at the end point of each
block. The red arrow marks the tonal target.

Three major task-specific dynamic effects can be inferred from
Fig. 6: (i) a significant bottom-up GC link from the target-tuned
A1 unit during active behavior, (ii) a persistent task-relevant top-
down GC link, and (iii) task-relevant plasticity and rapid tuning
changes within A1. First, unit 4 in A1 shows strong frequency
selectivity to the target around f = 2.5 kHz during the whole
experiment (vertical dashed lines, Fig. 6D). Moreover, its STRF
dynamics reveal a plastic shift of the target-tuned facilitative
regions to shorter latencies following the active attentive behav-
ior (upward arrow, middle panel; see also Movie S3). Strikingly,
a bottom-up GC link from the very same strongly target-tuned
unit to PFC (red link, 4 7→ 8) emerges during the active task (sec-
ond row, Fig. 6B), temporally preceding any top-down significant
GC link.

The second effect appears as a strong top-down GC link (green
link, 8 7→ 3) which builds up during the active auditory behavior
and even persists during a few repetitions of the post-active con-
dition (fifth row, Fig. 6B). The onset of this top-down GC link
coincides with a dramatic and rapid change in the STRF of the
A1 unit 3, which was initially tuned to∼ 8 kHz (downward arrow,
Fig. 6D, Left) but eventually gets suppressed at this nontarget fre-
quency (Fig. 6D, Middle) by getting G-causally influenced by the
PFC unit 8. This effect reveals the relationship between the top-
down network dynamics and the changes in the tuning of the A1
units. We examine the dynamics of the parameters of the fore-
going bottom-up and top-down links in detail in SI Appendix,
section 10, for further clarification. The third effect concerns the
emergence and strengthening of frequency selectivity in some of
the A1 units (e.g., units 1 and 2, Fig. 6D, Right) to the target tone,
which alludes to a salient synaptic reinforcement effect within A1
during and after the active task.

In addition to these interregion GC links, multiple instances
of GC links within A1 (e.g., 5 7→ 4) or within PFC (e.g., 9 7→
8) emerge or vanish during the active block, which accounts
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for the task-specific network-level changes within the cortical
regions that are involved in active listening. A salient instance
of this phenomenon can be observed in the dynamics of unit
8, whose GC links within PFC significantly change during the
active behavior: As it gets G-causally linked to the lower-level
A1 region, its GC links to the other PFC units fade away
(rows 1, 3 and 5, Fig. 6B). It is noteworthy that the fluctuating
instances of the J-statistics (e.g., Fig. 6B, fourth row, third seg-
ment) are due to the FDR control procedure, and there is no
evidence to believe that they have a neurophysiological basis. To
reduce these fluctuations, one can choose a higher FDR rate.
If these effects persist at high FDR rates, further inspection of
the cross-history coefficients is needed to assess their possible
neurophysiological basis (see SI Appendix, section 10 for further
discussion).

To validate our results in the absence of ground truth, we
assess their reliability using surrogate data obtained by ran-
dom shuffling and network subsampling in SI Appendix, section
11 and verify the robustness of the inferred task-dependent
functional network dynamics against the aforementioned adver-
sarial perturbations. In conclusion, our methodology enabled the
extraction of the top-down and bottom-up network-level dynam-
ics that were previously conjectured in ref. 63 to be involved in
active attentive behavior, at the neuronal scale with high spa-
tiotemporal resolution. In SI Appendix, section 12 we present our
analysis of another experiment, which further corroborates our
findings.

Discussion and Concluding Remarks
Summary and Extensions of Our Contributions. Most widely
adopted time series analysis techniques for quantifying func-
tional causal relations among the nodes in a network assume
static functional structures or otherwise enforce dynamics using
sliding windows. While they have proven successful in analyzing
stationary Gaussian time series, when applied to spike record-
ings from neuronal ensembles undergoing rapid task-dependent
dynamics they hinder a precise statistical characterization of
the sparse dynamic neuronal functional networks underlying
adaptive behavior.

To address these shortcomings, we developed a dynamic
inference paradigm for extracting functional neuronal net-
work dynamics in the sense of Granger, by integrating tech-
niques from adaptive filtering, compressed sensing, point pro-
cess theory, and high-dimensional statistics. We proposed a
measure of time-varying GC, namely AGC, and demonstrated
its utility through theoretical analysis, algorithm development,
and application to synthetic and real data. Our analysis of
the mouse auditory cortical data revealed unique features of
the functional neuronal network structures underlying spon-
taneous activity at unprecedented spatial resolution. Applica-
tion of our techniques to simultaneous recordings from the
ferret auditory and prefrontal cortical areas suggested evi-
dence for the role of rapid top-down and bottom-up func-
tional dynamics across these areas involved in robust attentive
behavior.

The plug-and-play nature of the algorithms used in our frame-
work enables it to be generalized for application to various
other domains beyond neuroscience, such as the analysis of
social networks or gene regulatory networks. As an example,
the GLM models can be generalized to account for m-ary data,
the forgetting factor mechanism for inducing adaptivity can be
extended to state-space models governing the coefficient dynam-
ics, and the FDR correction can be replaced by more recent
techniques such as knockoff filters (67). To ease reproducibil-
ity and aid the adoption of our method, we have archived
a MATLAB implementation on GitHub (https://github.com/
Arsha89/AGC Analysis).

Limitations of Our Approach. In closing, it is worth discussing two
potential limitations of our proposed paradigm.
Confounding effects due to network subsampling. A common
criticism of statistical causality measures, such as the GC,
directed information, or transfer entropy, is susceptibility to
latent confounding causal effects arising from network subsam-
pling. In practice, these methods are typically applied to a small
subnetwork of the circuits involved in neuronal processing. Given
that each neuron may receive thousands of synaptic inputs, lack
of access to a large number of latent confounding inputs can
affect the validity of the causal inference results obtained by
these methods.

We have evaluated the robustness of our method against
such confounding effects using comprehensive numerical stud-
ies in SI Appendix, section 9. These studies involve scenarios
with deterministic and stochastic latent common inputs as well
as confounding effects due to network subsampling and suggest
that our techniques indeed exhibit a degree of immunity to such
confounding effects. We argue that this performance is due to
explicit modeling of the dynamics of the Granger causal effects in
the GLM framework, invoking the sparsity hypothesis, and using
sharp statistical inference procedures (see SI Appendix, section 9
for further discussion).
Biological interpretation. The functional network characteriza-
tion provided by our framework must not be readily inter-
preted as direct or synaptic connections that result in causal
effects. Our analysis results in a sparse number of GC inter-
actions between neurons that can appear and vanish over time
in a task-specific fashion. While it is possible that these con-
nections reflect synaptic contacts between neurons, as changes
in synaptic strengths can be induced rapidly within minutes
(68), the observed GC dynamics could also be due to other
underlying mechanisms such as desynchronization of inputs,
altered shunting, or dendritic filtering. Thus, these plastic-
ity effects remain to be tested with ground truth experi-
ments. An alternative and inclusive view is that these links
reflect a measure of information transferred from one neuron
to another.

The relatively rapid switching of these links, however, must be
interpreted with caution: While some of the rapid fluctuations
are due to the use of the FDR control procedure (as discussed
in the Applications), sudden emergence or disappearance of a
link does not necessarily imply sudden changes in the causal
structure or information transfer in the network. A sudden dis-
appearance of a steady link most likely reflects the fact that given
the amount of currently available data, there is not enough evi-
dence to maintain the existence of the link at the group level with
the desired statistical confidence; similarly, a sudden emergence
of a link most likely implies that enough evidence has just been
accumulated to justify its presence with statistical confidence.
The gradual effects of these interactions are indeed reflected in
the dynamics of the noncentrality parameters estimated by our
methods.

As demonstrated by the applications of our inference proce-
dures, our framework provides a robust characterization of the
dynamic statistical dependencies in the network in the sense
of Granger at high temporal resolution. This characterization
can be readily used at a phenomenological level to describe
the dynamic network-level functional correlates of behavior, as
demonstrated by our real data applications. More importantly,
this characterization can serve as a guideline in forming hypothe-
ses for further testing of the direct causal effects using experi-
mental procedures such as lesion studies, microstimulation, or
optogenetics in animal models.
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65. Piëch V, Li W, Reeke GN, Gilbert CD (2013) Network model of top-down influences
on local gain and contextual interactions in visual cortex. Proc Natl Acad Sci USA
110:E4108–E4117.

66. Klein DJ, Simon JZ, Depireux DA, Shamma SA (2006) Stimulus-invariant processing and
spectrotemporal reverse correlation in primary auditory cortex. J Comput Neurosci
20:111–136.

67. Barber RF, Candès EJ (2015) Controlling the false discovery rate via knockoffs. Ann
Stat 43:2055–2085.

68. Cooke SF, Bear MF (2010) Visual experience induces long-term potentiation in the
primary visual cortex. J Neurosci 30:16304–16313.

E3878 | www.pnas.org/cgi/doi/10.1073/pnas.1718154115 Sheikhattar et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1718154115

