
Transcriptome-wide discovery of coding and noncoding
RNA-binding proteins
Rongbing Huanga,b,1, Mengting Hana,b,1, Liying Menga,c, and Xing Chena,b,c,d,e,2

aCollege of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China; bBeijing National Laboratory for Molecular Sciences, 100871
Beijing, China; cPeking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; dSynthetic and Functional Biomolecules Center, Peking
University, 100871 Beijing, China; and eKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University,
100871 Beijing, China

Edited by Benjamin F. Cravatt, The Scripps Research Institute, La Jolla, CA, and approved March 19, 2018 (received for review October 21, 2017)

Transcriptome-wide identification of RNA-binding proteins (RBPs)
is a prerequisite for understanding the posttranscriptional gene
regulation networks. However, proteomic profiling of RBPs has
been mostly limited to polyadenylated mRNA-binding proteins,
leaving RBPs on nonpoly(A) RNAs, including most noncoding RNAs
(ncRNAs) and pre-mRNAs, largely undiscovered. Here we present a
click chemistry-assisted RNA interactome capture (CARIC) strategy,
which enables unbiased identification of RBPs, independent of the
polyadenylation state of RNAs. CARIC combines metabolic labeling
of RNAs with an alkynyl uridine analog and in vivo RNA-protein
photocross-linking, followed by click reaction with azide-biotin,
affinity enrichment, and proteomic analysis. Applying CARIC, we
identified 597 RBPs in HeLa cells, including 130 previously unknown
RBPs. These newly discovered RBPs can likely bind ncRNAs, thus
uncovering potential involvement of ncRNAs in processes previously
unknown to be ncRNA-related, such as proteasome function and
intermediary metabolism. The CARIC strategy should be broadly
applicable across various organisms to complete the census of RBPs.
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About 75% of the human genome is transcribed to various
kinds of RNAs (1). The protein-coding mRNAs serve as the

template for protein synthesis, and hence mediate the flow of
genetic information. In addition to mRNAs, which account for
only ∼2% of the genome, many classes of noncoding RNAs
(ncRNAs) are made in cells. The tRNAs and rRNAs, the two
most-studied classes of ncRNAs, participate in protein synthesis
by serving as amino acid adaptors and ribosome components,
respectively. The past two decades have witnessed the emer-
gence of many previously unannotated ncRNAs, such as micro-
RNAs (miRNAs), Piwi-interacting RNAs, and long ncRNAs
(lncRNAs) (2). These ncRNAs carry out a variety of biological
functions, including transcription regulation, RNA processing,
and genome remodeling. Most of the RNAs, both coding and
noncoding, function as ribonucleoprotein particles (RNPs), that
is, RNAs in complex with RNA-binding proteins (RBPs) (3).
Dysfunction of RBPs has been linked to various human diseases,
such as neurodegeneration, muscular disorders, and cancers (4–7).
Large-scale identification of RBPs is a prerequisite for un-

derstanding the underlying biological and pathological processes
and has recently attracted lots of attentions (3, 8, 9). RBPs can
be in vivo photocross-linked to RNAs by 254-nm UV light or to
RNAs metabolically labeled with a photoactivatable uridine
analog 4-thiouridine (4SU) by 365-nm UV light (4, 10). By
combining UV cross-linking with polyadenylated [poly(A)] tail-
dependent oligo(dT) enrichment, an mRNA interactome cap-
ture approach was developed for proteomic identification of
mRNA-binding proteins (mRBPs) in HeLa and HEK293 cells
(11, 12). Since UV light is directly applied to living cells, this
method allows for covalent cross-linking of native RNP com-
plexes formed by RNAs and their direct binders. Furthermore,
the oligo(dT) capture enables detection of low-abundance cross-
linked proteins, overcoming the limited efficiency of UV cross-

linking. This method has has been applied to profile poly(A)
RNA interactome in various mammalian cells (13–18); Saccha-
romyces cerevisiae (14, 19, 20); Caenorhabditis elegans (20); zebrafish
(21); the early embryo ofDrosophila melanogaster (22, 23); Arabidopsis
thaliana seedlings, leaves, and cultured cells (24–26); and human
parasites (27–29). However, the poly(A) tails mostly exist on mature
mRNAs, leaving RBPs on nonpoly(A) RNAs, including most
ncRNAs and pre-mRNAs, largely undiscovered.
To complete the census of RBPs, methods for transcriptome-

wide identification of RBPs, which are independent of the poly
(A) tail, are needed. Many RBPs possess well-known RNA-
binding domains (RBDs), such as the RNA recognition motif
(RRM) and heterogeneous nuclear RNP K-homology (KH)
domain (30). Sequence and structure homology have long been
used to computationally predict RBPs (31, 32) but cannot un-
cover the entire RNA interactome because a growing number of
RBPs are found to harbor no annotated RBDs (6, 18). Alter-
natively, in vitro binding of mRNAs to protein microarrays and
RBP capture using immobilized mRNAs were employed to
identify mRBPs in S. cerevisiae (33, 34). These two methods in
principle are not limited to mRBPs but suffer from nonphysio-
logical RNA–protein interactions. Recently, two powerful ap-
proaches were reported for large-scale identification of RBPs
with no need for oligo(dT) pull-down (35, 36). By demonstrating
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that the more RBPs a protein interacts with the more likely that
protein itself is an RBP, a classification algorithm termed SONAR
(support vector machine obtained from neighborhood associated
RBPs) was developed to predict RBPs using the existing large-
scale protein–protein interaction (PPI) datasets (35). Compared
to the previous computational approaches (32), SONAR does not
rely on sequence or structure homology, thus allowing for dis-
covery of RBPs with RNA-binding activity through unknown
mechanisms. A limitation of SONAR might be that the known
PPI networks have not covered all RBPs. The other approach
exploits 4SU-dependent UV cross-linking and quantitative MS
to identify RBPs with the binding peptide information in the nuclei
of mouse embryonic stem cells (36). Termed RBR-ID (proteomic
identification of RNA-binding regions), this approach relies on
detecting the decreased MS signals of peptides due to their cross-
linking to RNAs. Without the need of the oligo(dT) enrichment
step, RBR-ID requires many fewer cells and can identify nonpoly(A)
RBPs. However, with no enrichment, RBR-ID suffers from high
background signals, particularly for RBPs with low RNA binding
ratios, and limited detection sensitivity and specificity.
Herein, we report the development of a complementary strategy

for transcriptome-wide discovery of both poly(A) and nonpoly(A)
RBPs. Termed click chemistry-assisted RNA interactome capture
(CARIC), our strategy combines in vivo RNA-protein photocross-
linking with metabolic labeling of various RNAs with the alkyne,
a bioorthogonal or clickable functional group. Subsequent bio-
orthogonal reaction (i.e., click chemistry) with a biotin tag enables
affinity enrichment and proteomic profiling of RBPs, independent
of the polyadenylation state of RNAs. In HeLa cells, CARIC identified
597 RBPs, including 130 proteins that had no prior RNA-binding
annotation. The binding targets of these newly discovered RBPs
possibly included ncRNAs. Moreover, the newly discovered RBPs
included proteasome components, metabolic enzymes, and Mendelian
disease-related proteins, thus implicating ncRNAs in the underly-
ing biological processes. The CARIC RBP list provides a rich and
valuable resource for analyzing the RNA–RBP interaction networks.

Results
Development of the CARIC Strategy. To enrich all RNPs that are
photocross-linked, a capture technique independent of the poly(A)
tail was required. We exploited an alkyne-containing uridine
analog, 5-ethynyluridine (EU), which can be metabolically in-
corporated into various kinds of RNAs in living cells (37). The
alkyne can be chemoselectively reacted with the azide via copper
(I)-catalyzed azide-alkyne cycloaddition (CuAAC, also termed
click chemistry) (38, 39). CARIC combines EU labeling with
photoactivatable-ribonucleoside-enhanced cross-linking (4). The
4SU was metabolized into cellular RNAs together with EU;
365-nm UV light irradiation selectively cross-linked 4SU with
bound RBPs. Subsequent click labeling of EU with azide-biotin
via CuAAC enabled streptavidin enrichment and MS (Fig. 1 and
Fig. S1).
A series of experiments were performed to optimize the

CARIC procedures. UV-visible (UV-Vis) absorption spectros-
copy confirmed that 365-nm UV light only activated 4SU but not
EU, uridine, cytidine, adenosine, or guanosine (Fig. S2A). Total
RNAs were extracted from HeLa cells treated with EU and
4SU together (EU&4SU) and reacted with HPDP-biotin (i.e.,
N-[6-(biotinamido)hexyl]-3′-(2′-pyridyldithio)propionamide, a
sulfhydryl-reactive compound) and azide-Cy5 to label 4SU and
EU, respectively. The labeled RNAs were captured with strep-
tavidin beads. Flow cytometry analysis of the beads indicated
that EU and 4SU were simultaneously incorporated into the
same RNA molecules (Fig. S2 B and C). We then treated HeLa
cells with EU&4SU at varied concentrations, followed by UV
irradiation. In-gel fluorescence scanning of the cell lysates
reacted with azide-Cy5 showed the cross-linked RNPs as
smeared bands at high molecular weights (>130 kDa) and 1 mM
EU and 0.5 mM 4SU, resulting in the highest amount of doubly
labeled and cross-linked RNPs (Fig. S2D). Metabolic incorpora-
tion of EU&4SU did not cause significant cytotoxicity (Fig. S2E).
The photocross-linking was dependent on the energy density of UV
light, and 2 J/cm2 was sufficient to produce maximal cross-linking
(Fig. S3A). UV light did not cause apparent RNA degradation even

Fig. 1. Schematic of the workflow of CARIC. EU and 4SU were simultaneously taken up by cells and metabolically incorporated into RNAs. The 365-nm UV
light irradiation activated 4SU and covalently cross-linked RNAs with direct binders. The cells were lysed and reacted with azide-biotin to tag EU. After
enrichment with streptavidin beads, the eluted RNPs were digested with RNase A and the released RBPs were analyzed by quantitative proteomics using
LC-MS/MS.
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at the energy density of 2 J/cm2 (Fig. S3B). Three reported Cu(I)
ligands (40–42), BTTAA (2-[4-{(bis[(1-tert-butyl-1H-1,2,3-triazol-4-
yl)methyl]amino)methyl}-1H-1,2,3-triazol-1-yl]acetic acid), THPTA
(Tris[(1-hydroxypropyl-1H-1,2,3-triazol-4-yl)methyl]amine), and TBTA
(Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine), were evaluated for
improving the reaction yield of CuAAC on EU&4SU-incorporated
cell lysates, and THPTA exhibited a significant improvement on
click-labeling efficiency (Fig. S3C). With THPTA, we could lower
the concentration of CuSO4 to 0.5 mM, while maintaining enough
labeling efficiency (Fig. S3D). Although UV cross-linking did not
damage RNAs, Cu(I) could cause fragmentation of RNAs (Fig.
S3B), in agreement with previous studies (43). Remarkably, THPTA
significantly alleviated this effect (Fig. S3B). Based on these results,
experimental conditions including metabolic labeling of HeLa cells
with 1 mM EU and 0.5 mM 4SU, UV light irradiation at 2 J/cm2,
and THPTA-assisted CuAAC were chosen for CARIC experiments
in this work.

Validation of CARIC Capture. Using the optimized CARIC pro-
tocol, HeLa cells were efficiently photocross-linked and the ly-
sates were click-labeled with azide-Cy5. In-gel fluorescence

scanning showed that only the doubly labeled RNPs were UV
cross-linked (Fig. 2A and Fig. S4A). The bands of cross-linked
RNPs (>130 kDa) were completely abolished by RNase A
treatment (Fig. 2A) or transcription inhibition with actinomycin
D (AD) (Fig. S4 B and C). We next reacted the cross-linked
lysates with azide-biotin, followed by enrichment with strepta-
vidin beads. After eluting the beads with a biotin elution buffer,
the eluted samples were then digested with RNase A to release
RBPs, which were resolved by SDS/PAGE and analyzed by silver
staining (Fig. 2B and Fig. S5). Only the doubly labeled samples
exhibited a diverse repertoire of RBPs, while omission of 4SU,
EU, or UV yielded minimal background signal and several
nonspecific bands (Fig. S5A). Specific capture of RBPs was
confirmed by RNase A treatment before streptavidin enrichment
(Fig. S5B). To further validate the CARIC strategy, the presence
of four known RBPs—nucleolin, heterogeneous nuclear ribo-
nucleoproteins C1/C2 (hnRNPC), far upstream element binding
protein 3 (FUBP3), and polypyrimidine tract-binding protein 1
(PTBP1)—in the captured samples was detected by immunoblot
analysis (Fig. 2C). All of them showed selective enrichment in
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Fig. 2. Development and optimization of CARIC. (A) In-gel fluorescence analysis of RNPs. HeLa cells were treated with 1 mM EU and 0.5 mM 4SU, EU, or 4SU
alone and irradiated with 365-nm UV light. The lysates were reacted with azide-Cy5 via THPTA-assisted CuAAC. After treatment with or without RNase A, the
samples were resolved by SDS/PAGE and visualized by in-gel fluorescence scanning. Coomassie brilliant blue (CBB)-stained gel was used as the loading control.
(B) After EU&4SU labeling and UV light irradiation, the cell lysates were reacted with azide-biotin and enriched with streptavidin beads. After elution, the
captured RNPs were digested with RNase A to release RBPs, which were resolved by SDS/PAGE and visualized by silver staining. WCL, whole-cell lysate. (C)
Western blot analysis of the presence of nucleolin, hnRNPC, FUBP3, and PTBP1 in the CARIC-captured samples. RNase A treatment after click labeling of the
lysates with azide-biotin demonstrated selective capture of RNPs doubly labeled with EU and 4SU. (D) Analysis of RNAs isolated by CARIC by next-generation
sequencing. The relative RNA level was quantified by normalizing the total mapped reads of each RNA types to the total mapped reads of total RNAs. Error
bars represent the SD from three independent biological replicates.
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the EU&4SU-labeled samples and RNase treatment confirmed
the RNA dependence of CARIC enrichment.
We next analyzed the RNA species contained in the click-

labeled and streptavidin bead enriched samples. The elutes
were digested with proteinase K and the resulting RNAs were
analyzed by next-generation sequencing (Fig. 2D). Besides
mRNA, various types of ncRNAs, including lncRNA, small nu-
clear RNA (snRNA), and miRNA, were mapped. It should be
noted that tRNAs, because of their abundant chemical modifi-
cations and stable structure, could not be sequenced in our ex-
periments using the standard sequencing method (44). These
results demonstrate that CARIC is able to isolate various RNAs,
independent of their polyadenylation status, and capture RBPs
bound on those RNAs.

Proteomic Identification of CARIC RBPs. We then analyzed the
CARIC-enriched RBPs by quantitative proteomics based on
the stable isotope dimethyl labeling strategy (45). To increase
the confidence of identification, we performed two sets of ex-
periments, in which the 4SU-omitted and UV-omitted samples
were used as negative controls, respectively (Fig. S6). In each
set, data from four biological replicates were collected. In two
of the replicates, the peptides from the experimental and
control samples were labeled with isotopically light and heavy
dimethyl labels, respectively. In another two replicates, the
“reverse” dimethyl labeling, in which the labeling order was
switched (i.e., the experimental samples with heavy label and
the control samples with light label), was performed to increase

the accuracy and robustness of quantification. The peptides
from a total of eight biological replicates were prefractionated
by high-pH C18 stop-and-go-extraction tips (StageTips) (46) and
analyzed by liquid chromatography tandem MS (LC-MS/MS).
A streamlined MS data analysis procedure was established

for RBP identification (Fig. S7). After peptide identification
using MaxQuant (47), 1,271 proteins with two or more unique
identified peptides were considered as identified proteins (Fig.
S8A and Dataset S1). These identified proteins were further
filtered by two or more quantified peptides, which resulted in
1,210 proteins with their enrichment ratio quantified as the
median of the enrichment ratios of all peptides assigned to that
protein. The protein enrichment ratios between biological
replicates showed strong correlation, including comparisons
between datasets using 4SU-omitted and UV-omitted controls
(Fig. S8B). Of the 1,210 quantified proteins, 746 were quanti-
fied at least once in both control sets and at least three times
from eight replicates. Of these, 691 proteins were enriched in
the experimental samples with the log2 enrichment ratio sta-
tistically different from 0 (adjusted P < 0.01, empirical Bayes
moderated t test), which corresponded to a false discovery rate
of 1% (Fig. 3A and Dataset S1). Of the 691 proteins, 597 with
a fold change of two or greater were termed CARIC RBPs
and subdivided into two classes: class I containing 296 proteins
with a fold change greater than three and class II containing
301 proteins with a fold change of three or less (Fig. 3A and
Dataset S2).
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Comparison of CARIC RBPs to Known Human RBPs. Gene Ontology
(GO) analysis using DAVID (48, 49) indicated that CARIC
RBPs were mostly enriched with the molecular function term
“poly(A) RNA binding,” reminiscent of recent extensive efforts
on large-scale identification and annotation of poly(A) RBPs
(Fig. 3B). Moreover, the “poly(A) RNA binding” term was
similarly overrepresented in both class I and II CARIC RBPs
(Fig. S9A). Interestingly, several biological process terms were
distinctly enriched between the two classes (Fig. S9B). For ex-
ample, the term “tRNA aminoacylation for protein translation”
was highly enriched in class II but not in class I. A total of
12 aminoacyl-tRNA synthetases were identified by CARIC, with
11 belonging to class II (Dataset S3).
To further analyze the CARIC RBPs identified in HeLa

cells, we compiled a list of 1,387 human poly(A) RBPs that
have so far been identified in HeLa cells (11, 18) as well as
three other human cell lines, HEK293 (12), Huh-7 (14), and
K562 cells (16), by using the poly(A) tail-dependent capture
method (Dataset S4). Of the 597 CARIC RBPs (260 and
170 belonging to classes I and II, respectively) 430 (72%)
overlapped with the human poly(A) RBPs, most of which were
identified in both HeLa cells and at least one other human cell
line (Fig. 3C, Fig. S10A, and Dataset S2). Therefore, CARIC
identified 167 RBPs (36 and 131 belonging to classes I and II,
respectively) that were not previously identified in human cells
by poly(A)-dependent RNA interactome capture (Fig. 3C, Fig.
S10A, and Dataset S2).
The CARIC RBPs were then compared with the RBP lists

recently generated by the poly(A)-independent methods
SONAR and RBR-ID (35, 36). Of the 597 CARIC RBPs
(175 and 93 belonging to classes I and II, respectively) 268 (45%)
overlapped with the SONAR RBPs (Fig. 3D, Fig. S10B, and
Dataset S2). To compare with the RBR-ID RBPs, we converted
them to the human orthologs. Of the CARIC RBPs (110 and
76 belonging to classes I and II, respectively) 186 (31%) over-
lapped with the converted RBR-ID RBPs (Fig. 3D, Fig. S10B,
and Dataset S2). The lower overlapping percentage with the
RBR-ID RBPs might be because the RBR-ID list was obtained
in mouse cells and included only nuclear proteins. We also
compared the CARIC RBPs with the GO-annotated RBP list
and the human RBP list manually curated by Gerstberger et al.
(3). Of the CARIC RBPs (259 and 156 belonging to classes I and
II, respectively) 415 (70%) and of the CARIC RBPs (239 and
108 belonging to classes I and II, respectively) 347 (58%) were
included in these two databases, respectively (Fig. 3E, Fig. S10C,
and Dataset S2).
Moreover, we compiled a human RBP list which combined the

human poly(A) RBPs, GO-annotated human RBPs, SONAR
RBPs, and the human RBP list by Gerstberger et al. (3) (Dataset

S5). By comparing to the human RBP list, CARIC identified 130
(25 and 105 belonging to classes I and II, respectively) candidate
RBPs in HeLa cells, which were not previously annotated as
RNA binding (Fig. 3F and Fig. S10D). These results demonstrate
that CARIC not only confirms a significant portion of known
RBPs but also expands the current list of RBPs, thus providing
another complementary approach for completing the census
of RBPs.

Experimental Validation of RNA-Binding Activity of Several CARIC
RBPs. To experimentally validate the RNA-binding activity of
the newly identified RBPs in the CARIC RBP list, we examined
the RNA dependence of CARIC capture of five selected can-
didates from the list (one and four from classes I and II, re-
spectively): voltage-dependent anion-selective channel protein 1
(VDAC1), Ras-related protein Rab-10 (RAB10), Ras-related
protein Rap-1A (RAP1A), proteasome subunit alpha type-2
(PSMA2), and proteasome subunit alpha thype-6 (PSMA6). Of
note, PSMA6 was experimentally found to bind RNAs (50) and
therefore is within the list of GO-annotated RBPs. Western blot
analysis showed that all five proteins were enriched in the
CARIC-isolated RNPs and the enrichment was dependent on
RNA labeling with EU&4SU (Fig. 4A). More importantly,
RNase treatment depleted the enrichment, confirming that these
RBPs were directly bound and cross-linked to RNAs. For an
independent validation, we employed conventional cross-linking
and immunoprecipitation (CLIP), followed by radiolabeling with
T4 polynucleotide kinase. HeLa or HEK293T cells expressing
FLAG-tagged or EGFP-tagged RBPs were irradiated with
254-nm UV light. RNPs were immunoprecipitated using anti-
FLAG or anti-GFP antibody conjugated magnetic beads, treat-
ed with RNase T1 to shorten the length of cross-linked RNAs,
and radiolabeled. Phosphorimaging showed that three identified
previously unknown RBPs, VDAC1, NME2 and PSMA7, were
efficiently cross-linked to RNAs, in a way similar to two known
RBPs, hnRNPC and MBNL1, which served as positive controls
(Fig. 4B).

pI Values, Binding Domains, and RNA-Binding Specificity of CARIC
RBPs. A characteristic feature of the poly(A) RBPs identified in
HeLa cells is a shift of the distribution of pI values toward a
more basic pH, compared with all human proteins (11). We
therefore analyzed the pI distribution of CARIC RBPs, which
were also from HeLa cells (Fig. 5A and Dataset S2). In contrast
to the HeLa poly(A) RBPs, the CARIC RBPs were not prefer-
entially represented by basic proteins. Indeed, the combined poly(A)
RBPs from various human cells showed a pI distribution similar
to the CARIC RBPs (Fig. 5A). The same trend was observed for
the human RBP list. These results indicate that the complete

+ -
+ +

+
-

+ -
+ +

+
-

+-

+ -
+ +

+
-

+ +- - - - -

4SU
EU

RNase A

0.1% WCL IP: biotin

VDAC1

RAB10

RAP1A

PSMA2

PSMA6

Phosphorimage

Phosphorimage

IB: FLAG

IB: FLAG

+ - + -

+ - + -

hnRNPC MBNL1

VDAC1 PSMA7

UV

UV

Known RBPs

Unknown RBPs

IB: GFP

BA

+ -

NME2
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FLAG-tagged CARIC RBPs (VDAC1, NME2, and PSMA7) by CLIP, followed by radiolabeling with T4 polynucleotide kinase and phosphorimaging. Two
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RBP interactome, as better represented by the accumulating
RBPs, may have a pI distribution similar to that of the whole
human proteome.
A well-studied mode of RNA binding is via the modular

RBDs. A limited list of RBDs including 11 classical and 15
nonclassical ones has been experimentally validated (11, 51).
About half of the known RBPs in our CARIC RBP list harbor
these RBDs (Fig. 5 B and C). In sharp contrast, most (>95%) of
the unknown RBPs possess no known RBDs, indicating the ex-
istence of distinctive modes of RNA binding. Of note, the re-
cently developed methods for large-scale identification of RBDs
and regions should be of use for discovering new RNA binding
motifs and binding modes (18, 36).
To shed light on what classes of RNAs the CARIC RBPs

bind, we analyzed the ones with reported RNA-binding activi-
ties and ones with RNA-related functions. The 430 CARIC
RBPs overlapping with the list of human poly(A) RBPs were
attributed to bind mRNAs. Of note, although poly(A) tails
mostly exist on mRNAs, some ncRNAs, such as rRNAs and
lncRNAs, can also be polyadenylated (52, 53). Among the
other 167 CARIC RBPs not in the human poly(A) RBP list
were six proteins that have been experimentally confirmed as

RBPs (Fig. 5D and Dataset S6). For example, exportin-t
(XPOT) was found to bind tRNAs with high affinity and me-
diate tRNA nuclear export (54). WD repeat-containing protein
5 (WDR5) was recently found to bind an lncRNA HOTTIP and
regulate long-range gene activation (55). Furthermore, we an-
notated an additional 58 CARIC RBPs with their putative
RNA-binding targets based on their residence within well-
characterized RNPs, RNA-related functions, and orthologs in
other organisms being confirmed as RBPs (Fig. 5D and Dataset
S6). A variety of classes of ncRNAs are targets of CARIC RBPs
(Fig. 5E). Of note, in addition to those binding to poly(A)
mRNAs, some of the CARIC RBPs also bind pre-mRNAs
with no poly(A) tails. These examples support that CARIC can
be used for transcriptome-wide identification of coding and
noncoding RBPs.

RNA-Binding Activity of Proteasome Proteins and Metabolic Enzymes.
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
analysis on the previously unknown RBPs identified by CARIC
revealed that the term “proteasome” is one of the most enriched
pathways (Fig. 6A). A significant portion of the proteasome
components were identified by CARIC (Fig. 6B). Among the
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14 proteins constituting the 20S proteasome core particle, six
were CARIC RBPs (two and four belonging to classes I and II,
respectively). In addition, four proteins within the 19S regulatory
particle were potential CARIC RBPs (i.e., proteins identified
with a fold change between one and two). Importantly, three
proteasome proteins, PSMA2, PSMA6, and PSMA7, were ex-
perimentally validated to bind RNAs in this work (Fig. 4 A
and B).
Several metabolism-related pathways were also enriched in

the KEGG pathway analysis on the unknown RBPs (Fig. 6A).
Based on the Reactome pathway database (56), unknown
RBPs in the CARIC RBP list harbor 38 metabolic enzymes
(Fig. 6C and Dataset S7). These metabolic enzymes are dis-
tributed to a variety of metabolism pathways, including nu-
cleotide, amino acid, carbohydrate, and lipid metabolism (Fig.
6D and Dataset S7).

CARIC RBPs in Genetic Diseases. Many RBPs have been implicated
in human Mendelian diseases. Based on the online Mendelian
Inheritance in Man (OMIM) database (57), 201 human poly(A)
RBPs are disease-related (Fig. S11A). CARIC profiling in HeLa
cells identified 76 of those OMIM-listed poly(A) RBPs (Fig.
S11A). In total, CARIC identified 119 OMIM-listed proteins
(Fig. 6E). More interestingly, 33 of the 130 CARIC-identified
previously unknown RBPs are listed in OMIM and associated
with various diseases, such as metabolic, neurological, and
muscular disorders (Fig. S11B and Dataset S8).

Discussion
Understanding the posttranscriptional gene regulation network
requires comprehension of RBPs that dictate the fate of RNAs. Here,
we develop CARIC as a high-throughput method for transcriptome-
wide identification of RBPs. Among the 597 CARIC RBPs identified
in HeLa cells, 78% are previously identified or annotated RBPs,
demonstrating the reliability of the CARIC methodology. How-
ever, despite the fact that large-scale identification of RBPs has
recently been extensively performed using several different meth-
ods, CARIC is able to identify 130 unknown RBPs in HeLa cells.
Most of these newly identified RBPs do not have known RBDs
and probably bind RNAs through alternative mechanisms yet to be
investigated. Moreover, these unknown RBPs include the proteasome
components, metabolic enzymes, and human Mendelian disease-
related proteins, implicating RNAs in the underlying processes.
Therefore, CARIC provides a powerful tool for RNA interactome
profiling and is complementary to the previously developed strategies.
CARIC shares several nice features with the oligo(dT)-based

RNA interactome capture strategy (11, 12) but overcomes its
major limitation, being incapable of capturing and identifying
RBPs bound on the nonpoly(A) RNAs. In vivo UV cross-linking
allows covalent linking of RNAs to their direct binders under
physiological conditions and ensures subsequent selective and
stringent isolation. The oligo(dT) affinity purification has high
affinity and specificity for poly(A) RNPs. In comparison, CARIC
exploits metabolic labeling of RNAs with EU and click chemistry
to install the biotin tag for isolation. The major advantage of this
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click chemistry-assisted strategy is the broad coverage of various
RNPs, whether or not the RNAs are polyadenylated. In addition
to EU, several other clickable nucleosides, such as alkynyl and
azido analogs of adenosine (58–61), have been developed to
metabolically label RNAs in living cells and may be implemented
into CARIC.
Although 254-nm UV light can be used to cross-link natural

nucleotides with RBPs, CARIC employs double metabolic la-
beling with EU and 4SU (which can be activated by 365-nm UV
light) to avoid potential contaminants caused by cross-linking
free EU and its metabolites (e.g., uridine phosphates) with rec-
ognizing proteins. Furthermore, double labeling minimizes
photocross-linking on EU so that the click reaction is not
blocked. Although 4SU and EU have been widely used for la-
beling RNAs, we cannot completely rule out the possibility that
incorporation of uridine analogs might affect RNA–protein in-
teractions, thus resulting in some false negative and false
positive identification.
A potential contaminant in CARIC is the growing polypeptide

chains with attached tRNAs that are EU-incorporated. This
might contribute to the background signals observed in the 4SU-
omitted negative controls (Fig. 2 A and B and Dataset S1). In
addition, we observed some nonspecific UV cross-linked bands
in the 4SU-omitted samples (Fig. 2A and Fig. S4A). Since these
bands could not be removed by RNase A treatment, we sus-
pected that they resulted from nonspecific photoactivation of
EU, which exhibited absorbance toward longer wavelength than
natural nucleosides (Fig. S2A) during 365-nm UV irradiation.
Nevertheless, these background signals were subtracted during
MS data analysis.
The RBR-ID method expanded the identification of RBPs to

those on nonpoly(A) RNAs by discriminating MS signals be-
tween cross-linked and non-cross-linked peptides (36). Although
detection of signal loss or decrease is often less optimal, it saves
the purification step, thus simplifying the experimental proce-
dures. The trade-off, however, is compromised sensitivity and
specificity. Whether RBR-ID can be used to identify RBPs in
whole cells remains to be explored, given that more complex
proteome samples with many high-abundance proteins, such as
actins and tubulins, may cause more false positives. Alterna-
tively, SONAR took a computational approach to address the
limitation of oligo(dT) affinity capture (35). One of the strengths
of SONAR is obviation of the need of MS-based proteomic
identification, which, though it is becoming a routine tech-
nique, is still technically demanding. The principle of SONAR
relies on accurate and comprehensive information on the PPI
networks, which imposes limitations on using SONAR for
species whose PPI networks have not been well characterized.
Nevertheless, it will be interesting to use the combination of
these complementary approaches for obtaining the compre-
hensive RNA interactome and for comparing different sub-
proteomes. For example, depletion of poly(A) RNPs by oligo(dT)
pull-down followed by CARIC may be used to selectively identify
nonpoly(A) RBPs.
To experimentally validate the identified RBPs, we used two

independent assays on a list of selected RBPs. The first assay
confirmed the MS identification by Western blotting. Further-
more, the RNase A treatment before streptavidin enrichment
served as a stringent negative control, which confirmed that
CARIC capture of RBPs was dependent on RNAs. CLIP was
used as an independent assay. In both assays, the signals of un-
known RBPs were much weaker compared with the positive
controls, several well-known RBPs. One possible explanation is
that these proteins might mainly function in other biological
processes and moonlight as RBPs under specific regulatory
conditions.
The binding specificity of RBPs is dictated by RNA sequences

or/and structures. Many mRBPs possess RBDs, such as RRM and

KH domain, which recognize specific sequences of single-stranded
RNAs (30). It is not uncommon that some RBPs can bind both
mRNAs and ncRNAs. For example, some of the snRNA-binding
proteins in the spliceosome machinery are in direct contact with
mRNAs during the splicing process (62, 63). Accordingly, poly(A)
tail-based RNA interactome capture in human cells identified
six of the seven Sm proteins, which are common protein com-
ponents for spliceosome snRNP U1, U2, U4, and U5 (11, 12, 16).
It should be noted that poly(A) RBPs identified using this method
are not strictly mRBPs, since the oligo(dT) pull-down precipitated
a small amount of ncRNAs (11).
An interesting question is whether there are ncRBPs that ex-

clusively bind ncRNAs. The current CARIC protocol does not
distinguish poly(A) RBPs from nonpoly(A) RBPs or mRBPs
from ncRBPs. One possible solution to this question is to com-
bine CARIC with the oligo(dT) pull-down protocol. Alterna-
tively, the RNA targets of the unknown RBPs identified in this
work can be further studied using CLIP followed by next-generation
sequencing (4, 64).
The proteasomes were renamed from “prosome” based on

the discovery of their proteolytic activity (65). Interestingly,
there was early evidence, though not conclusive, indicating
that prosomes might associate with RNA species, including
mRNAs, tRNAs, and 5S rRNAs (66–69). A recent poly(A)
RBP profiling in S. cerevisiae and C. elegans also identified
16 components of the 26S proteasome (20). These results call
for reevaluation of the RNA-binding activity of the proteasome
complex or its individual protein components and the functional
consequences.
The metabolic enzymes with poly(A) RNA-binding activity

have also been highlighted in the oligo(dT)-based RNA inter-
actome capture (12), which led to the proposed regulatory in-
terconnections between RNA, enzymes, and metabolites (REM)
(70). According to the Reactome pathway database, 4.9% of the
human poly(A) RBPs (68 out of 1,387) were annotated as met-
abolic enzymes. In contrast, metabolic enzymes take up as many
as 29.2% of the CARIC unknown RBPs (Fig. 6C). Considering
that the newly identified RBPs tend to be nonpoly(A) RNA-
specific, we suspect that ncRNAs might also participate in the
REM interactions.
In summary, we have demonstrated that CARIC is a poly(A)

tail-independent method, which allows for transcriptome-wide
identification of RBPs. The HeLa RBP dataset generated in this
work, together with previously datasets using other methods,
provide invaluable resources for bioinformatics and experimen-
tal analysis of RNA–RBP interactions at a system level. Fur-
thermore, the CARIC technique can be readily used in various
cell types and organisms to facilitate uncovering the complete
RNA–protein interaction network.

Materials and Methods
Details are in SI Materials and Methods, which includes detailed methods for
metabolic incorporation of EU and 4SU, in vivo photocross-linking, click
chemistry, in-gel fluorescence, Western blot analysis, cell viability assays, RBP
isolation by CARIC, RNA sequencing, MS sample preparation, proteomic
identification, MS data analysis, validation of CARIC RBPs by CLIP, and
functional analysis of CARIC RBPs using online databases.
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