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Epigenetic silencing can be mediated by various mechanisms,
and many regulators remain to be identified. Here, we report a
genome-wide siRNA screening to identify regulators essential for
maintaining gene repression of a CMV promoter silenced by DNA
methylation. We identified CSE1L (chromosome segregation 1 like)
as an essential factor for the silencing of the reporter gene and
many endogenous methylated genes. CSE1L depletion did not
cause DNA demethylation. On the other hand, the methylated
genes derepressed by CSE1L depletion largely overlapped with
methylated genes that were also reactivated by treatment with
histone deacetylase inhibitors (HDACi). Gene silencing defects ob-
served upon CSE1L depletion were linked to its nuclear import
function for certain protein cargos because depletion of other fac-
tors involved in the same nuclear import pathway, including
KPNAs and KPNB1 proteins, displayed similar derepression profiles
at the genome-wide level. Therefore, CSE1L appears to be critical
for the nuclear import of certain key repressive proteins. Indeed,
NOVA1, HDAC1, HDAC2, and HDAC8, genes known as silencing
factors, became delocalized into cytosol upon CSE1L depletion.
This study suggests that the cargo specificity of the protein nuclear
import system may impact the selectivity of gene silencing.
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DNA methylation is a well-characterized epigenetic modifi-
cation that plays important roles in various biological pro-

cesses, including transcription regulation, genomic imprinting, X
chromosome inactivation, and transposon silencing (1–4). The
correlation between DNA methylation and gene silencing has
been extensively documented by a large body of literature.
DNA methylation directly inhibits the DNA-binding capac-

ity of certain transcription factors that are sensitive to meth-
ylated CpG moieties within their target DNA motifs, and such
direct inhibition contributes to the silencing of some methyl-
ated genes (5–8). On the other hand, DNA methylation on
naked DNA often does not directly inhibit gene transcription (9,
10). Thus, DNA methylation-mediated silencing can also function
in the chromatin context that involves the recognition of methylated
CpG by methylated DNA-binding proteins, such as MeCP2 and
other methyl-CpG–binding domain (MBD) proteins and subsequent
recruitment of HDACs (11–19).
In addition to the above-mentioned histone deacetylation-mediated

silencing for methylated genes, various studies have also revealed
the presence of alternative mechanisms (20–23). These alternative
mechanisms potentially involve site-specific repressors, histone
H3K9 methylation, and other chromatin factors responsible for
condensed chromatin formation (24–26). It remains to be deter-
mined whether unknown factors are essential for methylated gene
silencing and, if so, how they execute their function.
To advance our understanding of DNA methylation-related

gene silencing, we developed an unbiased RNAi screening
to identify regulators involved in this process. We identified

CSE1L, a key player in the nuclear import pathway, as an es-
sential factor for maintaining the repression of many methyl-
ated genes. Mechanistically, CSE1L functions by facilitating
the nuclear import of certain cargo proteins that are essential
for gene repression.

Results
A Genome-Wide siRNA Screening for Factors Required for Silencing a
Methylated CMV Promoter. To identify regulators involved in
DNAmethylation-mediated gene silencing, we devised a cell-based
genome-wide RNAi screening system. To generate the reporter
cell line, a plasmid containing an EGFP reporter driven by the
CMV promoter was first methylated in vitro with SssI methyl-
transferase. Then we cotransfected this reporter construct with
a plasmid that contains a hygromycin-resistant selection marker
into HEK293F cells (Fig. S1A). A stable reporter cell line, B2-
1, in which the EGFP gene promoter remained fully methylated
(Fig. S1B) and showed little basal EGFP expression (Fig. S1C),
was chosen from individual hygromycin-resistant clones. To
validate this reporter cell line, we performed siRNA-mediated
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knockdown for DNMT1 and UHRF1, two key players required
for the maintenance of DNA methylation; EGFP was robustly
reactivated (Fig. S1C).
Using this reporter cell line, we carried out image-based siRNA

screening targeting 19,121 human genes (Fig. 1A). The cells were
imaged for GFP and Hoechst fluorescence, and the mean per-
centage of GFP-expressing cells (RGFP) was calculated for each
gene. The RGFP value in the negative control was less than 0.5.
Genes with RGFP above 5 were considered as primary hits. Given
that siRNAs often display off-target effects and each sample in the
siRNA library was a pool of four pairs of siRNAs, we synthesized
individual siRNA pairs for these primary hits and performed a
secondary screening. After the secondary screening, 28 genes with
at least two independent functional siRNA pairs were shortlisted
as confirmed hits for further study (Fig. 1B and Table S1).
DNMT1 (RGFP = 21.73) and UHRF1 (RGFP = 7.13), two genes
initially used as positive controls, were among the confirmed hits.
In addition, several factors previously implicated in gene silencing,
including UBE2I, CHAF1A, NOVA1, ASF1A, and TRIM28 (27–

29), were also on the list of confirmed hits (Fig. S1D and Table
S1). These results indicate the robustness of our screening.

CSE1L Is a Candidate Required for DNA Methylated EGFP Reporter
Silence. CSE1L, a candidate with an RGFP >60, was the top hit
in our list (Fig. 1B). For further validation, eight independent
siRNA pairs predicted to target CSE1L were tested (Table S2).
Six of the eight siRNA pairs targeting CSE1L robustly activated
EGFP expression in B2-1 cells, and only two siRNA pairs (siCSE1L-
Q2 and siCSE1L-Q3) showed little or no EGFP activation (Fig. 1C),
consistent with the knockdown efficiency of these siRNAs (Fig.
1C and Fig. S1E). These results suggest that CSE1L is likely
a real hit.
CSE1L is an essential gene and cannot be knocked out (30). To

obtain a cell line with tunable CSE1L expression, we established a
stable cell line based on B2-1 that ectopically expressed a Flag-
tagged CSE1L so that the expression of Flag-CSE1L could be
turned off by the addition of doxycycline (Dox). Then, we
knocked out the endogenous CSE1L in this cell line to generate
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Fig. 1. Genome-wide RNAi screening identifies a role for CSE1L in EGFP reporter silencing. (A) Experimental scheme of the high-content RNAi
screening. (Magnification: 10×.) (B) Plot of the coefficients of variation (CV%) among three biological replicates and the mean RGFP for each of the
confirmed hits, verified with at least two independent siRNA pairs. The scale of the y axis below 20 was adjusted for clarity. (C ) Validation with eight
independent siRNA pairs for CSE1L. Cell images (Left), knockdown efficiency (Upper Right), and RGFP values (Lower Right) of each siRNA pair are
shown. Error bars represent SD.
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a CSE1L-tunable cell line which lost CSE1L expression upon
the addition of Dox (Fig. S1F). We named this cell line “DTO”

(for “Dox-induced CSE1L turn off”). EGFP expression in DTO
cells can be robustly induced by the addition of Dox (Fig. S1G).
These experiments further confirm that CSE1L is required for
the silencing of the EGFP reporter driven by a methylated
CMV promoter and that CSE1L is likely a regulator of DNA
methylation-mediated gene silencing.

Loss of CSE1L Expression Activates a Fraction of Endogenous Genes
Silenced by DNA Methylation. To study the role of CSE1L in the
transcriptional regulation of endogenous genes, we performed
RNA-sequencing (RNA-seq) in B2-1 cells with or without CSE1L.
We identified 798 differentially expressed genes (with a greater
than twofold expression change). Among them, 589 genes were
up-regulated (Fig. 2A), supporting the potential role of CSE1L in
gene repression. Gene Ontology (GO)-term analysis of these
589 up-regulated genes showed an enrichment in the positive
regulation of apoptotic process (Fig. 2B). A large body of litera-
ture has linked dysregulated CSE1L expression with tumor pro-
gression, thereby implicating a role for CSE1L in promoting
tumorigenesis (31–39). Interestingly, the expression levels of sev-
eral AP-1 transcription factors, including oncogenes such as FOS,
MAF, and JUN, were elevated upon the loss of CSE1L expression

(Fig. 2C and Fig. S2A), which is also consistent with a role for
CSE1L in tumorigenesis.
To determine the genes silenced by DNA methylation, we per-

formed RNA-seq experiments with B2-1 cells and with B2-1 cells
treated with siRNA targeting DNMT1 (siDNMT1) or 5 μM 5-aza-
deoxycytidine (5-Aza), a compound that impairs DNA methylation
maintenance. Genes (342) that were commonly up-regulated in
siDNMT1 and 5-Aza treatments were defined as DNA methylation-
silenced (Me-silenced) genes (Fig. 2D). Approximately 20% of DNA
Me- silenced genes became activated upon CSE1L knockdown (Fig.
2E), which was significantly higher than random overlap (P = 2.4e-
25), and the Fisher’s exact test also gave an odds ratio of 5.5, rep-
resenting the strength of association (40).
To examine whether the above observation can be generalized in

other cells, we performed CSE1L knockdown and 5-Aza treatment
in human HCT116 cells and then performed RNA-seq experiments
with these cells. After 5-Aza treatment, 194 genes were up-regulated
in HCT116 cells (Fig. S2B). Strikingly, among these 194 genes, 106
(55%) were also activated after CSE1L knockdown (Fig. S2B). This
was significantly higher than random overlap (odds ratio = 22.1, P =
5.5e-79) (Fig. S2B).
Taken together, these results show that CSE1L is required

for maintaining the silencing of a subset of endogenous
methylated genes.
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CSE1L Down-Regulation Does Not Cause DNA Demethylation. To de-
termine if CSE1L down-regulation activates methylated genes by
DNA demethylation, we measured the global 5-methylcytosine
(5mC) level with ultra-high-pressure LC–multiple reaction moni-
toring (UHPLC-MRM) MS/MS using B2-1 cells with or without
CSE1L knockdown. We did not observe a global change in 5mC
level with three independent siRNA pairs targeting CSE1L, but
DNMT1 knockdown clearly reduced the 5mC level in a control
experiment (Fig. 3A). These results indicate that CSE1L is not
required for the maintenance of global DNA methylation.
We next asked whether gene activation induced by CSE1L

knockdown was caused by locus-specific DNA demethylation.
We performed methylated DNA immunoprecipitation followed
by deep sequencing (MeDIP-seq) using B2-1 cells with or with-
out CSE1L knockdown. DNA methylation levels around the
transcription start site (TSS) of genes that were up-regulated by

both CSE1L knockdown and 5-Aza treatment were evaluated,
and no significant alteration in 5mC level was observed in these
regions when CSE1L was knocked down (Fig. 3B).
We also examined the methylation status of the CMV promoter

of the reporter gene, which remained heavily methylated after
CSE1L knockdown with two independent siRNA pairs (Fig. S3A).
Likewise, no apparent change in DNA methylation level was ob-
served at the CpG islands of two endogenous genes (RASD1 and
FOS) which were up-regulated upon CSE1L knockdown (Fig. 3C).
These data collectively indicate that CSE1L is not involved in

DNA methylation maintenance and that genes activated by
CSE1L knockdown did not undergo DNA demethylation.

Knockdown of CSE1L Preferentially Activates Genes That Can Be
Activated by Histone Deacetylase Inhibitors. Some, but not all,
DNA methylation-silenced genes can be effectively reactivated by
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treatment with histone deacetylase inhibitors (HDACi) (18, 20).
To gain insight into the categorization of methylated genes dere-
pressed by CSE1L knockdown, we treated B2-1 cells with two dif-
ferent HDACi, trichostatin A (TSA) and suberoylanilide hydroxamic
acid (SAHA), and then performed RNA-seq experiments. Among
the 342 DNA methylation-silenced genes defined in Fig. 2D, 124
were also activated by both TSA and SAHA treatments [catego-
rized as the “histone deacetylase (HDAC)-dependent Me-silenced
group”], while 152 genes were not activated in either TSA- or
SAHA-treated B2-1 cells [categorized as the “HDAC-independent
Me-silenced group” (Fig. S3B)]. Interestingly, approximately half
of the genes in the HDAC-dependent Me-silenced group (59 of
124) were activated by CSE1L knockdown. In contrast, only ∼5%
of the HDAC-independent Me-silenced group genes (7 of 124)
were activated by CSE1L knockdown (Fig. 4A). This suggests that
CSE1L knockdown preferentially activates genes that can be acti-
vated by HDACi.
We then plotted the distribution of the reads per kilobase

of transcript per million reads mapped (RPKM) values of
these two groups of genes in B2-1 cells with various treat-
ments. The expression levels of HDAC-dependent methylation-
silenced genes were preferentially activated by CSE1L knockdown
(Fig. 4B). These results further support the idea that CSE1L
knockdown preferentially activates genes that can be activated
by HDACi.

Dysregulated Nuclear Transportation Induced by CSE1L Depletion
Contributes to Gene Activation. CSE1L consists of 20 HEAT
(Huntingtin, elongation factor 3, a subunit of PP2A, and TOR)
repeats and is conserved from yeast to mammals (41). To explore
the mechanistic role of CSE1L in gene silencing, we constructed
a series of siRNA-resistant CSE1L-mutant expression vectors
and transfected them into B2-1 cells to generate corresponding
stable cell lines (Fig. S4A). Then, we knocked down endogenous
CSE1L and quantified the percentage of EGFP-positive cells
using FACS. Both the N-terminal and C-terminal deletions im-
paired the silencing effect of CSE1L to some degree, suggesting
the importance of the overall structure of CSE1L (Fig. S4B). In

addition, the replacement of a small basic region of CSE1L
(amino acids 371–384) (42) with a flexible linker also impaired
the silencing effect of CSE1L, whereas a potential zinc finger
motif (amino acids 613–630) (42) and the HEAT8 insertion re-
gion (amino acids 355–374) (41) were dispensable for the si-
lencing function of CSE1L (Fig. S4B).
We performed further mutagenesis studies within the basic re-

gion and found that an R382G/R383G double mutation fully
impaired the silencing effect of CSE1L (Fig. 5A). Interestingly,
this region was previously reported to be a potential DNA-binding
module (42), and CSE1L is indeed a nuclear protein (Fig. S4C)
(42, 43). However, ChIP-sequencing (ChIP-seq) experiments us-
ing B2-1 cells with an antibody against CSE1L revealed no en-
richment at all (Fig. S5), although this antibody detected a single
major band in a nuclear extract of B2-1 cells and was able to
immunoprecipitate endogenous CSE1L (Fig. S4D). To exclude
the possibility that this antibody was not suited for ChIP-seq ex-
periments, we also introduced the BirA-mediated site-specific
biotinylation system (44–46) in 293F cells to overexpress a bio-
tinylated CSE1L (Fig. S4E) and then performed streptavidin-
mediated ChIP-seq for biotinylated CSE1L; again, no enrich-
ment was observed (Fig. S5). In total, we were able to call only
118 peaks of bio-CSE1L under a fairly loose threshold (q <1e-2),
but most of them ( 102/118; 86%) were located within ENCODE-
blacklisted genomic regions (47) that tend to show artificially high
signal (probably caused by unassembled repeats that are mis-
takenly uniquely mapped). Therefore, we wondered whether
CSE1L was a chromatin-binding protein or just a protein in the
nuclear plasma, and we performed fractionation experiments to
clarify this. It is quite clear that nearly all CSE1L was present in
the nuclear soluble fraction instead of in the chromatin fraction
(Fig. S4F). This suggests that CSE1L does not function as a re-
pressor or corepressor protein that directly associates with the
target genes for silencing. Instead, CSE1L more likely exerts its
silencing role in an indirect manner.
Although CSE1L was reported to associate with chromatin

(42), it was also reported to function as an exportin, which re-
exports importin α from the nucleus to the cytoplasm to facilitate
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the nuclear transportation of certain cargo proteins (41, 48). We
then wondered whether CSE1L-mediated nuclear transportation
is linked to its gene-silencing function. Interestingly, we observed
that the CSE1L R382G/R383G mutant protein, which failed to
maintain EGFP reporter silencing (Fig. 5A), also failed to
maintain the nuclear localization of a mCherry protein fused
with a nuclear localization signal (NLS) of SV40 large T protein
(NLSSV40T-mCherry) (Fig. 5B). This suggests a connection be-
tween the two functions of CSE1L described above: gene si-
lencing and nuclear transportation.
Given that the disruption of a nuclear transport pathway by

CSE1L knockdown seemed to contribute to gene derepression,
certain proteins required for gene silencing should be mis-
localized into the cytosol upon CSE1L knockdown. To identify
such protein(s), we established a system using DTO cells by
transfecting candidate proteins fused with an TagRFP/mCherry
tag under the control of a DOX-induced promoter. In these
cells, the addition of DOX induced the expression of the
TagRFP/mCherry-tagged candidate proteins and simultaneously
turned off CSE1L expression. After screening with several genes
in our confirmed hit list, we identified one protein, NOVA1, that
was required for reporter gene silencing and became mislocalized
in the cytosol upon CSE1L depletion. In B2-1 cells, TagRFP-
tagged NOVA1 (TagRFP-NOVA1) showed a strict nuclear lo-
calization pattern, which was completely disrupted after CSE1L
depletion (Fig. 5C). In contrast, the other hit proteins we tested,
such as UHRF1 and TRIM28, showed no localization change in
CSE1L-depleted cells (Fig. S6A).
Considering that a large fraction of genes activated by CSE1L

knockdown were also activated by HDACi treatment (Fig. 4A), we
wondered if any of the HDAC proteins were also cargo proteins of
CSE1L-dependent nuclear transport pathway. Therefore we sys-
tematically tested all the HDAC proteins using the same strategy
and found that HDAC1, HDAC2, and HDAC8 were significantly
mislocalized into cytoplasm when the expression of CSE1L was
turned off (Fig. 5D). Interestingly, the subcellular localization of
the other HDAC proteins displayed little change, with HDAC3,
HDAC5, and HDAC10 remaining localized in both cytoplasm and
nuclei and all the other HDACs remaining enriched in the cyto-
plasm (Fig. S6B). Consistently, we also stained the endogenous
HDAC1 and HDAC2 in DTO cells before and after turning off
CSE1L and observed similar results (Fig. S6C).
To examine whether the mislocalization of NOVA1, HDAC1, and

HDAC2 contributed to silencing defects in CSE1L-knockdown
cells, we simultaneously knocked down NOVA1, HDAC1, and
HDAC2 expression in B2-1 cells. RNA-seq experiments revealed
up-regulation of 530 genes. Among them, 28% (147) overlapped
with genes that were up-regulated upon CSE1L knockdown. This
was significantly higher than random overlap (odds ratio = 9.6,
P = 2.5e-73) (Fig. 5E). Moreover, of the 59 HDAC-dependent
methylation-silenced genes that were up-regulated upon CSE1L
knockdown (defined in Fig. 4A), 61% (36 of 59) were up-regulated
in B2-1 cells, in which NOVA1, HDAC1, and HDAC2 were
knocked down simultaneously (Fig. 5F). These results sufficiently
support a partial contribution of NOVA1, HDAC1, and HDAC2
in CSE1L-mediated methylated gene silencing.
The cargo transportation selectivity may help explain the se-

lectivity observed in gene activation upon CSE1L depletion,
because the nuclear localization of some, but not all, repressors
was impaired by CSE1L depletion, and some, but not all, si-
lenced genes became derepressed after CSE1L depletion.

Disruption of Related Nuclear Import Pathway Components Leads to
Similar Gene Activation. To further confirm the above conclusions,
we tested whether disruption of the nuclear import pathway by
knockdown of other factors related to CSE1L may also activate
the silenced genes. In the nuclear import pathway, importin α
recognizes and binds to classic NLS-containing proteins and then

links them to importin β, which interacts with the nuclear pore
complexes and mediates cargo translocation into the nucleus
(49). Notably, humans have seven importin α proteins (KPNA1–
7) and only one importin β (KPNB1) known to interact with
importin α (50, 51). Given that KPNA7 was not expressed in B2-
1 cells, we synthesized siRNAs targeting KPNA1–6 and KPNB1 and
performed knockdown experiments. The knockdown efficiency was
validated with qRT-PCR (Fig. 6A and Fig. S7A). Robust activation
of methylated, silenced EGFP was observed in cells treated with
four independent siRNA pairs targeting KPNB1 for knockdown
(Fig. 6A). Knockdown of individual KPNA1–6 proteins caused
derepression of the silenced EGFP gene to various degrees
(Fig. 6B). We also used two sets of independent siRNA mix-
tures containing six siRNA pairs targeting all KPNAs, and both
displayed robust derepression of the reporter gene (Fig. 6B). In
addition, we treated B2-1 with 50 μM importazole and 40 μM
ivermectin, two small molecules that block importin-β or
importin α/β-mediated nuclear import (52, 53), and both ro-
bustly activated silenced EGFP (Fig. S7B). These results clearly
indicate that the importin-mediated nuclear transportation
pathway is indeed crucial for gene silencing.
To examine whether the derepression described above occurred

at the genome-wide level, we performed RNA-seq experiments
with KPNB1-knockdown B2-1 cells. After KPNB1 knockdown,
303 genes were up-regulated, and only 66 genes were down-
regulated, supporting an overall role of KPNB1 in facilitating gene
repression. Importantly, among the 303 up-regulated genes, 71%
(215 genes) were also up-regulated after CSE1L depletion, and
among the 66 down-regulated genes, 42% (28 genes) were also
down-regulated after CSE1L depletion (Fig. 6C). A box plot anal-
ysis showed that the 303 genes up-regulated after KPNB1 depletion
also displayed much higher expression upon CSE1L depletion (Fig.
6D). In addition, the expression of AP-1 superfamily members also
displayed similar changes in KPNB1 and CSE1L knockdown cells
(Fig. S7C). Collectively, these results support the idea that CSE1L
and KPNB1 likely function in the same pathway in gene regulation.

Discussion
DNA methylation is a repressive marker critical for epigenetic
gene silencing and often involves HDACs recruited by methylated
DNA-binding proteins (11–19). However, not all methylated
genes are necessarily silenced through the same mechanism. Ap-
proximately half the genes that are commonly up-regulated in
siDNMT1 and 5-Aza treatments and are presumably silenced by
DNA methylation fail to respond to HDACi treatment (Fig. S3B).
Similar observations have been reported previously (20–22); a
number of unbiased screenings have been performed, and several
important regulators have been identified (27–29, 54–56). Some of
these previously identified factors, including TRIM28, UBE2I,
and CHAF1A, were also in the hit list of our screening. On the
other hand, some of the previously identified factors were not in
our hit list, and we also identified several silencing factors, in-
cluding CSE1L. This can be explained by the specific features of
the individual screening design and the efficiency of each screening.
The specific feature of this study is the use of an integrated reporter
gene with a methylated promoter. This may help identify factors
related to DNA methylation-mediated silencing. In our results, the
identification of CSE1L and its partner proteins (KPNAs and
KPNB1) in the importin-mediated nuclear transportation system as
indirect regulators of a fraction of methylated genes is interesting.
However, their target genes largely overlap with the target genes of
HDACi (Fig. 4A), suggesting that additional mechanisms control-
ling the silencing of other methylated genes remain to be uncovered.
Further characterization of the other hits identified in this study may
help resolve this question.
The discovery of a role for the importin-mediated nuclear trans-

portation pathway in gene silencing is unexpected but in retro-
spect is not surprising. Here, we would like to emphasize an
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intriguing aspect of this discovery. The first expectation upon
identifying the involvement of a nuclear transportation system in
gene regulation is that it is unlikely to be specific. Interestingly,
this expectation was incorrect. First, RNA-seq results from
CSE1L knockdown cells showed that among the genes with al-
tered expression (798 genes with more than twofold up- or down-
regulation), 74% were up-regulated (Fig. 2A), clearly indicating a
biased role for CSE1L in facilitating silencing. Second, importin-
mediated nuclear transportation requires that a specific NLS be
present in the cargo protein (48–50, 57). Therefore, the nuclear
localization of some, but not all, repressive proteins was affected
by CSE1L depletion (Fig. 5 C and D and Fig. S6 A and B). Due

to the target-gene selectivity of these repressive proteins and
their selectivity for the nuclear import machinery, the activation
of a specific set of genes can be achieved by targeting the nuclear
import machinery, similar to what we did for the importin
pathway (Figs. 2 and 6). This could be of potential interest, es-
pecially when some DNA methyltransferase and HDACi have
been approved as anticancer drugs. This point might be very
relevant to the reported function of CSE1L in cancer progres-
sion. Dysregulated CSE1L expression and localization has been
reported to correlate with cancer progression, and its abnormal
distribution has been proposed to be a biomarker for prognosis
of carcinomas (31, 32, 39, 58–62). We observed that CSE1L
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Fig. 6. Disruption of other components of the importin-mediated nuclear transportation pathway leads to similar transcription changes. (A) Four in-
dependent siRNA pairs targeting the KPNB1 activate reporter gene in B2-1 cells. Cell images (Left), knockdown efficiency (Upper Right), and RGFP values
(Lower Right) of each siRNA pair are shown. Error bars represent the SD. (B) Knockdown of KPNAs activates silenced EGFP in B2-1 cells. The percentage of
EGFP-expressing cells was measured with FACS. Error bars represent the SD of three biological replicates. (C) Venn diagrams showing the overlap of up-
regulated genes (Upper) or down-regulated genes (Lower) in KPNB1- and CSE1L-knockdown cells. (D) Box plot showing the expression level of KPNB1-
regulated genes in B2-1 cells treated with siNonTarget, siCSE1L, or siKPNB1.
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depletion robustly activated the expression of AP-1 superfamily
transcription factors, including oncogenes such as FOS, JUN,
and MAF (Fig. 2C). It would be interesting to dissect whether
CSE1L promotes oncogenic metastasis in part through its reg-
ulation of AP-1 family transcription factors. Although these are
speculations at this stage, our study provides a starting point for
an alternative understanding and intervention strategy.
Another interesting observation is that we were able to acti-

vate methylated genes without affecting DNA methylation (Fig.
3 and Fig. S3A). An interesting future direction would be to test
whether prolonged activation of these initially methylated genes
would cause eventual demethylation and, if so, whether such a
phenomenon would transform a short-term intervention into a
cellular epigenetic memory.
The observations that we failed to immunoprecipitate CSE1L to

chromatin (Fig. S5) and that CSE1L was predominantly localized
in the nuclear plasma (Fig. S4 C and F) are also worthy of further
investigation. CSE1L has been reported to associate with chro-
matin and regulates the expression of p53 target genes (42). In
addition, CSE1L shows distinct localization patterns in different
cell lines that have been previously studied (43, 63). Whether
CSE1L can directly associate with chromatin and exert a regula-
tory function remains an open question. Nevertheless, the largely
overlapping alteration to global transcription profiles in CSE1L-
or KPNB1-depleted cells indicates that the silencing effect of
CSE1L observed in this study is largely an indirect event.
In conclusion, our work reveals a role for CSE1L and the

importin-mediated nuclear transportation pathway in gene si-
lencing, suggesting that the cargo specificity of protein nuclear
import systems may impact the selectivity of gene silencing.

Materials and Methods
High-Content RNAi Screening. The HumanWhole Genome siRNA Set V4.0 from
Qiagen targeting 19,121 human genes was used for the genome-wide RNAi
screening. The libraries consist of pools of four siRNA pairs per gene arrayed in
96-well plates. siRNA pairs targeting DNMT1 (siDNMT1) were included as the
positive control, and a nontargeting siRNA pair (siNonTarget) was included as
the negative control in every 96-well plate for screening. The addition of
siRNA was carried out using a versatile pipetting robot, a Biomek FX
workstation (Beckman Coulter), and the addition of transfection reagent and
cells was performed with Matrix WellMate microplate dispenser (Thermo
Scientific). The images were collected with the Opera LX high-content
screening system (PerkinElmer) and analyzed with the Columbus Image
Data Storage and Analysis System. Screenings were routinely performed in
triplicate. The mean percentage of EGFP-positive cells in each well was de-
termined from a total of seven image fields.

In brief, siRNA samples from the libraries were dispensed into 96-well plates
containingOpti-MEM reduced serummedium. Thendiluted siRNA solutionwas
equally distributed into three CellCarrier 96-well plates (6005558; PerkinElmer).
INTERFERin-HTS (410-060; Polyplus-transfection) diluted with tridistilled water
(0.07 μL in 10 μL) was added into each well, and the plates were incubated at
room temperature for 30 min. B2-1 cells were seeded in 96-well plates
(4,500 cells per well) containing siRNAs with INTERFERin-HTS to give a final
siRNA concentration of 40 nM. The transfected cells were incubated for 96 h
for siRNA knockdown, and Hoechst 33342 was added to stain the nucleus.
Then the cells were imaged with Opera LX.

Image Analysis with Columbus Image Analysis System. Image acquisition was
performed with seven fields per well using a 10× (air) objective lens for
RNAi screening and 90 fields per well using a 60× (water) objective lens for
protein cellular localization analysis.

The percentage of EGFP-positive cells was obtained using object identi-
fication modules in Columbus Image Analysis System to enumerate the
number of Hoechst-stained nuclei and EGFP-expressing cells. In brief, images
were submitted to Columbus to identify the nuclei based on Hoechst signal.
Cells were then defined based on the identified nuclei, and the cytoplasm
region around nuclei was determined. To reduce misdetection, morphology
properties were also taken into consideration. The intensity properties of
the EGFP signal in the cytoplasm region were calculated, and cells with an
intensity value greater than 50 were defined as EGFP-positive cells. Then the
percentage of EGFP-positive cells was calculated as the readout.

For calculating the percentage of mislocalized cells, images were imported
into Columbus. The nucleus boundary was identified through the Hoechst
signal, and regions that expanded or shrank from the nucleus boundary by
15 pixels were defined as the cytoplasm fraction or nuclear fraction, re-
spectively. Next, the mean fluorescence density of TagRFP/mCherry in
these two regions was measured, and cells with a ratio of fluorescence
density between the cytoplasm fraction and the nuclear fraction higher
than 0.75 were defined as “mislocalized cells.” The percentage of mis-
localized cells was calculated as the readout.

RNAi. siRNAs were chemically synthesized by the Biological Resource Center,
National Institute of Biological Sciences (NIBS). siRNAs were dissolved in
tridistilled water to a final concentration of 20 μM. siRNA transfection for hits
validation or functional study was performed with Lipofectamine RNAiMax
(13778150; Thermo); the final concentration of siRNA used was 10 nM. All
siRNAs used in this study are listed in Table S1.

Generation of the DTO Cell Line. The CSE1L DTO line was constructed in two
steps. First, a Dox-induced CSE1L tetracycline (Tet)-off cell line was established
using the Tet-Off Advanced system (Clontech). Guide RNA-resistant CSE1L cDNA
was introduced into pLenti-TRE-puromycin for construction of the Tet-off vectors.
Lentivirus was produced in 293FT cells by cotransfection of pLenti-TRE-CSE1L-
puromycin or pLenti-tTA-neomycin with the lentivirus package vectors pMD2.g
and psPAX2. These two lentiviruses were mixed (CSE1L:tTA = 1:10) to coinfect
B2-1 cells. The infected population was selected in culture medium containing
1 μg/mL puromycin and 1mg/mL G418. Individual surviving clones were screened
for protein expression with or without 2 μg/mL Dox treatment. Then the en-
dogenous CSE1L genes were knocked out using the CRISPR/Cas9 system, and cells
for tests were grown in 96-well plates. Two single-guide RNA (sgRNA) sequences
were used for CSE1L gene targeting: sgRNA-1-CSE1L (AATTTGTGAAGCCGATC-
GAGTGG) and sgRNA-2-CSE1L (GGCTTTAATGGCCACTCGATCGG).

RNA-Seq and Data Analysis. Total RNA was directly extracted from cells cul-
tured in 6-cm plates or six-well plates using TRIzol reagent (15596018; Thermo
Fisher) with two biological replicates for each experiment. For RNA-seq,
polyA-containing mRNA molecules were captured using attached oligo-
dT and were subjected to library preparation according to the manu-
facturer’s instructions. RNA-seq reads were generated by the BGISEQ-
500 platform (BGI, Ltd.) with the policy of single-ended 50 bp (SE50). The
average RNA-seq depth was 24 million reads, ranging from 23.9–
24.1 million reads. Clean reads were mapped to the hg19 genome with
TopHat software (v1.4.1, cole-trapnell-lab.github.io/projects/tophat/).
The transcription levels (RPKM) were quantified with Cufflinks software
(v2.0.2, cole-trapnell-lab.github.io/projects/cufflinks/). Fold changes of
gene expression were calculated with Cuffdiff software (v2.2.1, cole-trapnell-lab.
github.io/cufflinks/cuffdiff/). Up-regulated/down-regulated genes were de-
fined by log2(treatment/control) ≥1 or log2(treatment/control) equal to or
less than −1, respectively, in which both RPKM values add a pseudo value
of 0.5 to avoid being divided by zero.

Enrichment analysis of GO terms for gene sets was performed by Database
for Annotation, Visualization and Integrated Discovery (DAVID) Bio-
informatics Resources 6.7 with default settings (64, 65).

Statistics. All data with statistics are from at least three biological replicates.
For image analysis, images with a total of at least 50 cells were used; the exact
sample sizes are shown in Tables S3 and S4. Statistical analysis was performed
with GraphPad Prism 7.00, and an unpaired two-tailed Student’s t test was
used to determine the statistical significance between two groups. Data
shown in bar graphs represent the mean ± SD, as indicated in figure legends.
The statistical significance of the overlap between two groups of genes was
calculated with the R package GeneOverlap (40).
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