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ABSTRACT Clostridium difficile multilocus sequence type 37 (ST37), which mainly
corresponds to ribotype 017, has been a dominant genotype circulating in China. In
this study, we report the use of matrix-assisted laser desorption ionization–time of
flight mass spectrometry (MALDI-TOF MS) to analyze and characterize 204 C. difficile
clinical isolates, including 49 ST37 and 155 non-ST37 isolates collected in China and
other countries. The distributions of two major protein peaks (m/z 3,242 and 3,286)
were significantly different between ST37 and non-ST37 prototype strains and clini-
cal isolates. This difference was reproducible when analysis was performed on differ-
ent colonies in different runs. This finding was repeated and confirmed by both bio-
Mérieux Vitek MS and Bruker Microflex LT systems on isolates recovered from a
variety of geographic regions worldwide. The combination of the two peaks was
present in 47 of 49 ST37 isolates, resulting in a sensitivity of 95.9%. In contrast, the
peak combination was absent in 153 of 155 non-ST37 isolates, resulting in a specific-
ity of 98.7%. Our results suggest that MALDI-TOF MS is a rapid and reliable tool to
identify C. difficile genotype ST37. Work is in progress to characterize the two mole-
cules having peaks at m/z 3,242 and 3,286, which appear to be specific to C. difficile
genotype ST37.

KEYWORDS Clostridium difficile, genotype ST37, MALDI-TOF MS, m/z 3,242, m/z
3,286

Clostridium difficile is a Gram-positive, anaerobic, spore-forming bacillus that is a
major pathogenic bacterium in health care-associated diarrhea in developed coun-

tries (1, 2). Clinical symptoms associated with C. difficile infection (CDI) range from mild
diarrhea to life-threatening pseudomembranous colitis (PMC) (3). Two toxins, toxin A
(TcdA) and toxin B (TcdB), are primarily responsible for the pathogenicity of C. difficile
(4, 5). In recent years, a toxin A-negative, toxin B-positive (A�B�) C. difficile variant,
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mainly belonging to sequence type 37 (ST37) by multilocus sequence type (MLST)
analysis and ribotype 017 by PCR-ribotyping, has been widely distributed in China and
other countries (6, 7). Previous work (8–10) has demonstrated that ST37 C. difficile is the
dominant strain in adult patients with CDI, albeit with limited prevalence data for
colonization in healthy individuals. ST37 isolates have been associated with increased
resistance to multiple antibiotics, including fluoroquinolones, macrolides, and lincomy-
cin (11, 12). Severe clinical symptoms, as well as outbreaks in hospitals, have been
reported for these A�B� C. difficile isolates, suggesting that this strain is a major public
health problem (13–15). Thus, identification for ST37 strains of C. difficile by a rapid and
accurate method is of great clinical significance for the prevention and control of CDI.

Various molecular typing methods, including PCR-ribotyping, multilocus sequence
type (MLST) analysis, and pulsed-field gel electrophoresis (PFGE) typing, have been
widely used for genotyping and characterization of C. difficile isolates. Unfortunately,
these methods are time-consuming, relatively costly, and complex, making them
difficult for routine clinical use (16). Matrix-assisted laser desorption ionization–time of
flight mass spectrometry (MALDI-TOF MS) has been widely applied in clinical microbi-
ology laboratories for identification of pathogenic bacteria (17–19). Rapid identification
of microbes at species level is achieved by comparing protein fingerprint spectra, which
are comprised of molecules ranging from m/z 2,000 to 20,000, with the established
strain reference databases (20, 21). MALDI-TOF MS technology thus provides a rapid,
accurate tool for identification of microbial pathogens (22, 23). In addition, differences
between protein spectra determined by MALDI-TOF MS have been evaluated as a
method for bacterial typing by identifying type-specific protein peaks in mass spectra
that can be used as biomarkers to identify particular genotypes or subtypes (24, 25).
This technology has also been reported to be useful for the identification of unique C.
difficile genotypes, such as ribotype 001, 027, and 078/126 (26). The aim of this study
was to identify and characterize potential MALDI-TOF MS biomarkers for rapid identi-
fication and characterization of C. difficile ST37 strains.

(This study was presented in part at the 10th World Congress of the World Society
for Pediatric Infectious Diseases, Shenzhen, China, 2 to 5 December 2017.)

MATERIALS AND METHODS
C. difficile strains and clinical isolates. C. difficile prototype strains, including ATCC BAA-1870 (ST1),

9689 (ST3), 43598 (ST37), 43255 (ST46), BAA-1812 (ST53), BAA-1382 (ST54) and BAA-1804 (ST63), were
obtained from the American Type Culture Collection (Manassas, VA). A total of 204 C. difficile isolates
were recovered from fecal specimens of patients with diarrhea or from healthy donors in China and other
countries as previously described (8, 10, 27) (Table 1). All prototype strains and isolates were stored at
�70°C in brain heart infusion broth with 10% glycerol until subsequent analyses. For subsequent
experiments, all strains and clinical isolates were retrieved on Columbia blood agar (CBA; Oxoid,
Cambridge, UK) plates and incubated at 37°C for 48 h under anaerobic conditions. A single bacterial
colony with typical morphology was subcultured again on CBA plates and incubated under the same
conditions for 48 h.

DNA extraction, toxin gene analysis, and MLST analysis. DNA was extracted from a single isolated
colony using a TIANamp bacteria DNA kit (Tiangen Biotech, Beijing, China) according to the manufac-
turer’s instructions. DNA samples were stored at �20°C until use. Toxin genes tcdA and tcdB were tested
as described by Lemee et al. (28). MLST analysis was performed as previously described (16). In brief,
fragments from seven genes (adk, atpA, dxr, glyA, recA, sodA, and tpi) were amplified and sequenced at
Sangon Biotech (Shanghai, China) and analyzed at the Beijing Genomics Institute (Beijing, China). The
DNA sequences of the seven genes were submitted to the MLST database (https://pubmlst.org/cdifficile/)
to obtain the ST genotype.

MALDI-TOF sample preparation. An ethanol/formic acid method was used for extraction of
bacterial proteins, in which one-half to one 10-�l inoculation loop of fresh bacterial culture was
thoroughly suspended in 300 �l of molecular-grade water and 900 �l ethanol was added. The compo-
nents were mixed well and centrifuged at 13,000 � g for 2 min. After centrifugation, the supernatant was
removed, and the pellets were air dried. Then, 20 �l of formic acid (70% in water) was added to the
pellets and mixed. Finally, 20 �l of acetonitrile was added and mixed thoroughly. After centrifugation at
13,000 � g for 2 min, the supernatant containing the bacterial protein extract was transferred to a clean
tube.

MALDI-TOF MS data acquisition. The spectra were collected using two mass spectrometry
systems, the bioMérieux Vitek MS and the Bruker Microflex LT. For analysis with the bioMérieux Vitek
MS, 1 �l bacterial protein extract was transferred to a Vitek MS disposable slide (bioMérieux SA,
Marcy-l’Étoile, France) and allowed to dry before overlaying with 1 �l of a saturated solution of
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�-cyano-4-hydroxycinnamic acid (�-CHCA) in 28% acetonitrile (CHCA matrix; bioMérieux SA) and dried in
ambient air. Four spots were prepared for each sample. The Vitek MS MALDI-TOF MS was equipped with
an N2 laser (� � 337 nm). Spectra were collected in linear SARAMIS RUO mode, in the range of m/z 2,000
to m/z 20,000. The software used for data acquisition was LaunchPad (version 2.8; bioMérieux). Spectra
were acquired in automatic mode by accumulating 100 profiles. Spectral data were automatically
processed and exported as peak lists for analysis in SARAMIS. Escherichia coli strain ATCC 8739 was used
for mass calibration instrument parameter optimization. For analysis with the Bruker Microflex LT, 1 �l
bacterial protein extract was transferred to an MSP 96 ground steel sample target (Bruker Daltonik,
Bremen, Germany) and allowed to dry at room temperature. Subsequently, the sample was overlaid with
1 �l of matrix (a saturated solution of �-cyano-4-hydroxycinnamic acid in 50% acetonitrile and 2.5%
trifluoroacetic acid) and dried in ambient air. Twelve spots were prepared for each sample. The Microflex
LT MALDI-TOF MS system was equipped with a 337-nm N2 laser. The molecular ions were measured in
the linear positive-ion mode. The software used for the data acquisition was flexControl (version 3.0;
Bruker Daltonik) software. The parameters used were as follows: mass range, 2,000 to 20,000 Da; ion
source 1, 20 kV; ion source 2, 18.5 kV; lens, 8.45 kV; pulsed ion extraction, 320 ns; laser frequency, 20.0
Hz. A Bruker bacterial test standard (BTS255343; Bruker Daltonik) was used for mass calibration instru-
ment parameter optimization. A peak was considered to be present when it was detected by the
automated spectrum processing performed by the respective software programs.

Data analysis. Data were analyzed using Statistical Package for Social Sciences (SPSS; Chicago, IL)
version 21.0. As all peak values were nonnormally distributed, the Mann-Whitney U test was used to
analyze correlations between peak values and STs. P values were calculated to assess the differences
between spectra of ST37 and non-ST37 isolates, and a P value of �0.05 was considered statistically
significant.

RESULTS

A total of 211 C. difficile isolates/strains, including seven ATCC reference strains and
204 clinical isolates, were included in the study. Among the 204 clinical isolates, 178
(87.3%), 5 (2.5%), 2 (1.0%), 2 (1.0%), 2 (1.0%), 1 (0.5%), and 14 (6.9%) were collected from
Hebei, Hangzhou, Hong Kong, Singapore, South Korea, Australia, and New York City,
respectively (Table 1).

We first compared C. difficile whole-cell mass spectra for ST37 and non-ST37
genotypes, using ATCC reference strains and several additional clinical isolates (Fig. 1).
The mass spectra were acquired in the mass range of m/z 2,000 to 20,000. Approxi-
mately 80 peaks were detected per spectrum, with the highest peaks concentrated in
the range of m/z 3,000 to 10,000. Based on the data analysis, two protein peaks (m/z
3,242 and 3,286) were identified as correlated with genotype ST37. Peak m/z 3,286 was
present in the spectra of ST37 isolates and absent in those of non-ST37 isolates; peak
m/z 3,242 of ST37 isolate spectra had significantly higher intensity values compared

TABLE 1 Sources and sequence types of clinical isolates recruited in this study

Geographic origin Sequence type Total no. of isolates

Hebei, China 37 31
3 29
54 23
2 14
35 13
8 5
26 5
48 5
205 5
Other STs 48

Hangzhou, China 37 5
Hong Kong, China 37 2

New York City, USA 37 8
3 6

South Korea 37 2

Singapore 37 1
35 1

Australia 2 1
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with those of non-ST37 isolates (Fig. 2B). This observation was repeated and confirmed
using both bioMérieux Vitek MS and Bruker Microflex LT systems.

We then assessed the reproducibility of our observations for an additional three
ST37 and three non-ST37 isolates. Values of m/z 3,370 (ST37-nonspecific) and 3,242 and
3,286 (ST37-specific) were included for intra- and interexperimental variability analysis.
Each of the six isolates was run either four or nine times in three experiments run on
different days by three experimental operators. High intraexperimental coefficient of
variation (CV) values were revealed for both ST37 (117 to 209%) and non-ST37 isolates
(Table 2), while relatively low interexperimental CV values were noticed for both ST37
(51% for m/z 3,242, 44% for m/z 3,286, and 64% for m/z 3,370) and non-ST37 isolates
(58% for m/z 3,242, 173% for m/z 3,286, and 48% for m/z 3,370). As presented in Table
2, in all three experiments, all three ST37 isolates possessed significantly higher
intensity values at m/z 3,242 (P � 0.001) and at m/z 3,286 (P � 0.001) than non-ST37
isolates. In contrast, there was no statistical difference between ST37 and non-ST37
isolates in m/z 3,370 peak values (P � 0.05).

A total of 204 C. difficile clinical isolates collected from different geographic regions
in China and other countries was analyzed for tcdA and tcdB patterns (Table 3). In
addition to ST37, these isolates included 35 ST3, 24 ST54, 15 ST2, 14 ST35, 5 ST8, 5 ST26,
5 ST48, and 5 ST205 genotypes, as well as 34 other rare ST genotypes. For the 49 ST37
isolates, the sole tcdA or tcdB pattern was A�B�. However, the 155 non-ST37 isolates
were comprised of 124 (80.0%) A�B�, 1 (0.6%) A�B�, and 30 (19.4%) A�B�. Notably,
the only A�B� variant found to be a non-ST37 isolate was an ST81 genotype, which was
recovered in Hebei, China (Table 3).

FIG 1 Exemplary whole-cell mass spectra of C. difficile strains and isolates of ST37 (ATCC 43598, CD013,
CD015, CD017, CD026, and CD126; red lines) and non-ST37 (ATCC BAA-1382, ATCC BAA-1804, ATCC
BAA-1870, ATCC BAA-1812, CD105 (ST3), and CD151 (ST2); blue lines). The lower panel (b) shows an
enlarged section of the full upper spectra (a).
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The presence and absence of the m/z 3,242 and 3,286 peaks were then analyzed in
the 204 clinical isolates using the C. difficile-universal m/z 3,370 peak as the control
(Table 3). The m/z 3,370 peak was detected in majority of isolates tested. Among the 49
ST37 isolates, all but two isolates possessed both m/z 3,242 and 3,286 peaks. In contrast,
among the 155 non-ST37 isolates, the combination of peaks m/z 3,242 and 3,286 was
only detected in two isolates, namely, one ST81 isolate from Hebei and one ST3 isolate
from New York. A cluster analysis based on full spectra of ST37 isolates revealed no
significant difference in spectra of strains from different geographic origins (Fig. 2). The
differing distributions of m/z 3,242 and 3,286 peaks between ST37 and non-ST37 isolates

FIG 2 Cluster analysis of spectra of 49 ST37 isolates of different geographic origins. The dendrogram was computed in SARAMIS with a
single-linkage agglomerative algorithm-based relative spectrum similarity (percentage of matching peaks within a tolerance of 0.08%). The
dotted purple line indicates 65% similarity, which is generally the threshold for intraspecies similarity. Yellow, Hebei; green, Hangzhou;
blue, New York; black, ATCC 43598.
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was consistent irrespective of the geographic origin of the strains. Accordingly, the com-
bination of two peaks (m/z 3,242 and 3,286) had a sensitivity of 95.9% and a specificity of
98.7% for identification and characterization of C. difficile genotype ST37 by MALDI-TOF MS.

DISCUSSION

In this study, we describe a new strategy, based on MALDI-TOF MS, for the rapid
identification of C. difficile genotype ST37. A set of particular peaks (m/z 3,242 and
3,286) appeared to be somewhat specific to ST37 C. difficile. Using these two peaks, the
ST37 genotype can be quickly identified and differentiated from non-ST37 genotypes.
In comparison to MLST technology, the method for identification of ST37 C. difficile
based on MALDI-TOF MS is rapid, accurate, and cost-effective.

The peak combination of m/z 3,242 and 3,286 as a biomarker for ST37 strains has
high specificity and sensitivity. Two widely used MALDI-TOF MS systems in clinical
microbiology laboratories were included in this study; both produced satisfactory
results for identification of the C. difficile ST37 genotype. Among the 204 clinical isolates
studied, the two-peak combination was detected in one ST3 isolate, as well as in one
ST81 isolate. It is worth noting that both ST81 and ST37 belong to clade 4, so the two
genotypes may not be distinguishable because of their highly similar protein spectra.
According to MLST analysis, there is only one allele variation between ST37 and ST81.
Moreover, our previous data showed that the ribotype of the ST81 isolate was 017.
Among the 31 ST37 isolates tested by PCR-ribotyping, all but one (CD044) were
ribotype 017 (data not shown). It was reported in a general teaching hospital in
Shanghai that, like ST37, the ST81 genotype had a much higher resistance rate to
clindamycin and moxifloxacin (29). According to a recent report from China (30),
non-ST37 isolates belonging to clade 4 are also seen in a certain proportion in the
population of persons in China with C. difficile infection. Larger studies in China are
being planned in order to include more non-ST37 isolates belonging to clade 4.

MALDI-TOF MS-based typing techniques have been used for the typing of many
bacterial species, such as Escherichia coli (25, 31, 32), Staphylococcus aureus (33, 34),
Streptococcus agalactiae (35), Streptococcus pneumoniae (36), Salmonella enterica (37),
and Acinetobacter baumannii (38). Reil et al. successfully identified the C. difficile strains
RT001, 027, and 078/126 using an extended MALDI-TOF MS system in 2011, while the
RT017 strain, due to the low number of isolates, could not be identified (26). In this
study, C. difficile genotype ST37 was successfully identified with a combination of two
peaks (m/z 3,242 and 3,286). ST37 is one of the most common sequence types of C.
difficile found in China that has a significantly different resistance pattern than others.
The MALDI-TOF MS-based rapid identification method for C. difficile ST37 is likely to
have an important impact in clinical practice (6, 11, 12).

In summary, C. difficile genotype ST37 possesses several unique genotypic and
phenotypic characteristics, including increased antibiotic resistance and A�B� pheno-
type for the tcdA and tcdB genes; this strain currently circulates as a dominant strain in

TABLE 3 Molecular characteristics of ST37 and non-ST37 C. difficile isolates

Genotype Geographic origin
No. of isolates
tested

MSa peak (no. present [%]) at m/z: tcdA or tcdB phenotypeb

3,242 3,286 3,370 A�B� A�B� A�B�

ST37 Hebei, China 31 31 (100) 30 (96.8) 30 (96.8) 0 (0) 31 (100) 0 (0)
Hangzhou, China 5 5 (100) 4 (80.0) 5 (100) 0 (0) 5 (100) 0 (0)
Asia Pacific region 5 5 (100) 5 (100) 5 (100) 0 (0) 5 (100) 0 (0)
New York, USA 8 8 (100) 8 (100) 1 (12.5) ND ND ND
All ST37 origins 49 49 (100) 47 (95.9) 41 (83.7)

Non-ST37 Hebei, China 147 62 (42.2) 1 (0.7) 135 (91.8) 116 (78.9) 1 (0.7) 30 (20.4)
Asia Pacific region 2 0 (0) 0 (0) 2 (100) 2 (100) 0 (0) 0 (0)
New York, USA 6 2 (33.3) 1 (16.7) 0 (0) ND ND ND
All non-ST37 origins 155 64 (41.3) 2 (1.3) 137 (88.4)

aMS, mass spectrometry.
bND, not done.
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mainland China (8–10). A pilot proteomic analysis indicated that the presences of m/z
3,242 and 3,286 peaks cannot be explained by common postgenomic modifications,
such as methylation. The two peaks, especially the m/z 3,242 peak, exist at a low level
at the current detection sensitivity in some non-ST37 isolates. Additional studies are
being done to characterize these two molecules with peaks at m/z 3,242 and 3,286 that
appear to be specific for C. difficile genotype ST37.
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