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Abstract

Motivation: While drug combination therapies are a well-established concept in cancer treatment,

identifying novel synergistic combinations is challenging due to the size of combinatorial space.

However, computational approaches have emerged as a time- and cost-efficient way to prioritize

combinations to test, based on recently available large-scale combination screening data.

Recently, Deep Learning has had an impact in many research areas by achieving new state-of-the-

art model performance. However, Deep Learning has not yet been applied to drug synergy predic-

tion, which is the approach we present here, termed DeepSynergy. DeepSynergy uses chemical

and genomic information as input information, a normalization strategy to account for input data

heterogeneity, and conical layers to model drug synergies.

Results: DeepSynergy was compared to other machine learning methods such as Gradient

Boosting Machines, Random Forests, Support Vector Machines and Elastic Nets on the largest

publicly available synergy dataset with respect to mean squared error. DeepSynergy significantly

outperformed the other methods with an improvement of 7.2% over the second best method at

the prediction of novel drug combinations within the space of explored drugs and cell lines. At

this task, the mean Pearson correlation coefficient between the measured and the predicted values

of DeepSynergy was 0.73. Applying DeepSynergy for classification of these novel drug combina-

tions resulted in a high predictive performance of an AUC of 0.90. Furthermore, we found

that all compared methods exhibit low predictive performance when extrapolating to unexplored

drugs or cell lines, which we suggest is due to limitations in the size and diversity of the dataset.

We envision that DeepSynergy could be a valuable tool for selecting novel synergistic drug

combinations.

Availability and implementation: DeepSynergy is available via www.bioinf.jku.at/software/Deep

Synergy.

Contact: klambauer@bioinf.jku.at

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Administering drug combinations instead of monotherapy can lead

to an increased efficacy compared to single drug treatments

(Csermely et al., 2013; Jia et al., 2009). Furthermore, host toxicity

and adverse side effects are likely reduced, since doses of drug com-

binations are typically lower than doses of single agents (Chou,

2006; O’Neil et al., 2016). Drug resistance can be decreased or even

overcome through combination therapy (Huang et al., 2016;

Kruijtzer et al., 2002; Tooker et al., 2007). Therefore, drug combi-

nations are investigated across various medical areas, such as cancer

(Al-Lazikani et al., 2012), viral disease including human immunode-

ficiency virus (HIV) and hepatitis C virus infections (Clercq, 2007)

as well as fungal (Chen et al., 2016; Groll and Tragiannidis, 2009)

and bacterial infections (Tamma et al., 2012; Worthington and

Melander, 2013). However, drug combination effects can be adverse

and even lead to shorter progression free survival of cancer patients

(Hecht et al., 2009; Tol et al., 2009). Therefore, finding synergistic

drug pairs for a particular cancer type is important for improving

efficacy of anticancer treatment.

Until recently, effective drug combinations were proposed based

on clinical experience. However, ‘trial-and-error’ is time-, labor-

and cost-intensive. Furthermore, it might expose patients to

unnecessary or even harmful treatment (Day and Siu, 2016; Pang

et al., 2014). Another strategy to identify synergistic drug pairs with-

out harming patients is high-throughput screening (HTS). A large

number of measurements can be produced in reasonable time at low

costs (Bajorath, 2002; Bleicher et al., 2003; White, 2000). HTS

has also been applied to test for synergistic drug combinations

(He et al., 2016). In these screens different concentrations of two

drugs are applied to a cancer cell line. Despite the importance of

cancer cell lines in biomedical research, their ability to accurately

represent the in vivo state is often questioned. The reason is that

even if there is a high genomic correlation between the original

tumour and the derived cancer cell line, it is still far from perfect

(Ferreira et al., 2013). Furthermore, testing the complete combinato-

rial space with HTS is unfeasible (Goswami et al., 2015; Morris

et al., 2016).

Computational methods such as machine learning models offer

the possibility to efficiently explore the large synergistic space.

Accurate predictive models can be generated by leveraging the avail-

able HTS synergy data. Reliable predictions provide guidance for

in vitro and in vivo research. Furthermore, methods developed to

utilize genomic information for their predictions offer the opportu-

nity to apply them also in an in vivo setting. Therefore, these predic-

tive models are a big step towards precision medicine (Bulusu et al.,

2016). Anti-cancer synergy prediction has already been tackled with

a wide variety of approaches. Methods range from systems biology

methods (Feala et al., 2010), kinetic models (Sun et al., 2016),

mixed integer linear programming methods based on the diseased

gene set (Pang et al., 2014), computational methods based on gene

expression profiles after treatment with single drugs and dose

response curves (Goswami et al., 2015; Yang et al., 2015), to

machine learning approaches including Random Forests and Naive

Bayes methods (Li et al., 2015; Wildenhain et al., 2015). However,

these methods are restricted to certain pathways, targets or cell lines,

or require transcriptomic data of cell lines under compound treat-

ment. In contrast, our approach only requires a single transcrip-

tomic characterization of the cell line without compound treatment,

and the chemical structure of the two drugs.

Two crowdsourced challenges were focused on computational

methods for drug combinations. In 2012, a challenge considered

only a single cell line (OCI-LY3) and 14 different drugs (Bansal

et al., 2014). Recently, a second challenge was launched to deter-

mine the state-of-the-art of prediction of synergy scores (Yu, 2016).

The dataset consisted of 3800 synergy score samples of pre-specified

drug combinations. Although the research questions addressed in

these challenges are undoubtedly of high importance, the competi-

tion was grounded on datasets with limited size and did not evaluate

the performance of methods for novel drug combinations.

Due to the fast development of high-throughput methods, the

amount of available synergy data points has tremendously increased.

Publicly available databases such as ASDCD (Chen et al., 2014) con-

taining antifungal combinations and DCDB (Liu et al., 2010, 2014)

with approved and investigational combinations, play a key role in

providing good quality training data for developing computational

predictive methods. A review of these resources has been discussed

in Bulusu et al. (2016). Recently, a large HTS synergy study (O’Neil

et al., 2016) with more than 20 000 synergy measurements was per-

formed, which offers the possibility to evaluate computational meth-

ods for predicting novel drug combinations. The dataset covers 38

drugs and 39 cancer cell lines. Therefore, the performed HTS cov-

ered 83% of the possible two drug combinations. Both experimental

and approved drugs were tested. The used cancer cell lines origi-

nated from seven different tissue types.

Previous methods were developed and optimized for small data-

sets. However, methods developed for limited data might not be

appropriate anymore. Predictive performance can be improved,

since more data is available and methods which learn from tens of

thousands of data points can be used. Deep Neural Networks

(DNNs), which strongly profit from large datasets, have impacted

many scientific disciplines and achieved new state-of-the-art per-

formance (LeCun et al., 2015). Deep Learning has set new records

in image (Farabet et al., 2013; Krizhevsky et al., 2012) and speech

recognition (Hinton et al., 2012; Sainath et al., 2013). Recently,

DNNs also found their way into drug design (Ma et al., 2015; Mayr

et al., 2016). DNNs have the ability to learn abstract representations

from high-dimensional data, which is useful for solving complex

tasks. The difficult process of identifying new drugs includes many

challenges for which Deep Learning is perfectly suited, due to large

amounts of available data and its ability to extract important fea-

tures (Unterthiner et al., 2015).

In this work, we present DeepSynergy, a Deep Learning

approach for predicting the synergy of drug combinations and a

thorough method comparison. The model was designed for regres-

sion, since treating the task as a classification problem might over-

simplify the actual situation (Chen et al., 2016; Pahikkala et al.,

2015). DeepSynergy uses both compound as well as genomic

information as inputs. By incorporating genomic information,

DeepSynergy can learn to distinguish different cancer cell lines and

find specific drug combinations that have maximal efficacy on a

given cell line. DeepSynergy combines information about the cancer

cell line and the drug combination in its hidden layers to form a

combined representation that eventually leads to accurate predic-

tions of drug synergies. DeepSynergy was trained on a large publicly

available synergy dataset (O’Neil et al., 2016). To benchmark the

performance of our approach we compare the results to other state-

of-the-art machine learning methods: Gradient Boosting Machines

(Friedman, 2001), Random Forests (Breiman, 2001), Support

Vector Machines (Cortes and Vapnik, 1995) and Elastic Nets (Zou

and Hastie, 2005). A median polishing method serves as baseline for

the task. Overall, we found that DeepSynergy can predict drug syn-

ergies of novel combinations within the space of explored drugs and

cell lines with high accuracy and significantly outperforms the other
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methods at this task. Furthermore, we investigated the performance

of the methods at extrapolating to drug combinations which include

either novel drugs or novel cell lines and found that these scenarios

are challenging for all methods.

2 Materials and methods

2.1 Dataset
We used a recently published large-scale oncology screen produced

by Merck & Co. (O’Neil et al., 2016) to train our models. The data-

set comprises 23 062 samples, where each sample consists of two

compounds and a cell line. Thereby, the dataset covers 583 distinct

combinations, each tested against 39 human cancer cell lines derived

from 7 different tissue types (see Supplementary Table S1). Pairwise

combinations were constructed from 38 diverse anticancer drugs

(14 experimental and 24 approved, see Supplementary Table S2), of

which 22 were tested exhaustively in combination (the ‘exhaustive’

set), while the remaining 16 (the ‘supplemental’ set) were tested only

in combination with those of the exhaustive set (see Fig. 1d). Each

sample was assayed according to a 4-by-4 dosing regimen in quadru-

ple replicate, measuring the rate of cell growth relative to control

after 48 h. Notably in contrast to previous combination screening

protocols (Griner et al., 2014), separate single agent screens using

eight concentrations with six replicates were performed, rather than

included in the checkerboard; from these, it was possible to define

the edges of the combination surface (where one drug is absent)

by interpolating values sampled from fitted Hill curves, leading to

5-by-5 concentration point surfaces for each of the samples (see

Fig. 1c).

2.1.1 Synergy score

The degree of synergy indicated in a surface is typically quantified

by its deviation from that of one simulated according to a theoretical

model, such as Loewe Additivity (Loewe, 1953), Bliss Independence

(Bliss, 1939), Highest Single Agent (Tan et al., 2012) or the recent

Zero Interaction Potency (Yadav et al., 2015). The original publica-

tion (O’Neil et al., 2016) released only the raw surfaces as

Supplementary Material. Therefore, we calculated Loewe Additivity

values using the batch processing mode of Combenefit (Di Veroli

et al., 2016). At this stage, replicates were averaged resulting in a set

of 22 737 (compound, compound, cell line, synergy value) quartets.

2.1.2 Chemical descriptors and genomic features

To represent the input data in numeric form we used both chemical

information from the drugs, and genomic information capturing dis-

ease biology. After removing salts, the chemical representations

were protonated appropriate for pH 7.4 with OpenBabel (O’Boyle

et al., 2011). Chemical features were then calculated for both drugs

of a drug combination. We calculated three different types of chemi-

cal features. Counts of extended connectivity fingerprints with a

radius of 6 (ECFP_6) (Rogers and Hahn, 2010) were generated with

jCompoundMapper (Hinselmann et al., 2011). Additionally,

ChemoPy (Cao et al., 2013) was used to calculate predefined

physico-chemical properties. The set of chemical features was com-

pleted by binary toxicophore features based on a set of toxicophores

collected from the literature. Toxicophores are substructures which

are known to be toxic (Singh et al., 2016). The chemical feature

space was reduced by filtering out zero variance features. The final

set of chemical features consists of 1309 ECFP_6, 802 physico-

chemical and 2276 toxicophore features.

Fig. 1. Synergy calculation workflow. (a) Single agent screens at 8 concentration points were run for each of the 38 compounds against each of the 39 cell lines.

(b) Checkerboards of 4-by-4 nonzero concentrations were measured for each of the 583 tested combinations, again for each of the cell lines. (c) Values at the

checkerboard concentrations were interpolated from the fitted Hill curves from (a), and combined with the measured checkerboards from (b) to yield a 5-by-5

matrix, from which Loewe synergy values could be obtained. (d) The procedure from (c) was performed for each pairwise combination of the drug pairs. Notably

self–self combinations were not explicitly measured. Furthermore, pairwise combinations within a set of 16 of the drugs (the ‘supplemental’ set) were similarly

not measured (hence the gray block in the bottom right of the heatmap). This procedure was repeated for each cell line to yield a 38 � 38 � 39 data cube of input

data, from which training, validation and test data were drawn using stratified nested cross-validation
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The cell lines were described by their gene expression profile.

The profiles of the untreated cells were downloaded from the

ArrayExpress database (accession number: E-MTAB-3610) (Iorio

et al., 2016). The measurements were performed on an Affymetrix

Human Genome U219 array plate. The raw data was quantile

normalized and summarized with Factor Analysis for Robust

Microarray Summarization (FARMS) (Hochreiter et al., 2006).

FARMS additionally provides Informative/Non-Informative calls

for each gene (Talloen et al., 2007), which were used to filter the

gene expression data to a final set of 3984 genomic features.

2.2 Deep learning
DeepSynergy is a feed forward neural network, which maps input

vectors representing samples to a single output value, the synergy

score. The samples are described by concatenated vectors which

include the features of two drugs and one cell line. In Figure 2, the

basic setup of DeepSynergy is illustrated. The neurons in the input

layer receive the gene expression values of the cell line and chemical

descriptors of both drugs as inputs. The information is then propa-

gated through the layers of the DeepSynergy network until the out-

put unit that produces the predicted synergy score. Since the

network should not differentiate between the drug combination AB

presented in the ordering A-B or B-A, we double the measurements

by presenting each sample twice in the training set. Once the drug

features are used in an A-B and once in a B-A order. For prediction

both ways of sample representation are propagated through the net-

work and averaged. We observed that DeepSynergy learns to predict

the same value for drug combination AB in the order A-B and B-A.

We considered different hyperparameter settings, namely different

data normalization strategies, in combination with conic or rectangu-

lar layers both with different numbers of neurons. Furthermore, we

investigated different learning rates as well as regularization techni-

ques. The considered hyperparameter space is summarized in Table 1

and described in more detail in the following.

For data normalization we employed three different types of input

normalization: (i) standardizing all inputs to zero mean and unit var-

iance, (ii) standarizing and applying hyperbolic tangent and (iii) stand-

ardizing, hyperbolic tangent and standardizing again. The hidden

layers apply rectified linear activations (Nair and Hinton, 2010), and

the output layer used a linear activation. The mean squared error was

the objective function which was minimized. We considered two or

three hidden layers with 2048, 4096 and 8192 neurons in the first hid-

den layer. We tested rectangular layers, that have a constant number

of neurons in each hidden layer, and conic layers, in which the num-

ber of units halves in each hidden layer. We used stochastic gradient

descent with learning rates of 10�2, 10�3, 10�4 and 10�5 as optimizer

and early-stopping and dropout as regularization techniques. For

early-stopping, the adequate number of training iterations was deter-

mined by a moving average over 25 epochs on a validation set. For

dropout, we either used a dropout rate of 0.2 and 0.5 for the input

and the hidden layers, respectively, or no dropout at all. The best

hyperparameters were determined using grid search.

2.3 Method comparison
We compared DeepSynergy to a baseline method and four state-of-

the-art machine learning methods that we adapted to this task. The

three different normalization techniques described in the previous

section were considered for each method. Furthermore, all methods

were allowed to adjust their hyperparameters with grid search. The

full range of tested hyperparameters can be found in the

Supplementary Material. For all methods their implementation in

scikit-learn (Pedregosa et al., 2011) was used.

• Median Polish. A median polish model serves as baseline for this

task. Since we are not aiming at predicting novel drugs it is possi-

ble to make a new prediction based on the median of the two

drugs and the cell line involved in the combination. The synergy

score is estimated by averaging over the medians of the two drugs

and the cell line median.
• Elastic nets. Elastic nets (Zou and Hastie, 2005) were used to

compare DeepSynergy with a linear method. During hyperpara-

meter selection we considered different values for a and the L1

ratio. Supplementary Table S3 summarizes the considered hyper-

parameter ranges for Elastic Nets.
• Support Vector Machines (SVMs). We use a modified version of the

MinMax kernel to handle three types of features, binary, counts

and continuous ones, simultaneously. This kernel outperformed the

Tanimoto and the RBF kernel in previous tasks (Mayr et al., 2016).

It is not in the standard implementation of scikit-learn, therefore it

was necessary to precompute the similarity of two molecules. The

modified MinMax kernel is defined as follows:

KmodMinMaxðx; zÞ ¼
P

p2P Nðp;xÞþNðp;zÞ>0

minðNðp;xÞ;Nðp; zÞ
maxðNðp; xÞ;Nðp; zÞ

P
p2P Nðp;xÞþNðp;zÞ>0 1

where N(p, x) quantifies feature p for compound x, and P are the

considered features. The kernel matrix is calculated from the pre-

processed data, which is then split into a positive and negative

Fig. 2. Schematic illustration of our Deep Learning approach. The input con-

sists of three parts: the chemical descriptors for drug A and drug B, and the

genomic information of the cell line. The inputs are propagated through the

network to the linear output unit. The thereby obtained result is the predicted

synergy value. The best performing architecture was determined via explora-

tion of different hyperparameters which are listed in Table 1

Table 1. Hyperparameter settings considered for DeepSynergy

Hyperparameter Values considered

Preprocessing norm; normþtanh; normþtanhþnorm

Hidden units [8192, 8192]; [4096, 4096]; [2048, 2048];

[8192, 4096]; [4096, 2048]; [4096, 4096, 4096];

[2048, 2048, 2048]; [4096, 2048, 1024];

[8192, 4096, 2048]

Learning rates 10�2; 10�3; 10�4; 10�5

Dropout no dropout; input: 0.2, hidden: 0.5

Note: All possible combinations of the presented hyperparameters were

optimized via grid-search.
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part since the kernel function can only be applied to positive val-

ues. We used a �-Support Vector Machine for regression and

tuned the hyper parameters � and C. Supplementary Table S4

summarizes the considered hyperparameter ranges for �SVMs.

• Random Forests. We considered different numbers of estimators

(trees) and tuned the number of features considered in each split.

Supplementary Table S5 summarizes the considered hyperpara-

meters for Random Forests.
• Gradient Boosting Machines. We trained a Gradient Boosting

Machine for regression with different numbers of trees, numbers

of features considered in each split and different learning rates.

Supplementary Table S6 summarizes the considered hyperpara-

meter ranges for Gradient Boosting Machine.

2.4 Stratified nested cross-validation
In order to benchmark the performance of DeepSynergy with the

competing methods we used stratified nested cross validation.

Figure 3 illustrates different cross validation strategies. In contrast

to random cross validation, the test samples are not distributed ran-

domly across folds. We used a stratified cross validation approach,

where the test sets were selected to leave out drug combinations (see

Fig. 3 second column). We used a 5-fold nested cross validation set-

ting (Baumann and Baumann, 2014), in which the hyperparameters

are selected in an inner loop based on the validation error. The best

performing model of the inner loop was then assessed on an outer

test fold to obtain a performance estimate unbiased by hyperpara-

meter selection. Furthermore, we performed stratified cross valida-

tion to determine the generalization ability of methods for novel

drugs (see Fig. 3 third column) and novel cell lines (see Fig. 3 fourth

column).

3 Results

3.1 Synergy scores
Figure 4 displays the density distribution of the synergy scores based

on the Loewe model. The values range from �326 to 179. The

median and the standard deviation of the distribution are 4.37 and

22.89, respectively. By definition all synergy scores above zero are

synergistic. However, drug combinations exhibiting a highly syner-

gistic effect are attractive candidates for clinical studies. Therefore,

we focused on the top 10%. Synergistic combinations with a meas-

ured score higher than 30 were classified as positive. In the negative

class antagonistic, additive and low synergistic drug combinations

were summarized.

3.2 Method comparison
The methods were compared based on their ability to predict syn-

ergy values of novel drug combinations. The primary metric is

the mean squared error (MSE), for which the models were optimized

for during training. Additionally, we report the mean root mean

squared error (RMSE) and the mean Pearson correlation coefficient

of each method. Table 2 summarizes the performance of the differ-

ent methods based on the MSE, RMSE and Pearson correlation coef-

ficient for left out drug combinations respectively.

DeepSynergy achieved a test MSE of 255, while Gradient

Boosting Machines and Random Forests attained only inferior per-

formance of 275 and 308, respectively. Support Vector Machines

and Elastic Nets performed similar with MSEs of 398 and 420,

respectively, while median polish, which was used as a baseline,

achieved the worst result with an MSE of 478. The relative improve-

ment of the best performing method to the baseline is 53%.

A Wilcoxon signed rank-sum test was used to determine if the differ-

ences in the mean squared errors are significant and all the P-values

are below 0.05. Hence, DeepSynergy outperforms the other machine

learning methods significantly with regard to MSE, RMSE and

Pearson correlation.

Additionally, we evaluated the performance on novel drugs and

novel cell lines. The predictive performance of all methods both on

novel drugs and novel cell lines is considerably worse than on novel

drug combinations. Across methods, the MSEs for the prediction of

novel drugs range between 414 and 500, and the MSEs for the pre-

diction of novel cell lines range between 387 and 461 (see

Supplementary Section S4). Therefore, the best performing method

shows only a relative improvement of 16 and 17% compared to the

baseline method that neither uses compound nor cell line features.

We hypothesize that the low predictive performance arises from the

low number of training examples in terms of chemical compounds

(38 examples) and cell lines (39 examples). Therefore, synergy data-

sets with larger numbers of chemical compounds and cell lines could

represent a large boost for predictive synergy models.

Fig. 3. Different cross validation strategies. Random cross validation is shown

in the first column. Three different stratified cross validation strategies are

shown in the following columns. White and orange squares indicate train set

and test set samples, respectively (Color version of this figure is available at

Bioinformatics online.)

Fig. 4. Density plot displaying the distribution of the synergy scores. On the

x-axis the synergy scores calculated with Combenefit are shown. On the

y-axis the density is displayed. Most of the values are close to zero, i.e. addi-

tive. High values indicate highly synergistic combinations, whereas combina-

tions with low values exhibit only subadditive effects
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3.3 Performance metrics
RMSE, MSE depend on the dataset and are therefore difficult to

compare across different datasets. To further characterize the pre-

dictive performance of DeepSynergy and to give comparable meas-

ures, we also provide performance measures that are typical for

classification tasks: area under the receiver operator characteristics

curve (ROC AUC), area under the precision recall curve (PR AUC),

accuracy (ACC), balanced accuracy (BACC), precision (PREC), sen-

sitivity (TPR), specificity (TNR) and Cohen’s Kappa. In Table 3 all

performance measures are summarized. When we consider this task

as binary classification task with a synergy value threshold of 30,

our approach achieves a mean ROC AUC and ROC PR of 0.90 and

0.56, respectively. Since in the training data a lot of additive combi-

nations (i.e. synergy score around 0) are present, the model tends to

make more conservative predictions. Therefore, it is important to

choose an appropriate threshold for binarising the predicted synergy

scores. The threshold for predictions of DeepSynergy was optimized

for balanced accuracy on the validation set. With this procedure to

select the threshold, DeepSynergy exhibits an ACC, BACC, PREC,

TPR, TNR and Kappa of 0.92, 0.76, 0.56, 0.57, 0.95 and 0.51,

respectively.

3.4 Comparison with previous studies
Our predicted synergy scores agree with observations in previous

studies, examples of which are as follows. Kano et al. conducted

experiments to evaluate the response of cell line PA-1 to combina-

tions including Paclitaxel. They reported additive effects for

Paclitaxel in combination with SN-38 (Kano et al., 1998a),

Vinorelbine (Kano et al., 1999b), 5-FU (Kano et al., 1996),

Doxorubicin (Akutsu et al., 1995). Our predictions agree with those

previous findings, given that the absolute value of the predicted syn-

ergy scores is low (with values of 1.48, �13.0, 0.12 and �10.2,

respectively). Furthermore, Paclitaxel was combined with Etopside

(Kano et al., 1999a) and Methotrexate (Kano et al., 1998b), result-

ing in additive/antagonistic effects, which agree with our predictions

of synergy values of -19.75 and -23.42, respectively. Furthermore,

two other experimental studies focused on Irinotecan of which SN-

38 is the active metabolite. In a combination with 5-FU on HT-29

an additive effect was observed (Guichard et al., 1997), which

agrees with our prediction of �0.57 for 5-FU and SN-38 on HT-29.

Furthermore, they investigated the combination Irinotecan with

Oxaliplatin on HT-29, HCT-116 and SW-620 (Guichard et al.,

2001). The highest effects were observed for HCT-116, whereas

SW-620 showed the lowest response. Our predictions for the cell

lines HCT-116, HT-29 and SW-620 are 5.82, 1.72 and 0.90 and

therefore agree with the experimentally discovered order. Thus, our

predictions are confirmed by previous investigations of the respec-

tive drug combinations.

3.5 DeepSynergy architecture
The architecture of DeepSynergy was determined by the hyperpara-

meter selection procedure, whose results are given in Supplementary

Table S7. This procedure identified that tanh normalization,

comprising first standardization and then a hyperbolic tangent fol-

lowed by a second standardization, performed best. Furthermore,

DeepSynergy has conic layers. A possible explanation for the fact

that conic layers perform well, is their regularizing effect. The lower

number of parameters available in the higher layers, which forces

the model to generalize by constructing only the most important rep-

resentations of chemical properties of the input compound combina-

tion. Additionally, a large number of units in the first layer (8192)

performed better. A smaller learning rate (10�5) and dropout regula-

rization were also essential for learning performant networks.

Overall, DeepSynergy has a conic architecture with two hidden

layers having 8192 neurons in the first and 4096 in the second hid-

den layer. It uses tanh input normalization, has a learning rate of

10�5, an input dropout rate of 0.2 and a hidden layer dropout rate

of 0.5.

3.6 Applicability domain
Furthermore, we analyzed performance of DeepSynergy across cell

lines and drugs by determining the respective Pearson correlation

Table 2. Methods comparison based on mean squared error (MSE) with corresponding confidence intervals and P-values, mean root mean

squared error (RMSE) as well as mean Pearson correlation coefficient over the five test folds

Method MSE Confidence Interval P-value RMSE Pearson’s r

Deep Neural Networks 255.49 [239.93, 271.06] 15.91 6 1.56 0.73 6 0.04

Gradient Boosting Machines 275.39 [258.24, 292.54] 9.6 � 10�17 16.54 6 1.37 0.69 6 0.02

Random Forests 307.56 [286.83, 328.29] 1.2 � 10�73 17.49 6 1.63 0.65 6 0.03

Support Vector Machines 398.39 [371.22, 425.56] <10�280 19.92 6 1.28 0.50 6 0.03

Elastic Nets 420.24 [393.11, 447.38] <10�280 20.46 6 1.29 0.44 6 0.03

Baseline (Median Polish) 477.77 [448.68, 506.85] <10�280 21.80 6 1.49 0.43 6 0.02

Table 3. Performance metrics for the classification task

Performance Metric ROC AUC PR AUC ACC BACC PREC TPR TNR Kappa

Deep Neural Networks 0.90 6 0.03 0.59 6 0.06 0.92 6 0.03 0.76 6 0.03 0.56 6 0.11 0.57 6 0.09 0.95 6 0.03 0.51 6 0.04

Gradient Boosting Machines 0.89 6 0.02 0.59 6 0.04 0.87 6 0.01 0.80 6 0.03 0.38 6 0.04 0.71 6 0.05 0.89 6 0.01 0.43 6 0.03

Random Forests 0.87 6 0.02 0.55 6 0.04 0.92 6 0.01 0.73 6 0.04 0.57 6 0.04 0.49 6 0.08 0.96 6 0.01 0.48 6 0.04

Support Vector Machines 0.81 6 0.04 0.42 6 0.08 0.76 6 0.06 0.73 6 0.03 0.23 6 0.04 0.69 6 0.08 0.77 6 0.07 0.24 6 0.05

Elastic Nets 0.78 6 0.04 0.34 6 0.10 0.75 6 0.05 0.71 6 0.02 0.21 6 0.03 0.65 6 0.07 0.76 6 0.06 0.22 6 0.03

Baseline (Median Polish) 0.77 6 0.04 0.32 6 0.09 0.76 6 0.04 0.70 6 0.03 0.22 6 0.03 0.62 6 0.06 0.78 6 0.04 0.22 6 0.04

Note: All values are mean values 6 one standard deviation. The best and second best performance is shown in bold and italic, respectively. The columns pro-

vide the performance measures area under ROC curve (ROC AUC), area under precision-recall curve (PR AUC), accuracy (ACC), balanced accuracy (BACC),

precision (PREC), sensitivity (TPR), specificity (TNR) and Kappa.
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coefficients. Figure 5 displays the results per (a) drugs and (b) cell

lines on the left and right side, respectively.

Correlation coefficients for the set of drugs analyzed range from

0.57 to 0.84. Predicted values for five drugs exhibit a correlation

coefficient below 0.6 and 39% of the drugs can be predicted with a

correlation coefficient higher than 0.7. On the left side of Figure 5

no clear association between targets and correlation can be

observed. Therefore, target specific mechanisms do not explain the

performance differences. Furthermore, the performance is not

affected by the number of drugs acting on the same target.

Correlation coefficients of the set of cell lines analyzed range

from 0.56 to 0.84. Only two cell lines exhibit a correlation below

0.6. More than 50% of the cell lines can be predicted with a correla-

tion higher than 0.7. On the right side of Figure 5 no association can

be observed between tissue type and correlation. Nor can perform-

ance differences be explained by the number of cell lines originating

from a specific tissue type.

We checked whether these performance differences arise from

(a) different number of training data points, (b) different quality of

synergy scores and (c) different distributions of the synergy scores

(see Supplementary Figs S4 and S5), (d) tissue/target specific mecha-

nisms (see Fig. 5a) and (e) tissue/target coverage in the dataset (see

Fig. 5b). Neither of these effects showed a clear association with per-

formance. Therefore, we believe that these differences arise (f) from

the fact that some biological mechanisms can be modelled better

than others. This could be connected to the measurements that we

can obtain from cell lines and whether they are able to capture these

biological processes. Investigating (f) would require further lab

experiments, which is out of scope for this work.

4 Availability

We implemented DeepSynergy as a publicly available web-service.

The predictions of DeepSynergy are put into context of the training

data to improve interpretability of the results. The web-service is

available via www.bioinf.jku.at/software/DeepSynergy.

5 Discussion

We have developed a novel Deep Learning based method,

DeepSynergy, that predicts synergy scores of drug combinations for can-

cer cell lines with high accuracy. The method requires cancer cell lines

to be described by their genomic profiles, and the compounds to be rep-

resented by their chemical descriptors. We have demonstrated that

DeepSynergy is able to provide best predictions in a cross-validation set-

ting with external test sets, outperforming other methods by a wide

margin. Prioritizing drug combinations on the basis of the predictions

of DeepSynergy at an AUC of 0.90, could already decrease the time and

costs spent on experimental validation (Simm et al., 2018). Since the

dataset has only a limited number of different drugs and cell lines all

methods show difficulties to generalize well across novel drugs and cell

lines. Nonetheless, we are convinced that this limitation can be over-

come soon, since dataset sizes increased rapidly over the past years and

we expect this trend to continue also in the future. With increased data-

set sizes, we presume that our approach can be extended to other areas,

in which drug combinations play and important role, for example to

antifungals (Chen et al., 2014) and antibiotics (Tamma et al., 2012).

With respect to predictive performance, both increased dataset size and

algorithmic advances (Klambauer et al., 2017) could further improve

DeepSynergy. Overall, our findings suggest that DeepSynergy could be

a valuable tool for selecting novel synergistic drug combinations.
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