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Abstract

Summary: The genome-wide chromosome conformation capture (Hi-C) has revealed that the eu-

karyotic genome can be partitioned into A and B compartments that have distinctive chromatin

and transcription features. Current Principle Component Analyses (PCA)-based method for the A/B

compartment prediction based on Hi-C data requires substantial CPU time and memory. We report

the development of a method, CscoreTool, which enables fast and memory-efficient determination

of A/B compartments at high resolution even in datasets with low sequencing depth.

Availability and implementation: https://github.com/scoutzxb/CscoreTool

Contact: xzheng@carnegiescience.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of the proximity-ligation based methods for chroma-

tin conformation capture (3 C, 4 C, 5 C and Hi-C) has greatly improved

the understanding of three-dimensional chromatin organization in the

eukaryotic nucleus (Gibcus and Dekker, 2013). One important feature

found in mammalian Hi-C studies is that the genome is organized into

A or B compartments (Lieberman-Aiden et al., 2009). Whereas the

A compartment corresponds to genomic regions containing transcrip-

tionally active and open chromatin (Lieberman-Aiden et al., 2009), the

B compartment corresponds to the heterochromatin regions associated

with the nuclear lamina and nucleolar (Stevens et al., 2017; van Steensel

and Belmont 2017). Recent studies showed that the A/B compartment

organization is independent of the topologically associated domains

(TADs) (Dixon et al., 2012) and is more conserved than the organiza-

tion of TADs at the single-cell level (Nora et al., 2017; Stevens et al.,

2017). Therefore, understanding the A/B compartment organization is

critical in deciphering 3D genome organization.

The current method for calculating A/B compartments is based on

the Principal Component Analysis (PCA) of the normalized Hi-C inter-

action matrix (Lieberman-Aiden et al., 2009). The first eigenvector

(Principal Component 1, PC1) of the correlation matrix is then defined

as the compartment score, and genomic windows with positive or nega-

tive compartment scores are defined as A or B compartment, respect-

ively. The PCA-based method has two major limitations. First, PCA is a

descriptive statistical method designed for reducing dimensionality and

the exact biological meaning of the compartment score is elusive. In this

sense, compartment scores calculated from different Hi-C datasets may

not be directly comparable. Second, PCA is slow and memory-inefficient

when applied to large interaction matrix. This prohibits its application

to high-resolution analysis of the compartment structure for most labs.

Here, we proposed a statistical model to infer A/B compartments

from Hi-C data. The output compartment score reflects the chance of a

genomic window being in the A compartment. The implemented tool,

namely CscoreTool, is�30 times faster and more memory-efficient than

the existing PCA-based method for the same resolution. CscoreTool also

works at high resolution for datasets with low sequencing depth.

2 Materials and methods

We assume that each genomic window i has a chance Pi to be in

the A-compartment in an individual cell. By defining C-score as

Ci ¼ 2Pi � 1, which ranges between �1 and 1, we deduce a log-

likelihood function

ln LðB;C;HÞ ¼
X
i< j

�
nij ln½BiBjHðdijÞð1þ CiCjÞ�

� BiBjHðdijÞð1þ CiCjÞ
�
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where nij is the observed number of contacts, dij is the distance along

the genome, H(dij) is the scaling factor accounting for the decrease

of interactions at longer genomic distance, and Bi and Bj are the bias

factors from Hi-C experiments, which could come from PCR biases

or genome mappability. We performed maximum-likelihood esti-

mation for the model parameters B, C and H using an iterative

algorithm (See the Supplementary Methods for details). Unlike

eigenvectors, C-scores of different samples can be directly compared

because they have clear biological implications.

We implemented the algorithm with Cþþ and tested the result-

ant tool, namely CscoreTool, on the high resolution Hi-C datasets

of the GM12878, HUVEC, K562, and NHEK cell lines (Rao et al.,

2014). Among PCA-based variants, we chose a widely used tool

HOMER for comparison (Heinz et al., 2010). We also compared

the performance to custom Cþþ script using libpca, which is a

Cþþ PCA implementation. Mapped reads (to mm9) for Hi-C libra-

ries of GM12878, HUVEC, K562 and NHEK cells were down-

loaded from the GEO database (GSE63525). Only reads with

MAPQ�30 at both ends were kept, and since the analyses for each

chromosome are independent, we focused our test on chromosome

1. CscoreTool was tested for 1, 5, 10, 25, 50 and 100 Kb reso-

lutions, while HOMER was tested for 10, 25, 50 and 100 Kb reso-

lutions with all the other parameters set as default. All tests were

performed on the Memex high-performance computer of Carnegie

Institution for Science. Since HOMER does not support paralleliza-

tion within one chromosome, we used only one CPU (2.5 GHz) for

the comparison.

3 Results

We first compared the running time and memory usage between

CscoreTool and HOMER using the GM12878 dataset. At the same

resolutions, CscoreTool is �30 times faster than HOMER (Fig. 1A).

HOMER uses 40 min to 3 h for PCA analysis at 25–100 Kb reso-

lutions but requires over 20 h for 10 Kb-resolution, and it stopped

running at 5 Kb resolution because it could not handle the large

matrix. In contrast, CscoreTool uses a few minutes for analyses at

25–100 Kb resolution; 35 min for 10 Kb resolution; 2 h for analyses

at 5 Kb resolution; and �3 days for analysis at 1 Kb resolution. The

time consumed can be further reduced by using parallelization.

The memory usage of CscoreTool is also much less than HOMER

(Fig. 1B). The 1Kb-resolution analysis by CscoreTool uses < 10 GB

memory, whereas HOMER uses >60GB memory for the same data-

set at the 10–100Kb resolutions that we could test. To test whether

the better performance of CscoreTool is mainly because of

Cþþ language, we compared CscoreTool to custom PCA script

using the libpca library written in Cþþ (referred to as PCA_Cþþ in

the following). The PCA_Cþþmethod is>2 times faster than

HOMER, but still �10 times slower than CscoreTool at 10 Kb reso-

lution (Fig. 1A). PCA_Cþþuses about 20 GB at 10 Kb resolution,

but stops working at 5 Kb resolution due to an error in acquiring

memory. Thus, CscoreTool is much faster and more memory-

efficient than PCA-based compartment analysis methods.

We then compared the results of CscoreTool to PCA-based

methods using the GM12878 dataset. As different PCA implementa-

tions give identical results, we used PC1 from HOMER to represent

PCA methods. 10 Kb resolution was used, which is the best reso-

lution that PCA-based methods could reach. Whole-chromosome

view showed that the patterns between different methods are in

general similar (Fig. 1C and Supplementary Table S1), indicating

that both methods capture the large-scale structure of A/B

compartments. Finer scale comparison reveals some differences

between the methods (Supplementary Fig. S1A-B and Table S1). For

example, HOMER predicted a long region as the A-compartment

(Supplementary Fig. S1A), whereas CscoreTool showed that a

stretch of chromatin within this region belonged to the B-compart-

ment. Since DNase I sensitivity is associated with chromatin in the

A-compartment (Lieberman-Aiden et al., 2009), we analyzed the

ENCODE DNase I data (Consortium, 2012) in these cells and found

that the B-compartment predicted by CscoreTool had low DNase I

sensitivity, indicating that our method correctly predicted this region

as the B-compartment (Supplementary Fig. S1A). We also found

small A-compartments with DNase I peaks that were missed by

HOMER (Supplementary Fig. S1B). Similar regions are found for

other cell types (Supplementary Figs S1C and D). More generally,

we separated chromosome 1 into 4 types of regions for the

GM12878 cell: common A-compartment by both methods;

CscoreTool-specific A-compartment (classified as B-compartment

by HOMER); HOMER-specific A-compartment (classified as B-

compartment by CscoreTool); and common B-compartment

(Supplementary Table S1). We then calculated the coverage by

DNase I hotspots on these four types of regions, and found that the

CscoreTool-specific A-compartment has similar DNase I hotspot

coverage as the common A-compartment; while the HOMER-specific

A-compartment has similar DNase I hotspot coverage as the common

B-compartments. These results show that CscoreTool can more accur-

ately detect the A- and B-compartments than PCA-based methods.

Rao et al. (2014) used clustering method to detect sub-

compartments at 100Kb resolution for the GM12878 cell line.

Although CscoreTool currently does not support sub-compartment

inference, we combined their A1 and A2 into the A-compartment;

B1–B4 into the B-compartment, respectively, and compared their re-

sult with ours. We found that the CscoreTool-specific A-compartment

also has much higher DNase I hotspot coverage than the clustering-

method-specific A-compartment, supporting that CscoreTool is better

at detecting the A- and B-compartments than the clustering method.

The high-resolution GM12878 dataset we used here has 3.51 G

mapped non-redundant reads (Rao et al., 2014), which requires sub-

stantial amount of sequencing that is cost-prohibitive for many labs.

Therefore, we created two smaller datasets by randomly selecting

10% and 1% of from the 3.51 G mapped reads. The 10% dataset

Fig. 1. (A and B) Comparison of running time and memory usage for

CscoreTool, HOMER, and PCA method written in Cþþ. (C) Whole-chromo-

some view of C-score by CscoreTool and PC1 by HOMER calculated at 10 Kb

resolution
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corresponds to 351 M mapped non-redundant reads, which is com-

mon for most Hi-C datasets. The 1% dataset corresponds to 35.1 M

mapped non-redundant reads, which is common for low-cell-

number Hi-C data such as those in early embryo development (Du

et al., 2017; Ke et al., 2017). CscoreTool gave very consistent results

among all sequencing depth (Supplementary Fig. S2) on large scale.

In contrast, HOMER showed more inconsistency between different

depths (Supplementary Fig. S2). Taken together, we show that

CscoreTool can perform accurate high-resolution compartment ana-

lysis at both high and low sequencing depth with similar accuracy

and it requires less time and computer memory than the commonly

used PCA-based methods.
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