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Abstract

Motivation: Metabolomics data generated from liquid chromatography-mass spectrometry plat-

forms often contain missing values. Existing imputation methods do not consider underlying fea-

ture relations and the metabolic network information. As a result, the imputation results may not

be optimal.

Results: We proposed an imputation algorithm that incorporates the existing metabolic network,

adduct ion relations even for unknown compounds, as well as linear and nonlinear associations be-

tween feature intensities to build a feature-level network. The algorithm uses support vector re-

gression for missing value imputation based on features in the neighborhood on the network. We

compared our proposed method with methods being widely used. As judged by the normalized

root mean squared error in real data-based simulations, our proposed methods can achieve better

accuracy.

Availability and implementation: The R package is available at http://web1.sph.emory.edu/users/

tyu8/MINMA.

Contact: jiankang@umich.edu or tianwei.yu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metabolomics aims to comprehensively identify and quantify all me-

tabolites in a system and to study their changes in relation to diet,

environment, disease status, genetic effects, pharmaceutical inter-

ventions, etc. (Lindon et al., 2007). By profiling and analyzing me-

tabolite abundance, it can be helpful for unveiling the etiology of

diseases and providing a functional readout of the physiological

state of the human body. Liquid chromatography-mass spectrom-

etry (LC-MS) is a commonly used metabolomics platform due to its

feasibility to measure complex samples, such as human plasma and

urine (Jones et al., 2012).

The quality of the LC-MS data influences the downstream ana-

lysis, including metabolite quantitation, functional interpretation,

pathway analysis for disease mechanisms. The datasets normally

contain large portions of metabolites with missing observations in

some samples. The underlying missingness mechanism is complex.

As discussed by Gromski et al. (2014), the missingness can be the re-

sult of one or any combination of the following factors: (i) the fail-

ure in computational detection, (ii) measurement error, (iii) signals

are of low intensity which cannot be distinguished from background

noise, (iv) imperfection of the detection algorithms used and (v) de-

convolution that may result in false negatives. They also argued that

imputation techniques should be favored over other methods of han-

dling missingness in LC-MS metabolomics studies.

Various imputation techniques have been developed and applied

in metabolomics studies (Armitage et al., 2015; Gromski et al.,

2014; Hrydziuszko and Viant, 2012; Taylor et al., 2016), many

of which were carried over from the field of microarray gene
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expression. They do not utilize two pieces of valuable information

that are unique to metabolomics data. The first piece of information

is the known metabolic network, such as the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database (Kanehisa and Goto, 2000).

There are plenty of literature supporting the idea of utilizing network

information in data analysis procedures to improve variable selection

and functional interpretation (Aggio et al., 2010; Barupal et al., 2012;

Cai et al., 2017; Kessler et al., 2013; Li et al., 2013; Ravasz et al.,

2002; Stelling et al., 2002; Xia and Wishart, 2010). Given their

close co-regulation, features matched to neighboring metabolites on

the network could help predict each other’s abundance in the sample.

This may only be true for a subset of the metabolites, and the relation

could be non-linear, creating a challenge in utilizing such information.

However advanced machine learning techniques such as support

vector regression (SVR) can utilize non-linear relations, as well as re-

sist the impact of nuisance variables, i.e. those included in the

model but have no true predictive power. With the help of such tech-

niques, network information could contribute to missing value

imputation.

The second piece of information that we try to utilize is the rela-

tionship between features that are likely derived from the same

metabolite. Grouping and annotating features based on their mass-

to-charge ratio (m/z) and retention time (RT) characteristics have

been utilized in feature identification (Kuhl et al., 2012; Silva et al.,

2014; Uppal et al., 2017). Potentially features derived from the same

metabolite, even if the identity of the metabolite is unknown, can

help the imputation of each other. For example, if the monoisotopic

weight of a hypothetical molecule M is 100.000, then in data from

positive ion mode with ESI ionization, the theoretical m/z values

of two of its likely adduct ions are: MþH½ �þ; 101:007276 and

MþNa½ �þ; 122:989218. Here ‘M’ represents the metabolite, the

element after the plus sign represents the adduct, and the ‘þ’ outside

the bracket represents the charge state. The difference between the

two m/z values does not change with the molecular weight of M.

That is, even if a chemical is not in the database, its adduct ions

still follow the same pattern in terms of the difference between their

m/z values. For example, if we observe two m/z values in the data,

and jm=z1 �m=z2j is different from 22:989218� 1:007276 by no

more than m=z2 � 10�5, and the two features have close RT values,

then we consider they are highly likely to be derived from the same

metabolite. We note that this relation is likely but not definitive.

We will again rely on the SVR’s capability to resist nuisance vari-

ables when a false relation is included in the imputation.

Combining the afore-mentioned information and traditional

approaches, we propose a missing value imputation algorithm for

LC-MS metabolomics data by applying the support vector regres-

sion (SVR) algorithm to a predictor network newly constructed

among the features. To be specific, the predictor network is built by

incorporating the metabolic network and adduct ion relations, to-

gether with linear and nonlinear associations between feature abun-

dance levels calculated directly from the data (Fig. 1a). And then we

impute each feature with missing values by fitting an SVR model on

Fig. 1. The workflow of the proposed method. (a) Building the predictor network for imputation; (b) the imputation procedure given the predictor network
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the dataset where the neighboring features on the predictor network

are utilized (Fig. 1b). An R package called MINMA (Missing data

Imputation incorporating Network and adduct ion information in

Metabolomics Analysis) has been developed to implement the

algorithm.

2 Materials and methods

2.1 Building the predictor network
The predictor network was constructed on the feature level. The

purpose of this network was to represent the feature relations.

Essentially, every node on this network was a feature. If two features

were considered as ‘potentially helpful in imputing each other’s

missing values’, they were connected by an edge between them in

the network. To define the ‘potentially helpful’ features, we mainly

considered the feature relations from three sources (Fig. 1a):

• Metabolic Network

The metabolic network we used in this paper was extracted from

the KEGG database (Kanehisa and Goto, 2000). If two metabol-

ites are involved in the same reaction, then they are linked in the

metabolic network. Features matched to these two metabolites

were considered connected. The matching of features to metabol-

ites was based on matching the theoretical m/z of some common

adduct ions of the metabolites to the observed m/z values of the

features at a certain tolerance level (10 ppm in this study). In this

proof-of-concept study, as the data were generated from positive

ion mode with electrospray ionization (ESI), we considered five

adduct ions that are common in this type of data: MþH½ �þ;
MþNH4½ �þ; MþNa½ �þ; Mþ K½ �þ; Mþ 2Na�H½ �þ. The spe-

cification of ion types can easily be done by user choice of the

package.
• m/z value differences of common adduct ions

First we determined what adduct ion forms were included. Then

the m/z differences between the adduct ions of the same charge

were calculated. Pairwise m/z differences were calculated for all

features in the data. When the m/z difference between two fea-

tures match closely with the theoretical difference between two

adduct ions (10 ppm in this study), and their RT difference was

less than a pre-defined threshold (100 es in this study), the two

features were considered likely to be derived from the same me-

tabolite. They were connected in the feature level network. The

same set of five common adduct ions as mentioned above were

used in this study.
• Correlation Inferred from Data Matrix

We consider two features ‘neighbors’ if they were highly corre-

lated base on the following correlation measures:

1. Linear correlation: consider ‘neighbors’ based on n1 largest

pairwise Pearson correlations (n1 ¼ 10 in this study).

2. DCOL correlation: consider ‘neighbors’ based on n2 largest

pairwise nonlinear correlations defined by Distance based on

Conditional Ordered List (DCOL) (Yu and Peng, 2013).

(n2 ¼ 10 in this study)

3. dCov dependency: consider ‘neighbors’ based on n3 largest

pairwise general dependencies defined by Brownian distance

covariance (Kosorok, 2009). (n3 ¼ 10 in this study)

These three criteria might generate overlapping feature pairs.

By building the predictor network from multiple sources, it was

guaranteed that each feature had at least k connections in the

network.

2.2 The imputation procedure
The imputation was based on the predictor network. In the follow-

ing discussions when network neighborhood is mentioned, we refer

to the predictor network. In the imputation of every feature, only

its connected features on the predictor network were used as

predictors. We firstly introduce some mathematical notations

here: e i;jð Þ represents the value at location (i, j) in data matrix

E ¼ fe i;jð Þ; i ¼ 1; . . . ;m; j ¼ 1; . . . ; ng, i represents the ith feature

(row) and j represents the jth sample (column). If the ith row, fea-

ture ei ¼ fe i;jð Þ; j ¼ 1; . . . ; ng has missing locations, we denote:

ei;mis ¼ fe i;jð Þ; j ¼ 1; . . . ;n;where ; e i;jð Þ ¼ NAg, similarly, we denote

ei;obs ¼ fe i;jð Þ; j ¼ 1; . . . ;n;where; e i;jð Þ 6¼ NAg as the observed loca-

tions in feature ei, here the mis and obs only indicate locations in-

stead of the values. All the neighboring features of feature i are

indexed as nbr(i).

For feature i, we selected the non-missing locations of feature i

and used ei;obs as response vector and those neighboring features

where they were fully observed in these observed locations denoted

as enbr ið Þ;obs were formed as the predictor matrix. Then we trained

the SVR model using ei;obs � enbr ið Þ;obs and extracted the predicted

value bei;mis when enbr ið Þ;mis was used as the testing data for

imputation.

Before imputation, the sequence for imputing the features

with missing locations needs to be decided first or to be updated

along the way. In this paper, we utilized a pre-fixed imputation se-

quence scheme for computation consideration. Specifically speaking,

features were firstly ranked by a measure called averaged neighbor-

hood missingness. The averaged neighborhood missingness of one

feature was defined as the average number of missing locations of

its neighboring features. Then the features with smaller averaged

neighborhood missingness were imputed first. After imputing the fea-

ture, the imputed values were filled in the original missing locations

and were treated as non-missing locations in the following iterations

(Fig. 1b). However, the imputation sequence still stayed the same.

2.3 Performance comparision
We compared the proposed imputation algorithm (denoted as

Net_SVR) with other commonly used imputation algorithms in

metabolomics studies, including the K-Nearest Neighbors (KNN)

(Troyanskaya et al., 2001), the Bayesian Principal Component

Analysis (BPCA) (Oba et al., 2003), the imputation based on Simple

Linear Regression (SLR), the imputation based on Singular Value

Decomposition (SVD), the imputation by inserting Single Values

(SVI: Min/2, Mean, Median). We briefly describe those methods:

• The K-Nearest Neighbors (KNN) (Troyanskaya et al., 2001)

finds the k nearest neighboring features fej; j ¼ l1; . . . ; lkg by a

Euclidean metric calculated among those whose feature columns

are not missing at location mis, and then takes the average values

of non-missing locations ej;mis calculated as 1
k

Plk
j¼l1

ej;mis for

imputation.
• The Bayesian Principal Component Analysis (BPCA) (Oba et al.,

2003) simultaneously estimates a probabilistic model for the

data matrix and estimates some latent parameter sets within the

framework of Bayesian inference, and then impute the missing

values in the data matrix by the expectation with respect to the

estimated posterior distribution.
• The imputation based on Simple Linear Regression (SLR) is

conducted by first fitting a series of univariate simple linear

regression models and collecting the predicted value from

each SLR model, and then imputing ei;mis by a weighted

Network-based metabolomics data imputation 1557
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summation of all these predicted values, where the weights are

decided by their pairwise Pearson correlation only using

observed data.
• The imputation based on Singular Value Decomposition (SVD)

(Troyanskaya et al., 2001) firstly initializes all missing values by

their row means. Each time, given a complete observed matrix, it

conducts a SVD procedure that obtains a set of mutually orthog-

onal expression patterns (eigen-features). And then it imputes the

missing values by regressing the features with missing values

against the nPC eigen-features (nPCs need to be pre-specified).

This imputation is repeated until the total change of two succes-

sive imputations is less than the tolerance value.
• The imputation by inserting a Single Value (SVI: Min/2, Mean,

Median). These methods replace all missing values by a pre-

calculated value. Common choices are: half of the minimum

(Min/2), the mean (Mean) and the median (Median) calculated

from all the observed values in the data matrix.

In order to evaluate the performance of each method, we

calculated the normalized root mean squared error (NRMSE) of

the imputed values. The NRMSE was calculated for all the simu-

lated missing locations that were non-zero in the original data

matrix.

Suppose the total number of locations we use in calculation is K,

the imputed values are be ¼ fbek; k ¼ 1; . . . ;Kg and the ground-truth

from the original observed data matrix are e ¼ fek; k ¼ 1; . . . ;Kg.
The NRMSE is defined as follows:

NRMSE be; eð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

bek � ekð Þ2=K

Var eð Þ

vuuut
:

The smaller NRMSE is, the lower the prediction errors and the

better the imputation method. For better illustration, we further

used a metric called ‘NRMSE Ratio’ for algorithm comparison,

such that the plot is on similar scale for all missing rates. For every

missing imputation method (MI), it is defined as the ratio of its

NRMSE taken over the NRMSE of KNN. Due to the popularity of

KNN in this field, we chose to use KNN in the denominator for

calculation.

NRMSE Ratio MIð Þ ¼ NRMSE beMI; eð Þ=NRMSE beKNN; eð Þ:

Based on the definition, if we compare two methods, the smaller the

NRMSE Ratio is, the better imputation performance.

In summary, the pseudocodes for the proposed algorithm are

listed in the following:

3 Results

3.1 Datasets and simulation setup
In this study, we used two metabolomics datasets denoted as CAD

and CHD to assess the performance of different methods. The CAD

dataset is from the Emory Cardiovascular Biobank, which consists

of patients who have undergone coronary angiography to document

the presence/absence of coronary artery disease. Demographic char-

acteristics, medical histories, behavioral factors and fasting blood

samples have been documented and details about risk factor defin-

itions and coronary angiographic phenotyping have been described

previously (Patel et al., 2012). Each sample was analyzed in tripli-

cate with high-resolution liquid chromatography-mass spectrometry

(LC-MS), using anion exchange column combined with the Thermo-

Algorithm 1 BUILD_NET

1: Input data matrix Em�n; metabolite network G; adduct

info-matrix A ¼ Amz;Artð Þ; reference ions names I; toler-

ance level tol:mz; tol:rt; number of neighbors: n1; n2; n3;

2: procedure Create the feature-level predictor network

3: neighbors N ¼ listðÞ
4: for feature i in 1 : m do

5: nbrs.net¼fj : i � j in Gg
6: nbrs.ion¼fj : 9p; q 2 I; s:t

7: jjAmz i½ ��Amz j½ �j�jAmz p½ ��Amz q½ �jj
jAmz p½ ��Amz q½ �j � tol:mz

8: and jjArt i½ � �Art j½ �j � jArt p½ � � Art q½ �jj � tol:rtg
9: nbrs.corr¼ c()

10: nbrs.corr1¼{n1 largest linear-correlated features

with i}

11: nbrs.corr2¼{n2 largest DCOL-correlated features

with i}

12: nbrs.corr3¼{n3 largest dCov-correlated features

with i}

13: nbrs.corr¼nbrs.corr1 [ nbrs.corr2 [ nbrs.corr3

14: N i½ �½ �¼nbrs.net [ nbrs.ion [ nbrs.corr

15: Return N

Algorithm 2 IMP_SEQ

1: Input data matrix E; predictor network denoted as neigh-

bors list N

2: procedure Rank features by averaged neighborhood

missigness

3: impseq¼ c()

4: avemiss¼ c()

5: E.nmiss¼ apply(E, 1, function(e){sum(is.na(e))})

6: for feature i in 1 : m do

7: nbrs.i¼N[[i]]

8: avemiss[i]¼mean(E.nmiss[nbrs.i])

9: impseq¼ rank (1 : m) by avemiss

10: Return impseq

Algorithm 3 NET_SVR

1: Input data matrix E; metabolite network G; adduct info-

matrix A ¼ Amz;Artð Þ; reference ions names I; tolerance

level tol:mz; tol:rt; number of neighbors: n1;n2; n3;

2: procedure Build predictor network

3: N¼BUILD_NET(E;G;A; I; tol:mz; tol:rt; n1; n2; n3)

4: procedure Creat an imputation sequence

5: impseq¼ IMP_SEQ(E, N)

6: procedure Imputation

7: Initialize bE ¼ E

8: for feature i in impseq do

9: create ei ¼ E i;½ �; ei;obs; ei;mis

10: extract neighbor locations from N i½ �½ � as nbr(i)

11: train a SVR model ei;obs � enbr ið Þ;obs

12: predict ei;mis as bei;mis using enbr ið Þ;mis

13: set bE i;mis½ � ¼ bei;mis

14: Return bE
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Orbitrap-Velos (Thermo Fisher, San Diego, CA) mass spectrometer

in positive ion mode, with a m/z range of 85 to 850.

The CHD dataset is a dataset from the Emory-Georgia Tech

Predictive Health Initiative Cohort of the Center for Health

Discovery and Well Being. This is a cohort of generally healthy uni-

versity employees aged 18 and older (http://predictivehealth.emor-

y.edu) (Brigham, 2010). The data was generated by C18 column

combined with the Thermo-Orbitrap-Velos mass spectrometer in

positive ion mode, with a m/z range of 85 to 850.

Both datasets were pre-processed using xMSAnalyzer (Uppal

et al., 2013) in combination with apLCMS (Yu et al., 2009, 2013).

Each sample was run in triplicates in the datasets. For each feature,

there were three readings per subject. An average feature intensity

value was calculated from the non-zero readings of the three. For fil-

tering the data matrix, rows with more than 20% of zeros were

removed. Finally, the data matrix was log-transformed by the func-

tion y ¼ log 1þ xð Þ. The CAD dataset contains 18 434 features and

489 samples with 41.34% of the locations being zero. We removed

rows with over 20% zeros, resulting in a data matrix of 7033 rows

with an overall missing rate of 2%. The CHD dataset contains 8942

features and 415 samples with 43.54% zeros. We removed rows

with over 20% zeros, resulting in a data matrix of 3187 rows with

an overall missing rate of 7%. In the following simulation proced-

ure, the non-zero values in these matrices served as ground truth.

They were knocked out and then imputed, and the imputation ac-

curacy was assessed by NRMSE over these non-zero ground truth

values.

As described in the Materials and methods section, we built the

predictor network using: (1) linear correlation, (2) DCOL correlation,

(3) dCov dependency, (4) difference in m/z (relative difference is less

than 10 ppm) and RT values (difference less than 100) between any

pair of features, indicating high likelihood of them being derived from

the same metabolite, (5) m/z matching to neighboring metabolites

on the KEGG metabolic network. For all KEGG metabolites, we

first computed the theoretical m/z values of common adduct ions,

and then computed the difference between these m/z values and the

feature m/z values. A relative difference less than 10ppm suggests a

potential match. Two features matched to connected metabolites

on the KEGG network are connected in the predictor network.

For (4) and (5), five adduct ions were considered in this study:

MþH½ �þ; MþNH4½ �þ; MþNa½ �þ; Mþ K½ �þ; Mþ 2Na�H½ �þ.

The MINMA package provides the option of using other adduct ions.

3.2 Computation
As indicated by Hrydziuszko and Viant (2012), the missingness may

not occurr randomly in metabolomics data based on the analysis of

DI FT-ICR MS metabolomics datasets. As a result, assuming a com-

plete random missing mechanism may not be appropriate for imput-

ation. Inspired by their work, we created the simulated datasets by

knocking out a portion of locations from the ground-truth matrix

by mimicking real missing patterns, and then evaluated each of the

algorithms. To be specific, when we simulated a missing rate of r,

each time we randomly selected one feature a from this ground-

truth matrix, and one feature b from the original input matrix (be-

fore removing rows with > 20% missing). We knocked out the loca-

tions (encoded as NA) in feature a where there were observed zero

values in the corresponding location in feature b, until the simulated

dataset hit the missing rate of r. Similar approach has been taken

in microarray missing value imputation study (Yu et al., 2011).

In this way, without any assumptions of missing mechanism,

imputation algorithms were all evaluated based on the real data

missing pattern.

We simulated the datasets with various missing rates: 1, 5, 10,

15, 20, 25, 30, 35 and 40%. For each of them, we generated 50

datasets and used the averaged NRMSE Ratio for evaluation. For

each missing percentage, we tested various parameter settings for

each method, i.e. k¼5, 10, 15 for KNN and n1; n2; n3 ¼ 5; 10; 15

for Net_SVR and nPCs¼5, 10, 15 for BPCA and SVD, using 5

simulations, and then used the best parameter setting in the full

simulation of 50 datasets.

All computations were run under R version 3.3.1. KNN was im-

plemented using the function ‘impute.knn’ from the package ‘im-

pute’; BPCA was performed using the function ‘bpca’ from the

package ‘pcaMethods’ (Stacklies et al., 2007); SVD was applied

using function ‘impute.svd’ in the package ‘bcv’. For our mehtod

Net_SVR, the SVR model was fitted using the function ‘svm’ from

the package ‘e1071’ (Meyer et al., 2017). The packages ‘impute’ and

‘pcaMethods’ are Bioconductor packages.

3.3 Simulation results
The simulation results are presented in Figure 2, where we applied

all the candidate algorithms for imputation to two real datasets:

CAD and CHD. For the simulation results of CAD dataset (Fig. 2a),

at each missing rate ranging from 1 to 40%, BPCA, Median

Imputation and Net_SVR were below the dash line of 1, which

means all three methods outperformed KNN (recall that NRMSE

Ratio of KNN is always 1). The averaged NRMSE Ratio for them

were 0.893, 0.890 and 0.727, respectively. SLR, SVD and Mean

Imputation outperformed KNN only when missing rate was 1% and

performed worse than KNN when missing rate was increased.

Among all top three methods: BPCA, Median and Net_SVR, when

missing rate was as low as 1%, all three of them performed signifi-

cantly better than KNN, as the missing rate increased, the gap com-

pared to KNN shrank. Across all missing rates, our proposed

algorithm Net_SVR performed the best as it obtained the smallest

NRMSE Ratio compared to others with a minimum of 0.579 and

maximum of 0.762.

The Net_SVR method also outperformed others when we

applied all algorithms to the CHD dataset (Fig. 1b). It was the only

algorithm that achieved an NRMSE Ratio below 1 across all missing

rates. The averaged NRMSE Ratio of Net_SVR was 0.726 with a

minimum of 0.518 and a maximum of 0.806. BPCA performed

slightly better than KNN in most of the cases, but still yielded larger

NRMSE Ratio at missing rate 10% (1.013), and was very close to

KNN at missing rates 15% (NRMSE Ratio 1.000) and 20%

(NRMSE Ratio 0.996). Median performed worse than KNN for the

CHD dataset while it performed better in the CAD dataset, but the

overall NRMSE Ratio of Median is around 1.

Additionally, of all the algorithms evaluated, imputing the miss-

ing locations by half of the minimum value yielded the largest

NRMSE values, even though the data was already log-transformed.

It is because the Min/2 approach takes a different assumption than

all the other methods. It assumes the unobserved values are missed

only when the signal is below a detection threshold, which largely

doesn’t hold true in metabolomics data, thus, it is the worst among

all the imputation algorithms. Our results are generally consistent

with previous studies. The studies were somewhat diverse in terms

of the data used, as well as the objectives used in judging the per-

formance. Overall they showed a mixed performance between

KNN, BPCA and SVD, while simple imputation methods such as

Network-based metabolomics data imputation 1559
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Min/2 are in general unfavorable (Armitage et al., 2015; Gromski

et al., 2014; Hrydziuszko and Viant, 2012; Taylor et al., 2016).

Given the methods’ performance may depend on the data type, sam-

ple size and missing mechanisms, it is most likely that no method is

universally better. On the other hand, the knockout-impute simula-

tion approach can be helpful. Given a specific dataset, a simulation

similar to the current manuscript or those previously reported may

be helpful in determining which imputation method best suites the

data.

In metabolomics data, the underlying missing data pattern is un-

clear, and the assumptions needed for modeling missing mechanism

is hard to justify. Thus in these two simulation studies, the missing

locations were generated in a way to mimic the real data missing

pattern, which is not in favor of any of the algorithms tested. The re-

sults indicated that Net_SVR may be a safer choice given it utilizes

diverse information.

The two datasets used both contained over 400 samples.

However, some datasets in real-world applications may contain fewer

samples. In order to evaluate how the methods perform under the situ-

ation of smaller sample sizes, we randomly subsampled the columns

of the CHD dataset. The simulation result when we subsampled 100

columns is presented in Figure 3. All the algorithms performed simi-

larly to the results in Figure 2b. With the sample size reduction, BPCA

had better relative performance compared to itself but still worse than

Net_SVR. Our proposed method still outperformed the others at most

missing rates. Further reduction of sample size produced similar

results (see Supplementary materials for details).

4 Discussion and conclusion

Imputation techniques are widely used for handling missing data in

metabolomics studies. In this paper, we proposed a missing data im-

putation algorithm where a feature-level predictor network is con-

structed and then utilized for imputation. We incorporated different

information for constructing the predictor network: the existing

metabolic network structure, adduct ion relations among features

and various linear/nonlinear pairwise correlations calculated from

feature abundance levels. They are believed to be potentially helpful

in depicting related features which may help in imputing each

other’s missing values. As this predictor network may include some

false edges, hence noise in the imputation model, we applied the

SVR model for reducing the influence of possible nuisance variables

in the imputation process.

In real-world metabolomics studies, missing mechanism is hard

to ascertain and the assumptions needed for modeling real data

missing pattern is sometimes hard to justify. In order to better com-

pare some of the widely-used algorithms in this field, we randomly

sampled missing patterns from real features to mimic the real data

missing pattern in the simulation studies. Simulation results showed

that in high-resolution LC-MS data, the proposed algorithm

Net_SVR outperforms the others at most missing rate settings.

In the application of the Net_SVR method, correctly specifying

the types of adduct ions is important. Using too few adduct ion types

causes the loss of valuable links that could contribute to imputation,

while using adduct ions that are uncommon in the specific

Fig. 3. Simulation results from a subset of the CHD data with 100 columns

Fig. 2. Simulation results. (a) CAD (AE) data; (b) CHD (C18) data
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experimental platform may add many false edges in the predictor

network. MINMA provides a function to match feature m/z values

to 32 positive adduct ions, or 13 negative adduct ions. Alternatively,

xMSannotator provides matching to more adduct ions (Uppal et al.,

2017). Although m/z matching can always yield some false positives,

nonetheless the frequency of adduct ion in the match can indicate

which types of adduct ions are more common in the data, which can

serve as the basis for selecting adduct ions to use.

To summarize, by constructing a feature-level predictor network

and then imputing missing values using a SVR model that uses

neighborhood predictors on the network, the Net_SVR is an effect-

ive imputation method. The method can be extended in several dir-

ections: 1. other machine learning methods that are better resistant

to nuisance variables can be used in place of the SVR; 2. when con-

structing the predictor network, different sources of information

could be weighted differently based on the user’s prior knowledge;

3. other feature relations can be incorporated; 4. if computationally

feasible, the imputation sequence can be constantly updated along

the way for better utilizing the network information.
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