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Abstract

Motivation: Genome-wide association studies are now shifting focus from analysis of common to

rare variants. As power for association testing for individual rare variants may often be low, various

aggregate level association tests have been proposed to detect genetic loci. Typically, power calcu-

lations for such tests require specification of large number of parameters, including effect sizes and

allele frequencies of individual variants, making them difficult to use in practice. We propose to

approximate power to a varying degree of accuracy using a smaller number of key parameters,

including the total genetic variance explained by multiple variants within a locus.

Results: We perform extensive simulation studies to assess the accuracy of the proposed approxima-

tions in realistic settings. Using these simplified power calculations, we develop an analytic framework

to obtain bounds on genetic architecture of an underlying trait given results from genome-wide associ-

ation studies with rare variants. Finally, we provide insights into the required quality of annotation/func-

tional information for identification of likely causal variants to make meaningful improvement in power.

Availability and implementation: A shiny application that allows a variety of Power Analysis of

GEnetic AssociatioN Tests (PAGEANT), in R is made publicly available at https://andrewhaoyu.shi

nyapps.io/PAGEANT/.

Contact: nilanjan@jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the last decade, genome-wide association studies (GWAS) of

common variants of increasingly large sample sizes have been the main

driving force for discovery of susceptibility loci associated with com-

plex diseases and traits. While analysis of heritability suggests that

common variants have further ability to explain additional variation of

these traits (Park et al., 2010; Yang et al., 2010; Lee et al., 2011, 2012;

Stahl et al., 2012; Visscher et al., 2012; Dudbridge 2013; Wood et al.,

2014; Bulik-Sullivan et al., 2015; Locke et al., 2015; Sampson et al.,

2015), the focus of the field is inevitably shifting towards studies of less

common and rare variants with the rapidly decreasing cost of sequenc-

ing technologies and increasing sophistication of imputation algorithms

(Huang et al., 2015; Kreiner-Moller et al., 2015; Davies et al., 2016).

However, limited or lack of findings from early studies (Purcell et al.,

2014; Tang et al., 2014; Cheng et al., 2015; UK10K Consortium et al.,

2015; Huang et al., 2015; Mahajan et al., 2015; Wessel et al., 2015;

Xu et al., 2015; Zheng et al., 2015; Fuchsberger et al., 2016;

Ganna et al., 2016; CHARGE Consortium Hematology Working

Group, 2016; Haddad et al., 2016; Liu et al., 2016; Luo et al., 2017)
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indicate that effect sizes of rare susceptibility variants in general are

likely to be modest and discovery of underlying loci will require large

sample size in future studies (Park et al., 2011; Zuk et al., 2014;

Moutsianas et al., 2015).

Testing of associations at the level of genetic loci or regions using

various aggregate-level statistics have been proposed as a strategy to

improve power of discovery in association studies of rare variants (Li

and Leal, 2008; Madsen and Browning, 2009; Liu and Leal, 2010;

Morris and Zeggini, 2010; Price et al., 2010; Ionita-Laza et al., 2011;

Lin and Tang, 2011; Neale et al., 2011; Wu et al., 2011; Lee et al.,

2012; Derkach et al., 2013; Sun et al., 2013). Simulation studies have

been used under various anticipated genetic architectures of the traits

for the demonstration of potential power of these procedures (Neale

et al., 2011; Wu et al., 2011; Lee et al., 2012; Moutsianas et al.,

2015). In particular, analysis of power for variance component-based

tests, such as the popular SKAT method, can be complex as they

require specification of many different parameters including a number

of genetic variants under study, proportion of causal variants, allele

frequency and effect size distributions. Use of various functional and

annotation information to identify likely pathogenic variants a priori

has also been proposed as a strategy to improve the power of rare var-

iant association tests (Kosmicki et al., 2016; Richardson et al., 2016).

To the best of our knowledge, however, there has been no systematic

study of the effect of the use of such extraneous information on power

of the association tests.

In this report, we first describe approximations that allow analytic

characterizations of power for popular aggregate-level association

tests based on a few key parameters, thus dramatically reducing the

complexity of power calculations. We perform simulation studies

using allele frequency distribution observed in Exome Aggregation

Consortium (ExAC) (Lek et al., 2016) under various models for effect

size distributions to assess the accuracy of the proposed approxima-

tions in realistic settings. We then develop a framework for genome-

wide power calculations based on the underlying genetic architecture

of a trait characterized by a number of underlying causal loci and total

variability they explain. We assess the power of a number of recently

reported association studies of rare variants using the proposed frame-

work and provide insights into the implications for lack of discoveries

on bounds of genetic architecture of the underlying traits.

We also use the proposed framework to characterize power of

association tests that may preselect variants based on prior func-

tional/annotation information. These derivations provide important

insights into the required quality of annotation/functional informa-

tion for identification of likely causal variants to make meaningful

improvement in the power of subsequent association tests. Finally,

to facilitate convenient and rapid power calculations for rare variant

association tests, we make a shiny app PAGEANT (Power Analysis

for GEnetic AssociatioN Test) available in R.

2 Materials and methods

2.1 Existing power calculations
A variety of statistics have been proposed for testing genetic associa-

tions at the levels of genetic loci or regions by aggregating associa-

tion statistics over multiple genetic variants (Li and Leal, 2008;

Madsen and Browning, 2009; Liu and Leal, 2010; Price et al., 2010;

Lin and Tang, 2011; Neale et al., 2011; Wu et al., 2011; Lee et al.,

2012; Derkach et al., 2013). Multiple studies (Lin and Tang, 2011;

Derkach et al., 2014; Moutsianas et al., 2015) have shown that

existing methods can be classified as sum-based (Li and Leal, 2008;

Madsen and Browning, 2009; Morris and Zeggini, 2010; Price

et al., 2010), variance component (Neale et al., 2011; Wu et al.,

2011; Derkach et al., 2014), and hybrid tests that are functions of

both classes (Lin and Tang, 2011; Lee et al., 2012; Derkach et al.,

2013). Here, we focus on sum-based and variance component tests.

We do not consider hybrid tests because their power is usually close

to one of the two components. Sum-based tests aggregate variant-

level association statistics by a linear combination in the forms

TST ¼
XJ

j¼1

wjTj;

and variance component tests aggregate by quadratic combination

in the forms

TVC ¼
XJ

j¼1

wjT
2
j ;

where wjs are weights that depend on minor allele frequency

(MAF) and Tjs are score statistics for associations for individual

SNPs ðj ¼ 1; . . . ; JÞ, the latter of which are typically derived from a

regression model, such as the linear or logistic regression (Lin and

Tang, 2011; Lee et al., 2012; Derkach et al., 2014).

Existing analytic power formulas for sum-based and variance

component tests are complex functions of many parameters includ-

ing number of genetic variants under study, proportion of causal

variants, allele frequencies and effect size distributions (Derkach

et al., 2014). The analytic power of a single-variant statistic

Z2
j ¼

T2
j

Var Tj

� � � v2
1;ncj

;

can be derived based on one degree-of-freedom chi-square

distribution with a non-centrality parameter of the form

ncj ¼ 2pjð1� pjÞbj
2N ¼ EVjN, which depends on two parameters:

effective sample size (N) and proportion of phenotypic variation

explained by the jth variant [EVj ¼ 2pjð1� pjÞbj
2], a function of

MAF (pj) and genetic effect (bj), measured in the unit of per copy of

an allele (Park et al., 2010).

Under assumption of low LD between rare variants and high proba-

bilities of observing the variant in a sample Derkach et al. (2014)

derived analytical power formulas for rare variant association tests.

They showed that analytic power for a sum-based test statistic ZST ,

Z2
ST ¼

T2
ST

VarðTSTÞ
� v2

1;ncL
;

depends on the non-centrality parameter

ncST ¼ N

PJ
j¼1 wjsign bj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj 1� pj

� �
EVj

q� �2

PJ
j¼1

w2
j pjð1� pjÞ

;

which depends on coefficients of explained variations associated

with individual variants. Previous studies (Ionita-Laza et al., 2011;

Derkach et al., 2014) have shown that a variance component statis-

tic is asymptotically distributed as a linear combination of non-

central chi-square random variables,

TVC �
XJ

j¼1

kjv
2
1;ncj

;

with non-centrality parameters ncj ¼ EVjN and weights

kj ¼ wjpjð1� pjÞN. It has been suggested that analytic power
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calculations for variance component tests be done by approximating

the asymptotic distribution of TVC by a single non-central chi-square

distribution matched up to four cumulants (Wu and Pankow, 2016).

There are also several modifications of this method matching higher

moments to improve the tail probability approximation (Wu et al.,

2011; Wu and Pankow, 2016); however, power differences seem to

be marginal. The cumulants ck of the test statistic TVC can be writ-

ten as

ck ¼
XJ

j¼1

kk
j þ kN

XJ

j¼1

kk
j EVj for k ¼ 1; . . . ; 4; (1)

which require specification of effect sizes ðEVjÞ and allele frequen-

cies of individual variants. The power calculations for aggregate-

level tests requiring specification of MAFs and genetic effects for

individual variants have been implemented in several statistical

packages (Wu et al., 2011; Wang et al., 2014; Wu and Pankow,

2016).

2.2 Approximate power calculations for

aggregate tests
In the following, we describe simple formulae for approximating

power for different aggregate-level tests using a limited number of

key parameters. First, we show that for the sum-based test, under an

assumption of independence between coefficients of explained varia-

tions and MAFs [e.g. genetic effect of a variant bj is inversely pro-

portional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjð1� pjÞ

p
], we can roughly estimate non-centrality

parameter as

ncST � N
jJD � JPj

J

jJD � JPj
JD þ JP

TEV;

where JD and JP are numbers of deleterious and protective variants in a

locus and
PJ

j¼1 EVj ¼ TEV is the total proportion of variation

explained by all J variants in the locus (see Supplementary Appendix S1).

If all of the causal variants in a locus are deleterious (or protec-

tive), then the non-centrality parameter can be characterized by

TEV and the proportion of causal variants. In Supplementary

Appendix S1, we state approximations for other two common rela-

tionships between genetic effects and MAFs.

Next, we consider simplified power calculations for variance

component tests TVC by approximating cumulants ck in (1) as a

function of the total proportion of variance explained by all variants

within a locus (TEV). For example, if we assume independence

between MAF and proportion of variation explained across individ-

ual variants, we can obtain a first-order approximation in the form

ck ¼
XJ

j¼1

kk
j þ kN

XJ

j¼1

kk
j EVj �

XJ

j¼1

kk
j þ kN

PJ
j¼1

kk
j

J
TEV

In Supplementary Appendix S2, we derive approximations of ck for

three commonly assumed relationships between genetic effects and

MAFs and summarize them in Supplementary Table S1. The first-

order approximations, which implicitly treat all variants in a locus

to be causal, can be inaccurate when the number of true causal var-

iants is small. To improve accuracy, we propose second-order

approximations to estimate the sum
PJ

j¼1 kk
j EVj in (1) as function

of TEV and number of underlying casual variants (JC) (see

Supplementary Appendix S2 and Table S1). For example, if we

assume the same hypothesis of independence between proportion of

variation explained and MAF across individual variants, then we

approximate
PJ

j¼1 kk
j EVj in ck as 1

JC

PJC

j¼1 kk
j .

2.3 Genome-wide power calculations and bounds on

genetic architecture
Using the proposed first-order power calculation framework, we

further develop a mathematical framework to study bounds on

genetic architecture of underlying traits from limited findings

reported in a GWAS. We first characterize the probability of a num-

ber of discoveries in a given study as a function of sample size N,

the number of underlying causal loci K and the distribution of

their effect sizes, TEVs. Let P TEV; J; pð Þ be a power of a test to

detect a locus explaining TEV of phenotypic variation. Then in

Supplementary Appendix S3, we show that probability of M discov-

eries in a study of sample size N is

P M Discoveries jGenetic Modelð Þ �

� K

M

� �
E P TEV; J; pð Þ½ �Me K�Mð ÞE log 1�P TEV;J;pð Þ½ �g;f

(2)

which depends on average power of the underlying association tests

over the different causal loci in the genome and can be calculated by

specifying number of underlying causal loci and distributions of pro-

portion of phenotypic variations they explain (TEV), number of

SNPs within a locus (J) and MAF p across the causal loci (see

Supplementary Appendix S3). This formula can be extended using

the second-order approximations by specifying distribution for a

number of causal variants per locus. Because of limited information

about this parameter, we do not focus on it.

Now, if M ¼ m is the number of discoveries reported based on a

given GWAS of sample size N, we can calculate PðM � mÞ using

the above formula based on empirical distributions for MAFs (pk),

size of genes (Jk) observed in real data and various hypothesized val-

ues for number of causal loci (K) and parameters for underlying

effect size distributions for TEV. Specifically, we generated a class

of L-shaped effect size distribution using a two-parameter gamma

distribution: Gamma(a, c) with a �1 and restriction that the total

variance of a trait explained by causal loci, GEV is smaller than

50%. Under this model, GEV is given by Kl where l � ac. For

various combination of K and l, we evaluate the maximum value

of P(M�m) over different values of the dispersion parameter

(a=c ¼ a2=l) determined from wide range of possible values of a.

When this probability is low (e.g.<5%), we conclude that the

underlying model for genetic architecture is unlikely. For example,

many recent studies have reported no discoveries based on gene-

level association tests. In these studies, the probability of no discov-

eries, m ¼ 0, can be used to provide bound on genetic architecture

of the underlying trait.

2.4 Effects of filtering variants by extraneous

information
We use the proposed framework to study the effects of filtering of

variants based on prior functional/annotation information on the

power of association tests. Here, power of association tests can be

summarized as a function of sensitivity and specificity of the under-

lying filtering method. Sensitivity (Se) is the probability of selecting

a variant given that it is truly causal, while specificity (Sp) is the

probability of filtering a variant out given that is non-causal. If selec-

tion/filtering is independent of MAFs and proportions of variations

explained, then the number of remaining variants after filtering in a

locus is JS ¼ Se � JC þ ð1� SpÞ � ðJ � JCÞ and the proportion of varia-

tion explained by them is TEVS ¼ Se � TEV. Now, with new values

of J and TEV, we estimate power for aggregated tests and compare
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them to corresponding base values if no filtering was applied (e.g.

Se ¼ 100% but specificity is Sp ¼ 0%).

If only a small subset of variants is selected, then sensitivity may

be reduced as some true causal variants could be missed while spe-

cificity may improve because of removal of non-causal variants. If

one takes a random subset of the variants, then Se ¼ 1� Sp as the

casual and non-causal variants are selected at the same rate. If the

functional/annotation information used for screening is predictive of

whether the SNPs are likely to be causal for the trait of interest, then

one would expect specificity>1 � sensitivity. Using the proposed

framework, we explore the power of aggregated tests for various

combinations of sensitivity and specificity of the underlying filtering

algorithm. Furthermore, we assume that the functional/annotation

information for the variants is measured by underlying normally dis-

tributed continuous score and variants are included in association

test if their score is above a specified threshold. For example, several

functional/annotation tools (Wang et al., 2010; Grant et al., 2011;

Asmann et al., 2012) summarize multiple sources into one continu-

ous score. Under these assumptions, we evaluate receiver operating

characteristic curves generated by the combination of sensitivity and

specificity at different thresholds for SNP selection. We track power

of different methods along different combinations of sensitivity and

specificity parameters that lead to specific values of the area under

the curve (AUC), which is an overall summary of the ability of the

underlying score to discriminate between causal and non-causal var-

iants (see Fig. 3).

2.5 Empirical investigations
2.5.1 Properties of the first- and second-order approximations

We conduct extensive simulation studies to evaluate accuracy of the

proposed power calculations for variance component tests in com-

parison to exact theoretical methods that require specification of

effect sizes of individual variants. Here, we focus on the SKAT test

statistics as a representative of variance component tests, and in

Supplementary Material, we present results for the burden and sim-

ple sum test statistics (Li and Leal, 2008; Madsen and Browning,

2009) as a representatives of sum-based tests and C-alpha (Neale

et al., 2011) as other variance component test. For each fixed combi-

nation of the size of a region (J) and the total variance explained

(TEV), the two key parameters that determine the approximate

power of the SKAT test, we simulate various possible values of allele

frequencies and effect sizes for individual markers EVj. Then the

power based on the first- and second-order approximations aver-

aged over empirically derived distribution of allele frequencies is

compared with power based on exact theoretical calculations aver-

aged over distribution of allele frequencies and distribution of effect

sizes for individual markers EVj (see Fig. 1 and Supplementary

Appendix S4 for more detail). Additional to evaluation of accuracy

of the proposed power calculations, in Supplementary Material, we

evaluate accuracy of estimation of sample size required to achieve

80% of power for variance component tests in comparison to exact

theoretical method (see Supplementary Appendix S4). We consider

three types of simulation scenarios: S1 (‘MAF-independent EV’)

assumes that coefficients of explained variations ðEVÞ is independ-

ent of MAF; S2 (‘MAF-independent bj’) assumes that size of

genetic effect (b), measured in the unit of per copy of an allele

[b2 ¼ EV=2MAFð1�MAFÞ] is independent of MAF and S3 [‘MAF-

log-dependent bj’] assumes that genetic effect is related to MAF

through log10 function (as defined in Supplementary Table S1).

For each type of simulation scenario, we estimate the power for a locus

of size J ¼ 50; 100; 200 and 400 with the number of underlying

causal variants JC ¼ 10; 20; 30 and 50. In Supplementary Appendix

S4, we describe simulation mechanisms in detail and we summarize

simulation models and parameters required for each method in

Supplementary Table S2.

2.5.2 Bounds on variation explained by a causal locus

In Supplementary Table S3, we provide key parameters that summa-

rize a variety of recently published association studies of rare variants

(Purcell et al., 2014; UK10K Consortium et al., 2015; Wessel et al.,

2015; Xu et al., 2015; Zheng et al., 2015; Fuchsberger et al., 2016;

Ganna et al., 2016; CHARGE Consortium Hematology Working

Group, 2016; Liu et al., 2016; Luo et al., 2017). Typically, studies on

Human Exome BeadChip (Exome Chip) had larger sample sizes than

studies on sequencing platform; however, the latter covered a much

smaller number of rare variants. We use our mathematical framework

to obtain bounds on genetic architecture implied by the results from

two of the largest studies, one of which studied educational attain-

ment with exome sequencing and the other studied blood pressure

employing exome chip (Ganna et al., 2016; Liu et al., 2016) (see 5th

and 9th rows of the Supplementary Table S3).

For ease of illustration, we assume that analysis in these studies

was conducted by the SKAT statistic with a gene as a unit, although

the study of educational attainment (Ganna et al., 2016) did not

explicitly report results from gene-based analysis. We used the pub-

licly available ExAC database (Lek et al., 2016) to obtain empirical

distributions for number of rare variants in a gene (Jk) and vector of

MAFs pk across exome. The average numbers of rare variants per

gene (J) were 35.5 and 13 in the studies of educational attainment

and blood pressure, which used exome sequencing and Exome Chip

platforms, respectively. We provide empirical distributions and

other key parameters in Supplementary Figures S11 and S12.

Finally, we set Type 1 error threshold T1 ¼ 0:05
20;000 ¼ 2:5� �10�6.

To estimate genetic bounds from the results of study on educational

attainment, we estimate the probability of no discoveries (m ¼ 0)

given a genetic model from (2) by using the sample size

N ¼ 14; 000, the number of sequenced individuals. To ensure valid-

ity of asymptotic power formulas, we assume that MAF of rare var-

iant ranges between 0.0001 and 0.01 (e.g. no singletons and

doubletons).

To estimate genetic bounds from the study of blood pressure out-

come, we calculate probability of at most three discoveries (m ¼ 3)

under a sample size of N ¼ 140; 000 to match the number of discov-

eries reported and number of individuals genotyped in this study

(see 9th row of Supplementary Table S3). In contrast to the previous

study, here we did not put any lower bound for MAFs.

For each combination of the number underlying of causal loci

ðKÞ and parameters of effect size distributions, we calculate the

probability of less than or equal to m discoveries using (2) with

study-specific parameters. Expectations in (2) are estimated using

100 000 Monte Carlo simulations. In this report, we calculate

power of the SKAT test statistic under the assumption of independ-

ence between proportion of variations explained and MAF of indi-

vidual variants. Results for other genetic architecture are also

discussed and presented in the Supplementary Material.

2.5.3 Effects of variant filtering on power of aggregated tests

We consider two values of a size of a locus J ¼ 50; 100 and two

values of a number of causal variants in a locus, JC ¼ 10; 20. Initial

values of TEV are selected so that power of the SKAT test is equal

to 40% at Type 1 error T1 ¼ 0:05=20; 000 ¼ 2:5 � 10�6 and sample

size N ¼ 10; 000. For every combination of sensitivity and
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specificity, we estimate average power for the SKAT and burden

tests. For this study, we also assume independence between

proportion of variations explained and MAF for the individual var-

iants. Results for other genetic architectures are presented in the

Supplementary Material.

3 Results

3.1 Properties of the first- and second-order

approximations
We evaluate the accuracy of first- and second-order approximations

compared to exact power calculations of the variance component test

under variety of genetic models (see Supplementary Table S2). The

first-order approximations match exact calculations better as the

number of causal variants in a locus JC increases (Fig. 1). Particularly,

we observe that with more than 20 causal variants in a locus

(JC 	 20), difference in power between those two methods is small

regardless of the total number of variants in a locus J ¼ 50; 100 (see

Fig. 1B and D and Supplementary Fig. S1). Similar conclusion holds

also for very large loci J ¼ 200; 400 and other relationships between

genetic effect and MAF (see Supplementary Figs S2–S4). With lower

number of causal variants in a locus (e.g. JC ¼ 10), we observe

upward bias in first-order estimates when exact power is high and

downward bias when exact power is low (see Fig. 1A and C).

We also observe that the second-order approximation is more

accurate at estimating the exact power (Fig. 1). Now, difference in

power between approximate and exact calculations is small even

when the number of causal variants in a locus is small, (see also

Supplementary Figs S1–S4). Overall, our simulations demonstrate

that the first-order approximation accurately estimates exact power

when the number of causal variants in a locus is not too small.

However, if the number of causal variants in a locus is small, then

the first-order approximation may produce biased results. On the

other hand, the second-order approximation estimates exact power

more accurately regardless of underlying generic architecture, but it

requires specification of an additional parameter, namely the

number of causal variants in a locus ðJCÞ. Very similar results

hold for another type of variance component test, C-alpha (see

Supplementary Fig. S5).

We also observe that the accuracy of the proposed approximations

for sample size calculations is consistent with what is expected from

power calculations (see Supplementary Figs S8–S10). The second-

order approximation provides unbiased estimates for average sample

size, while accuracy of the first-order approximation improves as the

number of causal variants in a locus JC increases.

As for sum-based statistic, we observe that the accuracy of

the proposed approximations does not drastically depend on num-

ber of causal variants in a locus (Supplementary Figs S6 and S7).

However, the accuracy depends on the variation in SNP-specific

coefficients of variations as we take square inside of expectation (see

Supplementary Appendix S1). Particularly accuracy should improve

if causal variants have similar generic effects.

3.2 Bounds on effect size distribution
Genome-wide power analysis of the educational attainment study

(Ganna et al., 2016) (see Fig. 2A), which implemented whole-exome

sequencing, shows implausibility of models that correspond to a

small number of underlying causal loci explaining significant total

phenotypic variance. For example, the probability of observing no

discovery is less than 5% under genetic models that involve less than

250 loci to explain a total of 20% or more phenotypic variation. If

we assume independence between genetic effects and MAFs across

variants, a scenario under which SKAT test has higher power, then

even larger number of loci will be needed to explain the same total

variance (see Supplementary Fig. S13A).

Genome-wide power analysis of the study of blood pressure (Liu

et al., 2016) (see Fig. 2B), which is much larger in sample size but

implements the Exome Chip platform, provides a very sharp bound

on the relationship between number of underlying causal loci and

Fig. 2. Bounds for genetic architecture based on results reported in studies of

education attainment (EA) and blood pressure (BP). (A) Maximum probability

of observing no discoveries in the EA study, which used whole-exome

sequencing platform, as a function of the number of underlying causal loci K

and the total variation explained by them with a sample size of 14 000. (B) The

maximum probability of observing three statistical significant discoveries in

the BP study, which used exome chip, as a function of the number of underly-

ing causal loci K and the total variation explained by them with a sample size

of 140 000. In both cases, it is assumed that gene-based tests have been

performed using the SKAT test statistics at the level of T1¼ 2.5� 10�6.

Probabilities are estimated by (2) and assumption of independence between

minor allele frequency and explained variations. Maximum probability was

calculated over a set of possible effect size distributions. The black line shows

approximate contours (bounds) corresponding to the probability of 5%

Fig. 1. Evaluation of the accuracy of the first-and second-order approxima-

tions to the power of SKAT test under simulation scenario S1 (MAF-

independent EV). Exact Formula represents estimated average power

over empirical distribution of MAFs and genetic effect sizes using exact theo-

retical formulas for the SKAT test statistic. First-order represents estimated

average power over empirical distribution of MAFs using the first-order

approximation for the SKAT test statistic. Second-order represents estimated

average power over empirical distribution of MAFs using the second-order

approximation for the SKAT test statistic. 5% and 10% error represents 5%

and 10% error bounds over exact power calculations. Number of variants in a

locus (J) and number of causal variants (Jc): A) J¼50, Jc¼10; B) J¼ 50,

Jc¼ 10; C) J¼100, Jc¼10 and D) J¼100, Jc¼20.

1510 A.Derkach et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx770#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx770#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx770#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx770#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx770#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx770#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx770#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx770#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx770#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx770#supplementary-data


total heritability explained by the underlying variants. We estimate,

for example, at least 6000 causal loci will need to be involved if the

variants included in the study could explain 20% of phenotypic var-

iance of blood pressure. Identical to results for the WES study,

genetic bound is even sharper if independence between MAFs and

genetic effects is assumed (see Supplementary Fig. S13B).

3.3 Effects of a priori SNP screening on power of

aggregated test
A priori SNP selection does not improve the power of variance com-

ponent test substantially (e.g. by 10%) unless the underlying algo-

rithm has very high accuracy to discriminate between causal and

non-causal SNPs (AUC between 80% and 90%) (see Fig. 3). In con-

trast, power for sum-based test can improve substantially with more

modest discriminatory accuracy of the SNP selection algorithm

(AUC between 70% and 80%). Furthermore, we observe that the

roles of sensitivity and specificity are not symmetric on power of

these tests. For both tests, substantial improvement of power is pos-

sible only if sensitivity is at the minimal 30–40%. On the other

hand, substantial improvement in power is possible with fairly

poor specificity (e.g. about 20%) as along as sensitivity is high

(e.g. 90%). We observe similar results in studies with different

genetic architecture and large number of SNPs in a locus (see

Supplementary Figs S14 and S15).

4 Discussion

Although large GWAS of low frequency and rare variants are now

becoming increasingly feasible due to technological advances, the

likely yield of such studies in the future remains uncertain as studies

conducted to date have only reported limited number of findings

(Purcell et al., 2014; Tang et al., 2014; Cheng et al., 2015; UK10K

Consortium et al., 2015; Huang et al., 2015; Mahajan et al., 2015;

Wessel et al., 2015; Xu et al., 2015; Zheng et al., 2015; Fuchsberger

et al., 2016; Ganna et al., 2016; CHARGE Consortium Hematology

Working Group, 2016; Haddad et al., 2016; Liu et al., 2016; Luo

et al., 2017). For studies of common variants, which have mostly

relied on association testing at the level of individual variants, we

and others have shown that the yield of GWAScritically depend on

distribution of phenotypic variances explained by individual var-

iants across the genome (Park et al., 2010; Chatterjee et al., 2013;

Dudbridge, 2013). For studies of rare variants, it has been suggested

that tests for genetic associations be performed at an aggregated

level by combining signals across multiple variants for powerful

detection of underlying susceptibility loci (Li and Leal, 2008;

Madsen and Browning, 2009; Neale et al., 2011; Wu et al., 2011;

Moutsianas et al., 2015). In this report, we show that how power

for some of these more complex tests critically relates to total

genetic variances explained by multiple variants within a locus.

Based on such power calculations, we assess bounds on distributions

of locus-level genetic variances that are consistent with limited find-

ings reported in current studies. Furthermore, based on these simpli-

fied power calculations, we evaluate the potential for improving

power for aggregated tests by preselection of likely causal variants

based on functional/annotation information.

Power analysis of current studies of large sample sizes may provide

important bounds on genetic architecture of the underlying traits. Our

analysis suggests that rare variants investigated in current studies

could explain significant fraction of heritability of the underlying

traits only under highly polygenic models in which causal variants are

distributed over hundreds or even thousands of different genetic loci.

These results are intuitive given that if a relatively small number, e.g.

a few dozens, of genetic loci could explain a substantial fraction of

heritability of these traits, then at least some of these loci will be

detected by the sample size achieved so far in the current studies.

A number of rare variant studies that have conducted both

individual-variant and aggregated tests have detected more genetic

loci using the former than the latter approach (UK10K Consortium

et al., 2015; Fuchsberger et al., 2016; CHARGE Consortium

Hematology Working Group, 2016; Liu et al., 2016) (see

Supplementary Table S3). The analytic formula we propose for cal-

culating probability of a certain number of discoveries under various

models for genetic architecture can also be applied for single-variant

tests. Genetic bounds based on the results from single SNP analysis

for the same two studies also show that only under highly polygenic

architecture the variants included in these studies can explain a

substantial fraction of heritability of the underlying traits (see

Supplementary Fig. S16). These genetic bounds based on single SNP

analysis are also consistent with corresponding genetic bounds from

gene-based analysis and assumption of clustering of multiple causal

variants per causal locus. Large studies with more accurate estimates

of genetic bounds will provide additional information on the degrees

of clustering of multiple rare variants within causal locus.

A variety of studies have studied genetic architecture of common

variants by characterization of underlying heritability, number of

susceptibility variants and effect size distributions (International

Schizophrenia et al., 2009; Park et al., 2010; Yang et al., 2010; Lee

et al., 2011, 2012; Park et al., 2011; Stahl et al., 2012; Visscher

et al., 2012; Dudbridge, 2013; Zhou et al., 2013; Huang et al.,

2015; Loh et al., 2015; Speed et al., 2017). All of these studies con-

sistently point toward a highly polygenic model where disease etiol-

ogy may involve thousands or even tens of thousands of common

susceptibility variants, each conferring only a modest association,

but in combinations they can explain substantial phenotypic varia-

tions. Some recent studies have reported that low frequency and rare

variant studies have the potential to explain significant fraction of

heritability for selected traits (UK10K Consortium et al., 2015;

Mancuso et al., 2016; Speed et al., 2017). Further insights into

genetic architecture of these traits can be obtained by comparing

observed number discoveries in these studies with those from simu-

lated studies under different models for genetic architecture (Price

et al., 2010; Zuk et al., 2014). The proposed analytic framework

provides an alternative fast and simple way of evaluating expected

discoveries for a large variety of genetic models and quantification

of their plausibility given results from a given study.

Fig. 3. Effects of sensitivity and specificity for a priori variant screening on

power of aggregate-level tests. Power of variance component test (SKAT)

and burden test are studied under simulation Scenario S1 (MAF-independent

EV). Number of variants in a locus is set to J¼ 50 and number of causal

variants to JC ¼ 10. The setting corresponds to a baseline power (i.e. if all var-

iants were included in the study) of 40% and 36% for variance component

and sum-based tests, respectively
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Power calculations for aggregated tests with a selected subset of

variants point towards challenges for use of functional and annota-

tion information for pre-screening. Overall, it appears that preselec-

tion of variants can significantly improve the power of aggregated

tests only if the underlying functional/annotation information have

a fairly high accuracy to discriminate (AUC>70–80%) between

causal and non-causal variants for the underlying disease of interest.

In particular, the algorithm should be highly sensitive to capture the

underlying causal variants of a disease. Use of a too stringent crite-

rion for variant selection may increase specificity but will lead to

decreased sensitivity and hence could lead to loss of power in aggre-

gated tests. More empirical studies are needed to assess the impact

of variant selection on power of aggregated tests.

Sophisticated imputation algorithms (Huang et al., 2015; Kreiner-

Moller et al., 2015) and increasing sample size of reference datasets

(Huang et al., 2015) are allowing imputation of low frequency and

rare variants with increasing accuracy. Many association studies are

now being conducted based on imputation in existing large GWAS. A

limitation of our method is that it currently cannot account for impu-

tation accuracy, which is expected to reduce with decreasing allele fre-

quency. At the level of individual variants, it is possible to

characterize reduction of power based on formula for effect size

attenuation due to imputation (Huang et al., 2009). Further studies

are needed to understand the impact of imputation on aggregated tests

encompassing variants of different allele frequency spectra.

Our simulation results demonstrated that analytical power formu-

las presented in Section 2.1 match empirical power very well for

quantitative trait (see Supplementary Fig. S17). Under case–control

settings, exact power calculations are biased due to reliance on

asymptotic normal distribution (see Supplementary Fig. S18). As a

result, these calculations may not be adequate for low Type 1 thresh-

olds or low MAFs. Further development in an improvement of the

accuracy by incorporating of LD structure and sparsity is needed.

In this report, we have illustrated the application of the frame-

work in exome-based analysis where aggregated tests can be applied

across largely non-overlapping genes. For whole-genome sequencing

studies, where aggregated tests may be applied in a sliding window

fashions (UK10K Consortium et al., 2015; Zheng et al., 2015), more

work is needed for genome-wide power calculations in terms of

underlying models for genetic architecture.

In conclusion, in this report, we provide simple analytic

approaches to power calculations for rare variant association tests at

the levels of individual loci and whole genome in terms of a few key

parameters of the underlying models for genetic architecture. These

methods, which we implement in a shiny application in R, will pro-

vide useful design tools for planning next-generation GWAS.
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