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Abstract

Motivation: Genomic networks represent a complex map of molecular interactions which are

descriptive of the biological processes occurring in living cells. Identifying the small over-

represented circuitry patterns in these networks helps generate hypotheses about the functional

basis of such complex processes. Network motif discovery is a systematic way of achieving this

goal. However, a reliable network motif discovery outcome requires generating random back-

ground networks which are the result of a uniform and independent graph sampling method. To

date, there has been no method to numerically evaluate whether any network motif discovery algo-

rithm performs as intended on realistically sized datasets—thus it was not possible to assess the

validity of resulting network motifs.

Results: In this work, we present IndeCut, the first method to date that characterizes network motif

finding algorithm performance in terms of uniform sampling on realistically sized networks. We dem-

onstrate that it is critical to use IndeCut prior to running any network motif finder for two reasons.

First, IndeCut indicates the number of samples needed for a tool to produce an outcome that is both

reproducible and accurate. Second, IndeCut allows users to choose the tool that generates samples in

the most independent fashion for their network of interest among many available options.

Availability and implementation: The open source software package is available at https://github.

com/megrawlab/IndeCut.

Contact: megrawm@science.oregonstate.edu or david.koslicki@math.oregonstate.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomic networks represent a complex map of molecular interac-

tions which are descriptive of the biological processes occurring in

living cells (Gaudinier and Brady, 2016; Milo et al., 2002). Due to

the size and complexity of these networks, it is often difficult to infer

the physiological function of individual interactions or collections of

interactions without additional detailed information about network

structure. Because this type of experimentally supported prior infor-

mation is usually sparse or unavailable, a systematic approach for

identifying key sub-components and their functions within a biologi-

cal system is essential for analysis. From this perspective, it has been

shown that the functional essence of a complex genetic network

within a cell can often be distilled by thinking of the network as a

‘circuit board’ composed of small, understandable components that

work together to carry out higher-order processes (Alon, 2007;

Barabasi and Oltvai, 2004; Mangan and Alon, 2003; Megraw et al.,

2013; Milo et al., 2002; Ribeiro et al., 2009; Shen-Orr et al., 2002;

Wang et al., 2015; Wong et al., 2011). Network motif discovery is a

well-established statistical strategy for performing network analysis

from this viewpoint. This strategy compares the frequency of obser-

vation of a sub-network within the larger original network to its fre-

quencies in many randomized background networks in order to

identify network motifs, which are defined as those sub-networks

observed at a significantly higher frequency in the original network.
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In other words, a network motif is an over-represented sub-structure

within a larger network.

Network motif discovery tools aid in generating specific testable

hypotheses about the behavior and function of a genetic sub-circuit.

For example, in the case of a gene regulatory network, a bi-stable

switch coupled with a noise-damping circuit may be necessary to

tune the expression of developmental transcription factors involved

in body-plan patterning at a specific stage of development (Alon,

2007; Megraw et al., 2013; Tran et al., 2015); thus this circuit may

appear as a motif in networks constructed from tissue samples in

developing organisms. Although such hypotheses are valuable start-

ing points for understanding the underlying mechanisms of a biolog-

ical process through analysis of genomic networks, the laboratory

validation of a predicted network motif is generally a costly and

time-consuming endeavor. For example, validating a candidate regu-

latory sub-network containing a specific transcription factor, a

microRNA and a protein coding gene would typically require a ser-

ies of procedures such as electrophoresis mobility shift assays and

generation of reporter constructs, involving months of labor and

thousands of dollars in supplies. This highlights the need for accu-

rate network motif discovery procedures in order to acquire a bio-

logically meaningful outcome.

To characterize statistical significance of a given genomic net-

work (here called the ‘original network’), network motif discovery

algorithms generate random graphs (here called ‘background

network generation’) while striving to satisfy two conditions.

(i) Background networks should preserve a sensible set of biological

assumptions constrained by the original network. For example, if

the original network contains a node type (e.g. transcription factor)

that can target itself as well as other genes in the original network,

then this property can be preserved in the generated background net-

works. (ii) The background networks generated should provide a

truly representative sample of all possible such networks. That is,

for statistical purposes, the generation method should not favor the

production of certain types of networks over others. While there are

a variety of choices that a researcher may make about network prop-

erty preservation, it is clearly crucial to generate an unbiased sample

of background networks which preserve these properties—thus

avoiding inaccuracy resulting from the background network genera-

tion procedure itself.

Computationally, the core component of background network

generation is the sampling of a number of networks (for example,

1000 networks) from the set of all possible networks (e.g. 1 million

networks) having in-degree and out-degree sequences identical to

those of the original biological network. Networks are usually

thought of as graphs, and this sampling process is known as ‘graph

sampling.’ Ideally, graph sampling would be unnecessary; one

would simply generate all possible graphs in the sample space, count

the number of times a particular sub-graph of interest was observed,

and then calculate an exact P-value by comparing this count to the

number of times it was observed in the original network. A very

small P-value would indicate significant over-representation, and

thus a network motif. Unfortunately, for networks of realistic bio-

logical size—even a few hundred nodes and edges—the size of the

sample space is enormous (over trillions of graphs). Furthermore,

there is not even any known closed-form formula for computing just

the number of graphs in the sample space. Thus, graph sampling is a

practical necessity but presents a challenge in its own right, as one

must sample in an unbiased manner from a set of unknown size. To

date, no method has been given to estimate even the number of sam-

ples required in the background network generation process.

Despite a rich mathematical literature on the subject (Barabási

and Albert, 1999; Bezáková et al., 2007; Chatterjee et al., 2011;

Chen et al., 2005; Fosdick et al., 2016; Itzkovitz et al., 2003; King,

2004; Miklós et al., 2013; Milo et al., 2003), practical solutions to

this problem remain elusive. Even so, several network motif discov-

ery tools with different underlying graph sampling strategies are

currently available (Grochow and Kellis, 2007; Kim et al., 2013;

Thomas and Bonchev, 2010). Theoretical results that ensure uni-

formity have been obtained, but only when an arbitrarily large num-

ber of samples is allowed (Greenhill, 2015). Practical performance

evaluation has been restricted to small ‘test graphs’ where samples

spaces can be empirically enumerated by producing all possible

graphs in the space. On such graphs, it has been shown that depend-

ing on graph topology, the same sampling strategy can have very dif-

ferent performance outcomes in terms of uniform and independent

sampling (Megraw et al., 2013). For example, while d-regular

graphs rarely pose a problem, small graphs with highly irregular or

‘uneven’ degree sequences frequently cause difficulty (Blitzstein and

Diaconis, 2011; Greenhill, 2015; Megraw et al., 2013). This creates

a concern for the accurate performance of network motif discovery

algorithms on real biological networks, which often contain large

source hubs (‘master regulators’) and/or target hubs (heavily regu-

lated nodes) (Sorrells and Johnson, 2015; Winterbach et al., 2013).

To date, no mathematically sound yet computationally practical

method is available in order to determine whether a graph sampling

method samples uniformly and independently for a large or even

moderately sized network of interest. However, relatively recent

advances in the enumerative combinatorics literature (Alon and

Naor, 2006; Barvinok, 2010) have opened an avenue for the devel-

opment of solutions to this long-standing problem. In this study we

present IndeCut, which assesses the degree of sampling uniformity

and independence for network motif discovery algorithms. We

also show how IndeCut can provide a way to understand the

cause of performance variations among different graph sampling

approaches.

2 Materials and methods

2.1 Definitions
A graph G ¼ V;Eð Þ is a structure describing the relationships

between elements in a vertex set V through a set of (directed) edges

vi; vj

� �
2 E where vi; vj 2 V. In this work, we define a network as a

two-layered or bipartite graph G containing m source nodes fS1; ::;

Smg and n target nodes fT1; ::;Tng where a single directed edge con-

nects a source node to a target node. The number of edges coming

into a node is called its in-degree and the number of edges coming

out from a node is called its out-degree. In a bipartite graph G,

source nodes and target nodes have zero in-degrees and zero out-

degrees, respectively. The structure or topology of a bipartite graph

G is described by its in-degree and out-degree sequences.

A bipartite graph G can be represented as a binary matrix

A 2 f0;1gm�n. When Ai;j ¼ 1, there is a directed edge from Si to Tj,

and Ai;j ¼ 0 means there is no edge between them. The row sums

R¼ (r1; . . . ; rm) and column sums C¼ (c1; . . . ; cn) of matrix A repre-

sent the out-degree and in-degree sequences of G, respectively.

Collectively, they are referred to as the degree sequences of a graph.

Hence, we have that
P

i Ai;j ¼ Cj and
P

j Ai;j ¼ Ri.

2.2 How does IndeCut work?
This section provides a high-level summary of how IndeCut works,

with more mathematical detail contained in Section 2.3 and
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Supplementary Material Section S1. An ideal graph sampling strat-

egy would produce samples from the set of all possible graphs (the

sample space) that are perfectly uniform and independent. In the

case of perfect sampling, each sample would have a sample average

that is identical to the true average (mean of all elements in the sam-

ple space). From this perspective, violation of uniformity and inde-

pendence can be quantified by measuring how far the sample

average is from the true average. Figure 1 provides an abstracted vis-

ualization of this concept illustrating how the distance between the

sample average A and true average (centroid E) can be used to assess

uniform and independent sampling.

Computing the exact centroid E by empirically enumerating all

graphs in the sample space is generally prohibitive because such

spaces are astronomically large (for example, the space of 3-regu-

lar bipartite graphs with 10 source nodes and 10 target nodes has

more than 1026 elements in it). Therefore instead of computing the

exact centroid E, we use a related matrix, called the maximum

entropy matrix and denoted by Z, which is known to be close to

A in terms of its cut norm distance [Definition (Cut Norm) below]

when the sampling regime is uniform and independent [this is

proved in Theorem 3 of Barvinok (2010), see Supplementary

Material Section S1 for a detailed statement]. Thus, an ideal sam-

pling method will have a zero cut norm for Z � A, the matrix rep-

resenting the difference between Z and A. Similarly, a cut norm

bounded significantly away from zero indicates that sampling

is either highly non-uniform, highly non-independent, or both.

Unfortunately, computing the cut norm for matrices of realistic

size is intractable given today’s computing hardware capability

(MAX SNP-hard). We overcome this barrier by using the ideas of

Alon and Naor (2006) to create an approximation algorithm that

returns an interval in which the distance between Z and A is guar-

anteed to be contained. Comparing these intervals allows us to

compare the uniformity and independence of graph sampling

strategies.

In summary, IndeCut, performs the following tasks: the sample

average matrix A and maximum entropy matrix Z are computed,

and then a (typically small) interval is computed along with a guar-

antee that the cut norm lies in this interval. As a consequence of

Theorem 3 in Barvinok (2010), if the cut norm is large (bounded far

from 0), then we can be sure that the sampling was not uniform and

independent.

2.3 Mathematical details of IndeCut
Let R R;Cð Þ be the set of all binary matrices with row-sums

R ¼ r1; . . . ; rmð Þ 2Nm and column-sums C ¼ c1; . . . ; cnð Þ 2Nn.

Throughout, we only consider R and C such that for every

choice of1 � i � m and 1 � j � n, there exist at least two

matrices L;M 2 R R;Cð Þ such that Li;j ¼ 0 and Mi;j ¼ 1. This con-

dition requires the space R R;Cð Þ to be reasonably large.

We now recount a pertinent definition from Barvinok (2010).

Definition 1 (Barvinok, 2010, Theorem 1) Let

F x; yð Þ ¼
Ym
i¼1

x�ri

i

 ! Yn
j¼1

y
�cj

j

 ! Y
i;j

1þ xiyj

� � !

for x ¼ x1; . . . ;xmð Þ and y ¼ y1; . . . ; ynð Þ, and let a R;Cð Þ ¼
minimumx;y>0 F x; yð Þ:

Taking the logarithm of F x; yð Þ gives a convex function on

Rm�n, so a R;Cð Þ may be efficiently computed. This allows us to

define the maximum entropy matrix:

Definition 2 (Maximum Entropy Matrix (Barvinok, 2010,

Lemma 2)) Let x� and y� be the vectors that obtain optimality in the

definition of a R;Cð Þ. Define Z 2 Rm�n as

Zi;j ¼
x�i y�j

1þ x�i y�j
: (1)

Ideally, we would not need Z and would have access to the true

centroid Ei;j ¼ 1
jR R;Cð Þj

P
M2R R;Cð ÞMi;j and this would be compared

with the sample average of matrices returned by a motif finding

algorithm. Unfortunately, the matrix E is computationally intract-

able to calculate and there appears to be no way to obtain tight esti-

mates of its entries. In contrast, the matrix Z can be computed to

arbitrary precision in an efficient fashion, and Theorem 3 of

Barvinok (2010) states that the sample averages are close to Z in

terms of the cut norm (see the Supplementary Material Section S1,

Theorem 3 for a rigorous statement to this effect). We can thus lev-

erage this result to use the cut norm and Z to test for violation of

uniform/independent sampling.

Definition 3 Let A 2 Rm�n. The cut norm is defined by

jjAjjC ¼ maximize

I � f1; . . . ; ng
J � f1; . . . ;mg

�����
X

i2I;j2J

Ai;j

����� (Cut Norm)

Let A represent a given motif finding algorithm (thought of as a

binary matrix valued random variable). Let Aið ÞNi¼1 be N iterates of

this algorithm and define

A Nð Þ ¼
1

N

XN
i¼1

Ai: (2)

If the sequence Aið Þi�1 is a realization of a sequence of independent

and uniformly distributed random matrices, then Theorem 3 of

Supplementary Material Section S1 implies that, with high probabil-

ity, the norm jjZ� A Nð ÞjjC is small. Arguing contrapositively, a large

norm implies too few samples were taken (N is small) or else

the sampling was not uniform or not independent. We can thus use

jjZ� A Nð ÞjjC as a measure of the non-uniformity/independence of a

motif finding algorithm A: For large N, if one algorithm outputs

matrices whose average is closer in the cut norm to Z than that of

another algorithm, then the latter algorithm samples the space

R R;Cð Þ in a less uniform/independent fashion.

Unfortunately, computing the cut norm is MAX SNP-hard.

However, it is possible to obtain easy to compute upper and

Fig. 1. An illustrative view of graph sampling strategy outcomes in terms of

uniformity and independence. Each gray circle represents a hypothetical

sample space of a graph. Sampled graphs which are the outcome of a hypo-

thetical graph sampling strategy are represented as gray dots inside the sam-

ple space of all graphs with the prescribed in and out-degrees. The point A

represents the sample average and the point E represents the centroid or true

average of sample space. The distance (here characterized with the cut norm)

between A and E indicates the degree of uniformity and independence of a

produced sample. The further away A is from E, the more confident one can

be that points are not sampled uniformly and independently
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lower bounds on the cut norm and the same logic as above applies

when comparing these intervals. In particular, we bound the

cut norm above by 1
4 jj � jjSDR and below by 1

4 jj � jj
est
17!1 where

jjAjjSDR ¼ maximizejjui jj2¼jjvj jj2¼1

P
i;j Ai;j ui � vj

� �
and jjAjjest

17!1 is the

value returned by Algorithm 1 in the Supplementary Material. The

Supplementary Material Section S1 contains the proof that these

estimates hold. Hence, IndeCut returns an interval estimating the

relative cut norm:

IndeCut Z;A;Nð Þ ¼
jjZ�A Nð Þjjest

17!1

4jjZjjC
;
jjZ� A Nð ÞjjSDR

4jjZjjC

� �
:

Note that jjZjjC is straightforward to calculate as all entries of Z are

nonnegative.

Finally, while IndeCut uses bipartite graphs to evaluate motif

finding algorithm performance, as long as the graphs under consid-

eration can be partitioned into bipartite subgraphs (consisting of

layers such as TF!TF, TF!miRNA, etc.) as is typically the case for

genomic networks, IndeCut can evaluate the performance on each

layer. Non-uniform sampling on any one such layer implies non-

uniform sampling overall.

3 Results

As previously described, IndeCut uses the cut norm to assess how

uniform and independent a network motif discovery algorithm’s

sampling regime is (with larger cut norm values indicating non-

uniform or non-independent sampling). In this section, we assess

the performance of a selection of such network motif discovery

algorithms.

3.1 IndeCut evaluates the performance of network motif

discovery algorithms
Two different types of graphs are examined: (i) small graphs with

topologies that typically occur in biological networks, and (ii) realis-

tic graphs from the literature with a large number of nodes and

edges. We selected four network motif discovery approaches from

the recent literature: FANMOD (Fast Network Motif Detection)

(Wernicke and Rasche, 2006), DIA-MCIS (Diaconis Monte Carlo

Importance Sampling) (Fusco et al., 2007), WaRSwap (Weighted

and Reverse Swap sampling) (Megraw et al., 2013) and

CoMoFinder (Coregulatory network Motif Finder) (Liang et al.,

2015). Each of these algorithms represents a fundamentally different

strategy for network motif discovery background network genera-

tion. The Supplementary Method Section S2 provides a detailed

description of each algorithm and its use in our analysis.

3.1.1 Small graph collection

Three classes of small graphs were created to consider three distinct

topological properties: (i) ‘uneven’ (irregular) graphs containing

‘hub’ nodes with large in-degree or out-degree as compared to the

other nodes in the graph. (ii) ‘even’ (regular) graphs with even (d-

regular) or nearly even degree sequences. (iii) ‘hybrid’ combinations

of even and uneven graphs. These graphs mimic the properties of

large biological networks on a smaller scale and enable us to exam-

ine how IndeCut evaluates the sampling performance of different

algorithms on specific graph structures. Supplementary Table S1

shows the degree sequence of each graph examined.

For the uneven class, we created six hub-containing graphs. The

first graph (uniFanG1) is an example of a simple hub-containing

bipartite graph in which each layer (source and target layers) has a

single hub node. We created biFanG1 by duplicating/joining two

uniFanG1 graphs. We repeated this process (attaching a uniFanG1

to an existing graph) to generate the ‘Fan’ series of graphs (see

Supplementary Fig. S2). These graphs allow us to understand how

IndeCut captures the performance of each algorithm on graphs with

an increasingly large degree of unevenness, a topology type which is

known to pose difficulties to many algorithms (Megraw et al.,

2013). For the class of regular graphs, three d-regular and three near

d-regular graphs with a different number of nodes and edges were

created. Figure 2 and Supplementary Figures S5–S7 show the cut

norm estimates for each graph and algorithm within the three classes

of small graphs.

In Figure 2, as the degree of unevenness for graphs increases

from A to F, one observes decreasing performance (in the case of

FANMOD and WaRSwap) or comparatively poor performance (in

the case of DIA-MCIS). This is in contrast to the performance on the

nearly regular graphs evaluated in Supplementary Figures S4–S5,

where most of the methods have comparably strong performance. On

the ‘hybrid’ graphs, sampling performance varies widely among the

methods. The hybrid graphs highlight the necessity of IndeCut in

determining the performance of each algorithm, particularly when the

degree sequence of a graph yields no intuition with regard to the

anticipated performance of any given method (Supplementary Figs S6

and S7). This is in agreement with the previously observed trend that

hub-containing graphs are highly problematic to many algorithms,

whereas regular graphs are typically less troublesome (Megraw et al.,

2013). We conclude that different graph topologies can produce vast

performance differences when using the same algorithm and that

there exists a wide variation in performance between algorithms.

3.1.2 Real-world biological networks

In order to understand how these topologies interact in real biological

graphs of interest, we examined two published genomic networks

with different degree sequences and scales. First, we analyzed a well

studied, medium sized E-coli regulatory network (	400 nodes and

	600 edges) with a mixed degree sequence and two node types:

transcription factors (TFs) and protein-coding genes (Genes). This

network has been used as a case study by several network motif

Fig. 2. Small uneven graph sampling performance. For each small uneven

graph and algorithm, 5000 graphs were generated and the cut norm esti-

mates for each algorithm were computed using IndeCut. The vertical lines

represent lower and upper bounds returned by the cut norm estimation with

the true (NP-hard) value lying in this interval. A cut norm interval that is far

from zero represents less uniform and independent sampling. With the

exception of uniFanG1, the cut norm estimates for CoMoFinder were much

larger than 0.16, and hence are not shown for ease of comparison (see

Supplementary Table S1 and Fig. S3 for detailed results)
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discovery studies including those published in conjunction with the

CoMoFinder and FANMOD programs (Liang et al., 2015; Wernicke

and Rasche, 2006). Supplementary Figures S8 and S9 show the per-

formance of each algorithm on the E-coli network.

Secondly, we analyzed a large human regulatory network

(	15 000 nodes and 	150 000 edges) containing three different

node types (TFs, miRNAs and protein-coding genes) that was used

as a case study in CoMoFinder’s publication (Liang et al., 2015).

This network contains TFs that are ‘master regulators,’ and thus has

large source hubs.

As mentioned in Section 2.3, IndeCut uses bipartite graphs as

input, so networks were broken into component bipartite graphs

(TF!TF, TF!Gene in the Ecoli network and TF!TF, TF!Gene,

TF!miRNA, miRNA!TF and miRNA!Gene in the human

network). Figure 3 depicts the resulting cut norm estimates for

each algorithm on the large human network and demonstrates the

variability among the considered algorithms. This highlights the

importance of evaluating a network motif discovery algorithm on a

network of interest, particularly when considering costly and time-

consuming experimental validations.

Supplementary Table S2 provides IndeCut’s run time on each

graph and algorithm, which on smaller networks is no more than

5 minutes but increases considerably as the network size increases.

3.2 IndeCut indicates the number of samples required

to achieve reproducible results
For a very large network with hundreds or thousands of nodes and

edges, running a network motif discovery program—even with the

minimum number of samples recommended in the user manual—

generally takes days to month. To date, there has been no method to

provide any indication of the number of sample graphs necessary for

a reproducible result, but we demonstrate that IndeCut can be used

for this purpose.

In general, the larger the number of graphs sampled, the more

accurately a program can ‘characterize’ the nature of the entire

background network sample space, leading to better performance.

Within a certain range of sample sizes, adding more graphs to a sam-

ple may result in a large performance increase. However, it is

expected that beyond a certain sample size, performance increase

per additional graph sampled will start to plateau (reach a point of

diminishing returns). Here we use IndeCut to evaluate how the per-

formance of a sampling algorithm improves as the number of graphs

in a sample increases. We examine where a performance plateau

occurred for each graph and algorithm. Furthermore, we provide an

example from the literature that illustrates the advantage of using

IndeCut in this fashion. Supplementary Methods Section S3 and

Figures S13–S16 describe and depict the performance of all methods

on the relevant graphs, and we concentrate on one method and

graph here for illustrative purposes. Section S3 also provides some

brief practical observations on estimating an appropriate number of

iterations given a particular method and graph using a performance

curve visualization software plugin to IndeCut.

We selected a published work (Roy et al., 2010) that reports net-

work motifs in a Drosophila regulatory network. The authors have

used FANMOD (Wernicke and Rasche, 2006) to detect enriched 3-

node network motifs in 100 sampled networks. To examine the

reproducibility of the reported motifs, we ran FANMOD on the

original network 50 times, where for each time, 5000 samples were

generated and the significance of 3-node subgraphs was computed

for different subsets of samples (100, 200, 300, . . ., 5000 samples).

Those 3-node subgraphs with P-value less than 0.01 and Z-score

greater than 2.0 were considered in our analysis to be network

motifs [thresholds were not reported in the original publication of

Roy et al. (2010)]. The performance plot in Figure 4 shows that

even for a moderately sized and relatively even graph such as the

TF!TF layer extracted from the original network, at least 	1000

samples are required to reach a performance level that is close to the

best possible performance of the algorithm. However, taking only

100 samples as in the original analysis of Roy et al. (2010) can lead

to motifs being reported as significant due only to the relatively few

number of graphs that were sampled. Indeed, in our results, motif5

in Figure 7B of Roy et al. (2010) (motif c shown here in Fig. 4) was

Fig. 3. Human TF-miRNA-Gene network sampling performance. A total of

5000 graphs were generated by each algorithm and the cut norm estimates

were computed using IndeCut. The vertical lines represent lower and upper

bounds returned by the cut norm estimation with the true (NP-hard) value

lying in this interval. A cut norm interval that is far from zero represents less

uniform and independent sampling. The cut norm estimates for CoMoFinder

were much larger than 0.04, and hence were removed for ease of compari-

son. In panels C and D, results for DIA-MCIS are absent since this algorithm

does not operate on graphs with more than 2035 nodes (see Table S1 and

Supplementary Fig. S10 for detailed results)
Fig. 4. The relationship between cut norm estimates, number of samples and

network motif outcome on Drosophila network. FANMOD was run on the

Drosophila network (Roy et al., 2010) for 50 iterations. Motifs a and b are not

reported in (Roy et al., 2010). These motifs were both found to be significant

in a small proportion of trials at 100 sampled graphs (blue arrow). Motifs a

and b are reliably detected beyond 1000 samples. Motif c was reported in

(Roy et al., 2010) but was never observed as significant in any trials

1518 M.Ansariola et al.

Deleted Text: ; Liang <italic>et<?A3B2 show $146#?>al.</italic>, 2015
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx798#supplementary-data
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: ,&hx201D; 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx798#supplementary-data
Deleted Text: utes
Deleted Text:  &hx2013; 
Deleted Text:  &hx2013; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx798#supplementary-data
Deleted Text: -
Deleted Text: p
Deleted Text: (
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx798#supplementary-data


never observed in any iteration. This is likely due to the relatively

low number of iterations (100 iterations) that were used to run

FANMOD in the original analysis. We also observed two significant

network motifs at higher iterations, both of which were missed in

the original work. Figure 4 shows that with more than 1000 samples

these two motifs are detected consistently, but with a smaller num-

ber of samples they do not reliably appear.

It is completely understandable that given the long run-times

required by many motif finding software implementations and no

guidance on sufficient sampling, a relatively small number of sam-

ples was chosen by Roy et al. (2010). However, our results show

the importance of making an informed choice—enabled now via

IndeCut—for the number of background sample graphs required for

each algorithm and input network. In large real-world biological

networks, we observe that a ‘blanket policy’ of generating a fixed

number of graphs may not achieve reasonable performance for a

given algorithm and graph topology (for example, FANMOD in its

user manual recommends 	1000 samples whereas Supplementary

Figure S13 shows that at least 2000 samples are required to achieve

reasonable performance in the considered case).

3.3 Explaining performance differences found by

IndeCut
In this section, we aim to explain the performance differences

among the motif finding algorithms that we found with IndeCut in

Section 3.1. In particular, we use the performance outcomes from

IndeCut to analyze why certain graph topologies have been histori-

cally challenging for some classes of algorithms. We show that in

cases of graphs with uneven degree distributions (characteristic of

biological networks), network motif discovery algorithms based on

the graph randomization strategy known as ‘edge-switching’ are vul-

nerable to highly non-uniform and/or non-independent sampling.

Thus, this strategy is prone to spurious results on these networks.

We use the concept of an edge-switching graph (ESG) to show why

this is the case. In essence, edge-switching algorithms produce a

sampling bias by spending a majority of time sampling graphs that

can be reached from the starting graph via a small number of edge-

switches. Figure 5 depicts the construction of a 5-node ESG given a

degree sequence of R ¼ C ¼ f2; 1;1g, and Supplementary Method

S5 details the construction of an ESG in general.

Figure 6B shows an ESG constructed from an in-degree

sequence of R ¼ f2; 1; 1;2; 1; 1g and an out-degree sequence of

C ¼ f2;1; 1; 2; 1;1g. The sample space of this graph has 5400

elements. After running a graph clustering algorithm, 10 separate

clusters were detected in the ESG. We executed each algorithm on

the given degree sequence to produce 10 000 sample graphs per

algorithm. We then calculated the number of times each algorithm

returned a graph falling within each of the clusters (normalized by

cluster size). This indicates how each of the examined algorithms

samples its space with respect to these clusters (an equal number of

graphs sampled within each cluster indicates a more uniform sam-

pling method). Figure 6C–F shows ‘cluster-time’ diagrams, visualiz-

ing how much time each algorithm has spent in each cluster. In a

cluster-time diagram, nodes represent clusters (in the ESG) and the

size of each node represents the fraction of graphs sampled in the

corresponding cluster compared to all graphs sampled (i.e. the total

‘time’ the algorithm spends in a given cluster). The larger a node

appears, the more time that has been spent sampling from the associ-

ated cluster by a given algorithm. A method that samples uniformly

will result in a cluster-time diagram with nearly equal node sizes.

We take the fraction of time spent in each cluster and compute the

entropy to summarize the ‘evenness’ of the sampling regime (larger

numbers are better). The entropy value for each algorithm is noted

above the corresponding cluster-time diagram in Figure 6C–F (see

Supplementary Figs S11 and S12 for more examples).

Algorithms based on edge-switching, such as FANMOD and

CoMoFinder, generally spend a substantially uneven amount of

time in different clusters. Briefly, edge-switching algorithms start

with the input graph (the original biological network) and then per-

form a series of edge-switching operations, resulting in one back-

ground graph in the sample. Each series of switching operations

corresponds to a path in the ESG. In general, real biological net-

works have sample spaces in which some graphs in the space are

‘easy’ to reach (few switch operations required) from the initial

input network, while others are more ‘difficult’ to reach in the sense

that one must select a rare sequence of edge switches in order to

reach these graphs.

FANMOD’s strategy selects sequences of edge-switching opera-

tions without any condition on the number of times that the same

pair of edges can be selected for a switch. CoMoFinder also selects

sequences of edge-switching operations, but disallows revisiting the

same pair of edges. Effectively, when traversing a path in an ESG

away from the initial graph using CoMoFinder’s strategy, the num-

ber of paths available to reach a destination graph from the current

state is limited as compared to FANMOD’s strategy.

Fig. 5. Constructing an ESG. An initial bipartite graph (top right) with degree

sequence of R ¼ C ¼ f2; 1; 1g produces a sample space containing five differ-

ent graphs which are represented as nodes in the ESG (left). The zero-one

matrices represent the edge configuration of each node. An edge connects

two nodes (graphs) which can be converted to each other by performing one

edge switch

Fig. 6. An example ESG for degree sequence R ¼ C ¼ f2; 1; 1; 2; 1; 1g. (A) The

0-1 matrix of the initial graph. (B) ESG corresponding to this degree sequence

(dots represent graphs in sample space) with detected clusters outlined. (C–F)

Cluster-time diagrams for each examined algorithm; nodes represent clusters

in the ESG with node size indicating the fraction of times a given algorithm

sampled graphs in that cluster
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WaRSwap and DIA-MCIS do not use edge-switching, but rather

generate each sample graph by placing edges between source and

target nodes using a weighted sampling scheme (thus there is no

direct relationship between a sampled background graph and the

initial input graph in terms of a path in the ESG). In Figure 6, the

size of the cluster nodes is nearly even for WaRSwap and

DIA-MCIS, and the corresponding entropy values are higher as

compared to FANMOD and CoMoFinder; hence the sampling is

more uniform. However, there are performance differences between

WaRSwap and DIA-MCIS on large hub-containing graphs (Fig. 2)

that result from different weighted sampling strategies. In the case of

certain highly uneven graphs, the static weighting strategy of DIA-

MCIS appears to be susceptible to undersampling of rare graphs

(those with few/no hub-hub connections). Overall, either DIA-MCIS

or WaRSwap appear preferable to an edge-switching method on

graphs containing uneven degree sequences.

4 Discussion

Over the last two decades, network motif discovery algorithms have

been proposed that use several different underlying background

graph sampling strategies. By all agreement in the literature, a uni-

form and independent background graph sampling method is funda-

mental for accurate network motif discovery due to subsequent

statistical analysis. Evaluation of this condition on networks beyond

tens of nodes was previously not possible because there was no pro-

posed way to perform such an evaluation. Methods originating from

the field of mathematical algorithms have been proposed that prov-

ably sample uniformly for nearly regular graphs (Bayati et al., 2010;

Bezáková et al., 2007), or given an arbitrarily large number of sam-

ples (Greenhill, 2015). However, most biological networks of inter-

est contain at least several hundred nodes and one or more ‘hubs’

(for example, a transcription factor that is a master regulator).

Thus, these results guaranteeing uniformity are of limited practical

value due to very large sample spaces (and subsequently infeasible

computation times required) and/or uneven degree sequences seen in

practice. Direct uniformity tests were performed in the study of

some algorithms by empirically enumerating all the graphs in a very

small sample space. This did lead to the understanding that graphs

of uneven degree distribution posed problems for most algorithms.

However, these small-graph tests left uncertainty as to how these

algorithms would perform in the case of larger biological networks.

As a result, despite the surge in popularity of network motif finding

with the exciting findings reported by Milo et al. (2002) and by

Alon (2007), reported laboratory validations of predicted network

motif instances were subsequently rare to nonexistent in multicellu-

lar organisms. We posit that this may in part be due to unforeseen

sampling biases and/or using a low number of samples leading to

mis-reporting of motifs (as illustrated in Section 3.2).

In addition, we used IndeCut to show that the same motif finding

algorithm can perform very differently depending on the graph top-

ology. We also used IndeCut to show that algorithm performance

plateaus often occur at a number of iterations exceeding the number

of samples recommended by the program user manuals and/or

default settings. Most importantly, IndeCut demonstrates that in

cases of graphs with uneven degree distributions that are character-

istic of biological networks, algorithms based on the sampling strat-

egy known as ‘edge-switching’ are vulnerable to non-uniform and/or

non-independent sampling. In this case, reported P-values may be

inaccurate due to sampling biases. For such algorithms, we found

that non-uniform sampling biases can be caused by frequently

sampling graphs that can be reached in a small number of edge

switches from the original graph.

While we observed that DIA-MCIS and WaRSwap (which are

not based on edge-switching) maintained relatively strong perform-

ance overall, this varied based on the topology of the input graph.

Hence, one can use IndeCut to ensure that, for a particular graph of

interest, one selects the algorithm offering the most uniform sam-

pling procedure.

Importantly, IndeCut demonstrates that the fast and popular

algorithm FANMOD may not uniformly sample graphs when used

with uneven degree sequences. This can lead to a bias in the motifs

being reported and can confound laboratory validation of motifs. By

providing the community with an informed choice of network motif

discovery algorithm, we hope that IndeCut will re-ignite interest in

laboratory validation of the fascinating hypotheses that result from

network motif discovery outcomes.
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