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Membrane biology seeks to understand how lipids and pro-
teins within bilayers assemble into large structures such as
organelles and the plasma membranes. Historically, lipids were
thought to merely provide structural support for bilayer for-
mation and membrane protein function. Research has now
revealed that phospholipid metabolism regulates nearly all
cellular processes. Sophisticated techniques helped identify
>10,000 lipid species suggesting that lipids support many bio-
logical processes. Here, we highlight the synthesis of the most
abundant glycerophospholipid classes and their distribution
in organelles. We review vesicular and nonvesicular transport
pathways shuttling lipids between organelles and discuss lipid
regulators of membrane trafficking and second messengers in
eukaryotic cells.

Lipid components of eukaryotic membranes

Glycerophospholipids (GPL),5 sphingolipids, and sterols are
the three major classes of lipids found in eukaryotic mem-
branes. This review will focus primarily on the GPLs, including
the biophysical nature of these molecules, biosynthetic path-

ways and the role of lipases in vesicular transport pathways, and
the generation of critical signaling molecules. Additionally, we
will highlight the distribution of GPLs between various organ-
elles, their transbilayer distribution, and the role of nonvesicu-
lar transport pathways to shuttle lipids between organelles.

Glycerophospholipids

Phosphatidylcholine (PtdCho), phosphatidylethanolamine
(PtdEtn), phosphatidylserine (PtdSer), and phosphatidylinosi-
tol (PtdIns) make up the majority of the glycerol backbone-
containing phospholipids and are prominent components of
most organellar membranes (Fig. 1) (1). Because of their amphi-
philic nature, GPLs are energetically favored to self-assemble to
form a continuous bilayer with the headgroups facing outward
and the hydrophobic tail lining the interior (2). PtdCho is the
most abundant phospholipid in the majority of organelles,
ranging from 41 to 57 mol % of the total GPL (Fig. 1). The
cylindrical shape of PtdCho allows it to spontaneously organize
into planar bilayers, and its propensity to contain at least one
unsaturated fatty acyl chain means that the bilayers possess
significant fluidity at 37 °C (3). PtdEtn is the second most abun-
dant phospholipid in eukaryotic membranes, which comprises
17–38 mol % of total phospholipid (Fig. 1). PtdEtn differs from
PtdCho by the absence of the three methyl groups compared
with the choline moiety (4). As a result, PtdEtn has a smaller
headgroup that results in a more conical shape compared with
PtdCho. Additionally, PtdEtn can arrange as a hexagonal phase,
unlike most other GPLs (5). The addition of the nonbilayer
forming PtdEtn to PtdCho facilitates the generation of sponta-
neous curvature that in the context of the cell is vital for mem-
brane bending and tubulation that is necessary to support the
fission and fusion steps in vesicular transport (6). In mamma-
lian cells, PtdEtn and PtdCho also serve as substrates for the
production of PtdSer via enzyme-mediated base-exchange
reactions (7).

PtdSer is, by comparison, a relatively minor component of
eukaryotic membranes (comprising 1– 6 mol % of total phos-
pholipids) (Fig. 1), and it plays a crucial role in providing a
negative surface charge to membranes due to the acidic nature
of its headgroup (8). PtdSer is enriched in the inner leaflet of the
plasma membrane despite the fact that it is synthesized in the
ER and consumed in the mitochondria (4). A significant frac-
tion of the newly synthesized PtdSer can be transported from
the ER to the mitochondria (28). There it serves as a substrate to
produce a mitochondrial pool of PtdEtn that is essential for
mitochondrial function (29, 30). The mechanism by which Ptd-
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Ser is accumulated in the PM and enriched in the inner leaflet of
the PM is discussed below.

Similarly, PtdIns is also negatively charged, comprising 2–9%
of total phospholipids of organelle membranes (Fig. 1). How-
ever, its arguably more important feature is the fact that the
inositol ring can be phosphorylated on the 3-, 4-, and 5-OH
groups to produce phosphoinositides (discussed below). Fur-
thermore, PtdIns is also used to covalently link peripheral pro-
teins to the outer leaflet of the plasma membrane. Collectively,
these proteins are referred to as glycosylphosphatidylinositol-
linked proteins (9). Thus, in addition to being critical for the

structure of biological membranes, GPLs also play critical roles
in protein targeting and signaling.

Other GPLs, such as phosphatidic acid (PA), phosphatidyl-
glycerol (PtdGly), and cardiolipin (CL), typically constitute a
relatively minor portion of the total cellular GPLs. PA com-
prises a relatively minor 1 mol % of total phospholipids of
organelle membranes but is a critical intermediate in biosyn-
thetic pathways and as a signaling molecule (Fig. 2). PtdGly is
predominantly found in the mitochondria where it is an inter-
mediate in the biosynthesis of CL. However, PtdGly synthase
activity has been found in the ER (10), although there is the

Figure 1. Glycerophospholipid composition of organelles. The bar graph highlights the subcellular distribution of glycerophospholipids (GPLs) between
the different organelles in baby hamster kidney cells (128). The pie charts display the relative abundance of each class of GPL in organelles based on composite
data from rat hepatocytes (1) and for lipid droplets from murine hepatocytes (129). Except for the mitochondrial PtdGly (PG) and CL, the other GPLs are present
in all organelle membranes but display heterogeneity. PtdCho (PC) is the most abundant, comprising 45–55 mol % of the GPL in the cell. PtdEtn (PE) is the
second most abundant GPL and is mainly enriched in inner membranes of mitochondria (�35– 40 mol %), although it is less prominent in other organelles
(�17–25 mol %). PtdSer (PS) is a precursor for the mitochondrial PE, and as a result of repaid consumption, its abundance is very low in the inner mitochondrial
membranes (1 mol %). PS is also a minor component of lysosomes (�1 mol %), the endoplasmic reticulum (�4 mol %), nucleus (�6 mol %), Golgi (�4 mol %),
and plasma membrane (�4%). Post-Golgi apparatus organelles are enriched in sphingomyelin (SM) with it being most abundant (�23%) in the PM. The
designation Other includes essential precursors and signaling lipids such as PA, DAG, and lysolipids. The schematic highlights the vesicular and nonvesicular
pathways responsible for the intracellular trafficking of lipids. The endoplasmic reticulum (ER) is the principal site of synthesis for most lipid species. The
extensively branched reticular network of the ER facilitates the establishment of MCS with other organelles, including the Golgi apparatus, mitochondria,
endosomes, lysosomes, lipid droplets, and plasma membrane. These MCS bring donor and acceptor membranes in proximity (�30 nm) where the exchange
of GPLs and cholesterol can occur. Most organelles are interconnected via the vesicular transport pathways. GPLs are essential for the formation of vesicles that
transport transmembrane and lumenal proteins throughout the cell. Thus, a by-product of vesicular transport is the movement of GPLs and other lipids.
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possibility that this is due to the contamination of mitochon-
drial membranes during the cellular fractionation. CL is also
primarily restricted to the mitochondria where it mainly sup-
ports functions into the mitochondria, including protein trans-
location, and respiratory chain function (11–13).

Sphingolipids and sterols

Sphingolipids, which consist of a serine backbone as opposed
to the glycerol backbone, are critical components of the exofa-
cial leaflet of the plasma membrane with sphingomyelin (SM)
comprising 23 mol % of the total phospholipid (Fig. 1). Sphin-
golipids display an extensive range of headgroup size; they can
possess merely a hydroxyl group, as in the case of ceramide, an
intermediate-sized phosphocholine headgroup as seen in the
highly abundant sphingomyelin, or the more complex sugar-
modified headgroups collectively referred to as glycosphingo-
lipids (14).

The third class of lipid molecules essential for eukaryotes is
classified as steroid alcohols or simply sterols. Cholesterol is the
predominant sterol found in all mammalian cells. Cholesterol
acts to modulate the membrane fluidity and permeability via
interacting with neighboring lipids, such as PtdCho and SM
(15, 16). Because of the importance of cholesterol in cell
biology and the development of atherosclerosis, many
aspects of its synthesis, transport, and functions have been
extensively studied.

An overview of glycerophospholipid biosynthetic
pathways

The ER is the predominant site of GPL biosynthesis, includ-
ing PtdCho, PtdEtn, PtdIns, and PtdSer (13), whereas the mito-
chondria produce two other GPLs, PtdGly and CL (14). The
condensation of the glycerol backbone and two acyl chains rep-
resents the initial steps in GPL synthesis. Typically, glycerol
3-phosphate, a key intermediate in the glycolysis pathway, is
dually acylated to form PA that in turn can be dephosphorylated
to form diacylglycerol (DAG) (15–17). Together, DAG and PA
are essential substrates for the further production of GPLs by
the CDP-DAG and Kennedy pathways (Fig. 2).

The CDP-DAG pathway begins with the consumption of PA
and cytidine triphosphate (CTP) on the cytosolic leaflet of the
ER to produce CDP-DAG and pyrophosphate (17). The CDP-
DAG is then used by a variety of enzymes such as PtdIns syn-
thase together with myo-inositol to produce PtdIns (Fig. 3) (18).
A recent study identified highly mobile ER-derived PtdIns syn-
thase containing vesicles in the cytoplasm as a potential site of
PtdIns synthesis (Fig. 3) (19). These small vesicles were termed
PIPEROsomes for “PtdIns Producing ER-derived Organelle.”
The importance and regulation of the PIPEROsome are not
understood, but it is hypothesized that it represents an inter-
mediate between the ER and PM to supply the PM with PtdIns.
Whether this is through direct fusion, hemifusion, or requires a
PtdIns transfer protein is still unknown. Within the plasma
membrane, PtdIns serves as a substrate for kinases and the
generation of phosphorylated forms of PtdIns, in particular,
PtdIns(4,5)P2, a lipid that regulates a multitude of cellular pro-
cesses. See below for more on the PI cycle.

The next pathway responsible for synthesizing much of the
PtdCho and PtdEtn is named after Dr. Eugene Kennedy who
described the pathway (Fig. 2) (20 –22). The final step of the
pathway is catalyzed by two homologous proteins, the PtdCho-
specific choline phosphotransferase (CPT) and the PtdCho/
PtdEtn-producing choline/ethanolamine phosphotransferase
(CEPT). Experimental evidence suggests that CEPT resides in
the ER, whereas CPT is enriched in the Golgi apparatus. The
presence of CPT in the Golgi is important as it will consume
DAG and thereby temper vesicular transport emanating from
the Golgi (25). The Kennedy pathway both produces PtdEtn
and PtdCho, whereas PtdEtn can be converted to PtdCho in
yeast and in the liver of mammals via the concerted actions of
two PtdEtn methyltransferases that triply methylate PtdEtn
(26, 27).

Glycerophospholipid topology and topogenesis

As constituents of an amphiphilic bilayer, GPLs display lat-
eral diffusion and rotation about their longitudinal axis (23, 24).
However, the spontaneous transversal diffusion of the polar
headgroups through the hydrophobic core of the bilayer is
restricted due to the high-energy barrier (25). Estimates suggest
that within a bilayer GPLs laterally diffuse �109 faster than they
spontaneously translocate (or flip-flop) between leaflets, which
occurs on the order of hours per molecules (Fig. 4) (25, 26).
These observations suggest that in the absence of any facilitated
movement the transbilayer distribution of lipids should remain

Figure 2. CDP-DAG and Kennedy pathways. The CDP-DAG pathway begins
with the consumption of phosphatidate (PA) on the cytosolic leaflet of the
endoplasmic reticulum (ER) by either CDP-DAG synthase (CDS) 1 or 2 to pro-
duce cytidine diphosphate diacylglycerol (CDP-DAG). The CDP-DAG is then
used as a substrate by the phosphatidylinositol synthase enzyme (PIS) to cat-
alyze the production of phosphatidylinositol (PtdIns) from CDP-DAG. CDP-
DAG is also used in the mitochondria by the phosphatidylglycerophosphate
synthase (PGPS) to produce phosphatidylglycerol (PtdGly)-phosphate, which
is, in turn, dephosphorylated to produce PtdGly. Phosphatidylserine (PtdSer)
synthesis is catalyzed by PtdSer synthase 1 (PSS1). A significant fraction of the
newly synthesized PtdSer is transported from the ER to the mitochondria.
There it serves as a substrate for the enzyme PtdSer decarboxylase (PSD) to
produce a mitochondrial pool of phosphatidylethanolamine (PtdEtn). In the
Kennedy pathway, choline (Cho) and ethanolamine (Etn) are first activated for
phosphorylation by choline kinase (CK) and ethanolamine kinase (ETNK),
respectively. Next, the phosphobase serves as substrates for the rate-limiting
step of the pathway catalyzed by CTP:phosphocholine cytidyltransferase
(CCT) and CTP:phosphoethanolamine cytidyltransferase (ECT), respectively,
yielding CDP-Cho and CDP-Etn. The final step of the pathway is catalyzed by
two homologous proteins, the phosphatidylcholine (PtdCho)-specific CPT
and the PtdCho/PtdEtn producing CEPT. Finally, PtdEtn can be converted to
PtdCho by three successive methylation reactions catalyzed by PtdEtn meth-
yltransferases, PEMT1 and -2, in the liver of mammals. PAP, phosphatidate
phosphatase.
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virtually indelible once a membrane or vesicle is formed. At the
cellular level for GPLs to transverse a bilayer, proteins must
lower the energy barrier of the movement.

GPLs, with perhaps the exception of PtdSer (27, 28), are sym-
metrically distributed between both leaflets of the bilayer in the
ER. Progression through the secretory pathway is accompanied
by the appearance of asymmetry in the trans-Golgi and is
apparent in the PM with PtdEtn and PtdSer being enriched in
the cytosolic leaflet, and PtdCho and sphingolipids present
mainly in the exofacial leaflet (29 –31). The majority of the
active sites responsible for the synthesis of sphingomyelin and
other sphingolipids are found on the lumenal side of the Golgi
(32–34), and thus, their asymmetry can be explained by a lack of
flip-flop in post-Golgi membranes. The topological distribu-
tion of the GPLs is controlled by the actions of proteins referred
to as scramblases, floppases, and flippases (see Fig. 4) (35).
Overall, the marked asymmetry of the PM generates two mono-
layers that are chemically distinct. The abundance of the ani-
onic PtdSer in the cytosolic leaflet contributes to a negative
surface charge that accommodates ionic interactions of polyba-
sic proteins with the inner layer of the PM (36). This negative
surface charge can also influence the activity of integral mem-
brane proteins by interacting with N- or C-terminal tails and
cytosolic loops of these proteins. The importance of asymmetry
of the PM is evident, and remarkably little is known about the
topological distribution of GPLs in other organelles such as
endosomes and lysosomes (37). As the cellular functions of flip-
pases are examined in greater detail, we suspect that the role of
asymmetry or at least phospholipid flipping will become more
apparent. Indeed, the loss of the flippase Tat-1 in Caenorhab-
ditis elegans is associated with a loss of PtdSer asymmetry in

endosomal compartments and defective sorting and recycling
pathways (38).

Scramblase-mediated expansion of the ER

The ER resident enzymes responsible for the synthesis of
GPLs are oriented in such a manner that their active sites are
exclusively facing the cytosol (39). Immediately, one should
recognize that having an utterly asymmetric synthesis of GPLs
would pose a problem for the cell if not dealt with rapidly: hav-
ing lipid synthesis confined to one leaflet would lead to the
rapid expansion of the cytosolic leaflet while the luminal leaflet
remained constant. It is suggested that a phospholipid trans-
porter known as scramblase allows for the rapid flip-flop of
GPLs between leaflets of the bilayer. Collectively, scramblases
facilitate the bidirectional translocation of GPLs in an energy-
independent manner (40). In the case of the ER with on-going
lipid synthesis, scramblase activity supports not only symmetry
between the two leaflets but also to couple growth of the two
leaflets (41). The protein(s) responsible for scramblase activity
in the ER had remained elusive for many years, but recent
results suggest that select G-protein– coupled receptors
(GPCRs) might provide this activity. Two GPCRs, the apopro-
tein opsin and holo-rhodopsin, are proposed to equilibrate
GPLs across the photoreceptor disc membranes in the retina
(42, 43). Additionally, it was demonstrated that the �2-adrener-
gic and the adenosine A2A receptors could scramble lipids in
vitro (42). Furthermore, molecular dynamics simulations of
using opsin suggest that the headgroup of the phospholipids
pass through a hydrophilic cavity created by transmembrane
helices 6 and 7 (44). To date, the notion that select GPCRs could
act as scramblases is based on in vitro reconstitution experi-

Figure 3. Phosphatidylinositol cycle. The synthesis of PtdIns occurs in the ER or possibly in ER-derived vesicles termed PIPEROsomes. First, glycerol 3-phos-
phate (G3P) is dually acylated by the actions of acyltransferases glycerol-3-phosphate O-acyltransferase (GPAT) and 1-acylglycerol-3-phosphate O-acyltrans-
ferase (LPAT), which forms lysophosphatidic acid (LPA) and produces phosphatidic acid (PA), respectively. Next, PA in the ER or the PIPEROsomes is converted
to CDP-diacylglycerol (CDP-DAG) by the enzyme CDP-DAG synthases (CDS). Phosphatidylinositol synthase (PIS) in the ER of PIPEROsome catalyzes the coupling
of CDP-DAG to myo-inositol to form PtdIns. Once synthesized in the ER or the ER-derived vesicles, PtdIns is delivered to the PM by the secretory pathway (not
depicted) or by the actions of either nonselective (TMEM24, E-Syts) or PtdIns (Nir2, PITP). The PtdIns serves as a substrate for generating the plasmalemmal
phosphoinositides. PI4,5P2 is vital to facilitate many of the plasmalemmal transactions such as signaling in response to growth factors, exocytosis, endocytosis,
and the polymerization of cortical actin. The activation of PLC isoforms converts PI4,5P2 into DAG, which can then be converted back to PA by one of 10 DAG
kinases. To prevent the accumulation of PA and to replenish the plasmalemmal PtdIns pool, PA is transferred back to the ER via nonvesicular lipid transport
proteins. Red arrows represent metabolic reactions; blue arrows represent intracellular transport process; enzymes. DGK, diacylglycerol kinase.
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ments and has not yet been examined in living cells. The obvi-
ous question that arises from these studies is as follows: why do
GPCRs act as scramblases in the ER but have no apparent activ-
ity in the PM? One possibility is that the local lipid environment
influences the ability of the GPCRs to scramble phospholipids.
For instance, when compared with the PM, the ER contains
more unsaturated acyl chains, less cholesterol, and little sphin-
golipids. Additional biophysical differences exist as the ER is
not as thick as the PM (45), and although the cytosolic leaflet of
the PM is negatively charged, the ER is near neutral (36).
Undoubtedly, this area needs further investigations to help
clarify the role of GPCRs as scramblases and to determine
whether a specific subset of GPCRs provide scramblase activity
to the ER, during transit to other subcellular compartments, or
whether another unknown ER-resident scramblase exists.

Scramblase activation and the disruption of plasmalemmal
asymmetry

Constitutively active scramblases support the growth of the
ER. However, the activity of plasmalemmal scramblases is often
less apparent. Two classic examples of scramblase activation
are present in mammalian cells. The first example is the expo-
sure of PtdSer on the surface of platelets in response to activa-
tion that is required for blood coagulation (46, 47). The second

example is the exposure of PtdSer by apoptotic cells with the
exposed PtdSer serving as an “eat-me” signal for neighboring
cells and macrophages (48, 49). The protein identity of these
scramblase activities remained elusive for many years. How-
ever, recent seminal findings have identified the proteins
responsible for these activities. The importance of scramblase
activity in platelets is exemplified in Scott syndrome, a rare
bleeding disorder where PtdSer fails to translocate to the extra-
cellular leaflet (50, 51). This syndrome is due to inactivating
mutations in the protein referred to as transmembrane protein
(TMEM) 16 family of proteins F (TMEM16F) (52). The
TMEM16 family of proteins has been characterized as calcium-
gated chloride channels, but a growing body of literature sug-
gests that TMEM16F and possibly TMEM16C, -D, -F, -G, and -J
have evolved the ability to scramble phospholipids in response
to elevated cytosolic calcium (53, 54). The manifestation of
Scott syndrome appears to be due to the predominance of
TMEM16F in platelets. The cellular roles for this family
of scramblases in other cell types are less clear. However,
TMEM16E has recently been shown to be necessary for the
motility of mouse sperm (55).

Platelets from Scott syndrome patients still expose PtdSer in
response to apoptotic signals (56). Additionally, apoptotic

Figure 4. Phospholipid translocases in lipid bilayers. The spontaneous flip-flop of GPLs between leaflets of a bilayer is energetically unfavorable. Scramblase
is the term used to describe a variety of proteins (i.e. TMEM16F, Xlr4, select GPCRs) that can in an energy-independent manner mediate the bidirectional transfer
of GPLs between leaflets thereby collapsing the symmetry of the PM. Conversely, Flippase (inward movement) and Floppase (outward movement) are
energy-dependent proteins that couple the consumption of ATP with the movement of lipids across the bilayer.
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platelets can expose PtdSer in the absence of calcium, consis-
tent with the notion that another type of scramblases is present
in the PM (56, 57). This second class of scramblase responsible
for PtdSer exposure during apoptotic cell death was identified
as XK family protein 8 (Xkr-8) (58). Additional studies using
Xkr8-deficient murine cells and human cancer cell lines with
low levels of Xkr-8 demonstrated that these cells fail to expose
PtdSer during apoptosis (58). Importantly, in all cases, the
impaired exposure of PtdSer resulted in the inefficient clear-
ance by phagocytic cells. Expression of two related proteins
Xkr-4 and -9 also rescued apoptotic scrambling in Xkr8-defi-
cient cells (59) demonstrating that, similar to the TMEM16
family, multiple members of the Xk family possess scramblase
activity. PtdSer exposure is a critical step in the execution of
apoptotic cell death and clearance by phagocytes. Instead of
being stimulated by cytosolic calcium, Xkr-8 is activated fol-
lowing proteolysis by active caspase-3 (58). This regulation
ensures that PtdSer is only exposed after a sufficient level of
caspase-3 activation has been reached. The exposure of PtdSer
on the cell surface is further potentiated by the caspase-3–
mediated cleavage of ATP11C, a PtdSer flippase (60).

Flippases and floppases, generators of membrane asymmetry

The asymmetric distribution of GPLs in the PM is a hallmark
of eukaryotes. Flippases are aminophospholipid translocases
that consume ATP to move PtdSer and PtdEtn from the lume-
nal and exofacial leaflets to the cytosolic leaflet (61). A flippase
activity had initially been purified from red blood cells, chro-
maffin granules, and synaptic vesicles with the gene encoding
the chromaffin granule resident flippase being cloned in the
mid-1990s (62). Sequence comparisons determined that this
gene encoded an unrecognized P-type ATPase with a homolog
in yeast named Drs2. The original study found that drs2 cells
were deficient in the flipping of fluorescently-tagged NBD-Ptd-
Ser across the PM, and later studies suggest that the Drs2 func-
tions primarily in the Golgi (63) and that its homologs, Dnf1
and Dnf2, provide the plasmalemmal flippase activity (64).
P4-ATPases are absent in prokaryotes but are present as mul-
tiple members in eukaryotes. For example, the human genome
contains 14 putative flippases and the yeast Saccharomyces
cerevisiae genome encodes five. Several of the P4-ATPases
form heterodimers with the noncatalytic �-subunit Cdc50 that
contains two transmembrane domains and a glycosylated ect-
odomain (65). Although Cdc50 is noncatalytic, association with
P4-ATPase is vital for export from the ER and flippase activity
(66).

Conceptually, aminophospholipid flipping and the genera-
tion of membrane asymmetry are straightforward. Perhaps a
less obvious by-product of flipping is the generation of mem-
brane curvature. Studies in yeast have revealed that flippases–
and likely the generation of membrane curvature– can support
the formation of secretory vesicles or endocytic carriers (64,
67). In mammalian cells, the first appearance of bilayer asym-
metry is found in the trans-Golgi cisternae (TGN) (27), sup-
porting the notion that flippase activity could be supporting
vesiculation of these membranes. Flippases have also been
shown to support endocytic recycling (68), although in this
compartment the identity of the substrate is less clear. Overall,

mutations in the mammalian flippases have been described to
be associated with a wide range of pathophysiological condi-
tions impacting nearly every system in the body (69). This is
likely due in part to the difference in the tissue distribution of
the various flippases. However, it is unclear whether the defects
arise from a disruption in asymmetry or impairment in vesicu-
lar transport pathway(s).

In contrast, floppases mediate the translocation of lipids in
the opposite direction: from cytosolic leaflet to exofacial leaflet
(70, 71). Known members of the floppase family include
the ATP-binding cassette (ABC) transporter superfamily of
transporters that were initially identified as multidrug-resistant
pumps (71). In contrast to the somewhat promiscuous drug-
effluxing ABC transporters, the lipid floppases ABCA1,
ABCB1, ABCG1, ABCB4, and ABCC4 have evolved more spe-
cialized function to transport sterols, PtdCho, SM, and PtdSer.
For instance, ABCA1 and ABCG1 are known to be critical for
the ability of macrophage to efflux cholesterol to high-density
lipoprotein (72). However, in hepatocytes ABCG4 catalyzes the
movement of PtdCho to the exofacial leaflet of the canalicular
membrane to allow excretion of PtdCho into the bile (73).

Inter-organellar transport of lipids

As highlighted in Fig. 1, organelles possess their lipid com-
positions to go along with unique proteomes. However, the PM
and endosomes do not possess a significant capacity to synthe-
size lipids, especially GPLs. Instead, these organelles acquire
their GPLs from the other organelles, especially the ER. Eukary-
otic cells rely on the following two modes of transport to move
lipids: vesicular and nonvesicular trafficking (see Fig. 1). Vesic-
ular transport has long been studied and is essential for the
formation of secretory vesicles, endocytosis, and the inter-or-
ganellar transport of luminal and integral membrane proteins.
For instance, COPII vesicles assemble at ER exit sites and con-
tain proteins destined for the Golgi apparatus, and at the TGN,
vesicles destined for the PM or endosomes are formed. Vesicles,
like organelles, are delineated by a membrane bilayer, and con-
sequently, this mode of protein trafficking inevitably includes
bulk lipid transport. The action of TGN resident flippases
together with the segregation of cholesterol and sphingolipids
supports the formation of these carriers (67, 74, 75). As shown
in Fig. 1, most organelles participate in vesicular trafficking
either by giving rise to or accepting vesicles. However, as the
rates of cell growth and vesicular transport can vary signifi-
cantly by cell type, the precise estimates of the bulk vesicular
movement of lipids are lacking.

An alternative to the formation of transport vesicles is the use
of soluble proteins to shuttle the hydrophobic lipids from one
organelle to the other. The existence of this nonvesicular lipid
transport was alluded to many years ago as lipid transport could
still be observed under conditions where vesicular trafficking is
inhibited (76 –78). Membrane contact sites (MCS) have been
implicated in this mode of lipid transport (79). These regions
are �30 nm apart between two adjacent organelles and likely
help to facilitate the inter-organellar exchange of lipids through
the local enrichment of specific enzymes and proteins (80, 81).
The ER typically creates MCS with other organelles, including
Golgi, mitochondria, endosomes, peroxisomes, lipid droplets,
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and PM. In vitro studies have demonstrated that spontaneous
exchange of lipids between vesicles can occur, but this process
is exceedingly slow and would likely have little importance
within the cell (82, 83). Thus, merely bringing membranes close
together would have little benefit. To deal with this challenge,
cells have evolved soluble lipid-transport proteins (LTPs),
which contain a hydrophobic binding pocket that can extract
lipids and facilitate transport through an aqueous environment
(84, 85). In vitro, these LTPs can extract lipid and then either
reinsert them in the same “donor” liposome or transport the
lipid through an aqueous buffer and deposit it in a “recipient”
liposome. However, most LTPs have modest transfer rates in
vitro, considering the vast quantities of cellular lipids such as
cholesterol and PtdSer. This has raised the question whether
these molecules function as simple transfer proteins or whether
they have specialized context-dependent functions (86, 87).

The number of putative LTPs has grown immensely in the
last 2 decades. In general, LTPs are found as multigene families
with varying substrate specificities. For instance, sterol transfer
is mediated by a subset of the oxysterol-binding protein
(OSBP)-related proteins (ORPs) (88), and the steroidogenic
acute regulatory protein (StAR)-related lipid-transfer (StART)
domain proteins (89). Conversely, the transfer of PtdIns is
mediated by PtdIns-transfer proteins (PITP) and Nir2 (19, 90).
Recently, ORP5/8 and TMEM24 have been implicated in
PtdSer and PtdIns transfer, respectively, at ER-PM MCS (Fig. 1)
(91, 92). Because of their modular nature, several of the LTPs
can interact with both target donor and acceptor membranes.
For example, OSBP has a pleckstrin homology domain that
interacts with the phosphoinositides, PtdIns4P, and active
ADP-ribosylation factor (Arf)1 (93). Additionally, the presence
of an FFAT (two phenylalanines in acidic tract) motif within
OSBP allows binding to the ER resident integral membrane
protein, vesicle-associated membrane protein-associated pro-
tein (VAP), thereby associating OSBP with ER membranes (94,
95). This dual targeting to two proximal membranes creates a
narrow bridge that is thought to support the transfer of sterols
from ER to Golgi. Alternatively, a few LTPs are integral proteins
that contain transmembrane domains to allow them to be
anchored to organelles, including the ER and late endosomes.
This includes the late endosome-anchored cholesterol transfer
protein STARD3, the ER tail-anchored PtdSer–PI4P exchange
proteins ORP5 and ORP8, and the nonselective ER-tethered
extended synaptojanins (E-Syts). For more information about
LTPs and MCS sites, we refer readers to review articles 79, 85.

Roles of GPLs as second messengers and molecular
beacons

Phospholipases and cell signaling

In addition to being a critical structural building block of
membrane bilayers, GPLs also serve as a reservoir for lipid sec-
ond messengers. Indeed, many of low abundant lipids, such as
lyso-PtdCho (LPC), lyso-PA (LPA), PA, and DAG, can act as
signaling molecules with a variety of targets. Examples of this
include the ability of LPA to act as an autocrine or paracrine
signal through activation of a specific -protein– coupled recep-
tor (e.g. LPA) (96). Within the cell, DAG and PA can influence

the recruitment and activation of cytosolic proteins (97, 98).
Some of these lipid molecules are intermediates in the de novo
biosynthetic pathway, whereas the actions of phospholipases
can locally generate individual species.

Phospholipase is a general term used to describe an enzyme
that hydrolyzes phospholipids. However, phospholipases con-
stitute several families of enzymes with unique activities, sub-
strate preferences, and regulation. As such, phospholipases are
categorized into four major classes, termed A, B, C, and D,
according to the type of reaction they catalyze (99). Phospho-
lipase A (PLA) enzymes cleave either the sn-1 acyl chain (des-
ignated PLA1) or the sn-2 acyl chain (PLA2), whereas the phos-
pholipase B enzymes cleave at both the sn-1 and sn-2 positions.
The PLA2 family is extensive and impacts numerous biological
processes. The family of PLA2 enzymes can be divided into five
distinct categories, namely secreted PLA2, cytosolic PLA2,
Ca2�-independent PLA2, platelet-activating factor acetylhy-
drolase, and lysosomal PLA2s. The PLA2 superfamily of
enzymes varies in catalytic mechanism, function, localization,
and structural features. As this is a Minireview with limited
space, we refer readers to other reviews for greater detail on
PLA2 enzymes (100, 101). Typically, PLA2 uses GPLs as a sub-
strate to release polyunsaturated fatty acids, such as arachi-
donic acid (AA), from the sn-2 position. AA can be used by a
variety of enzymes to produce compounds called eicosanoids,
which include prostaglandins and leukotrienes (102). Eico-
sanoids act to participate in a wide range of physiological and
pathological processes, including immune response, inflamma-
tion, sleep regulation, and pain perception, by activating spe-
cific GPCRs (103). The lysophospholipids can be used as a pre-
cursor for LPA and platelet-activating factor (PAF), which are
lipid mediators. LPAs play a role in cell proliferation, survival,
and migration (104); PAF is vital to the processes of inflamma-
tion (105). Many of these molecules serve as ligands for GPCRs
and can serve as autocrine, paracrine, or endocrine signaling
molecules.

In addition to the breaking down of GPLs and the generation
of signaling molecules, concerted deacylation-reacylation reac-
tions also remodel the acyl chains of GPLs. This process,
referred to as the Lands cycle, involves the generation of lyso-
phospholipids by the actions of PLA enzymes together with
specific LPAATs (106, 107). This cycle serves critical cellular
roles, including the replacement of oxidized fatty acids and
helping to provide diversity in acyl chain compositions (108).
Additionally, the generation and consumption of lysophospho-
lipids by the Lands cycle has essential implications in vesicula-
tion and transport especially within the Golgi apparatus (107).
The inverted conical shape of lysophospholipids supports
vesiculation of membranes and vesicle fusion (109, 110). In the
Golgi apparatus, the actions of at least four PLAs enzymes con-
tribute to the structure of the Golgi cisternae as well as fusion
and fission of transport carriers (107). The actions of these
enzymes are counteracted by the actions of at least one enzyme,
lysophosphatidic acid acyltransferase 3, as overexpression of
this protein prevents Golgi tubulation while its genetic silenc-
ing promotes fragmentation (111). How these enzymes are
coordinated and regulated is still not well-understood but again
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highlights the importance of lipids as components of biological
membranes.

Remodeling of CL has been described to occur in the mito-
chondria of yeast and mammals. Improper acyl chain remodel-
ing of CL in humans results in an inherited cardiomyopathy
termed Barth syndrome (112). Newly synthesized CL in yeast
contains saturated acyl chains (113) that are replaced with oleic
acid, whereas hepatocytes initially synthesize tetraoleoyl-CL
that is remodeled to tetralinoleoyl-CL (114). In yeast, a cardio-
lipin-specific phospholipase A-like enzyme designated Cld1
(115) has been characterized that works upstream of Taz1, the
homolog of the human enzyme Taffazzin, which possess mono-
lyso-CL transacylation activity and is the causative agent in
Barth syndrome (116, 117). To our knowledge, the functional
human equivalent of Cld1 has not been identified. Regardless,
the failure to adequately remodel the acyl chain composition of
CL or possibly to prevent the accumulation of monolyso-CL is
associated with a variety of mitochondrial defects, including
protein import, oxidative phosphorylation, and fission and
fusion.

The mammalian phosphoinositide-specific phospholipase C
(PLC) enzymes are classified into six isotypes (�, �, �, �, �, and �)
and play an essential role in signal transduction (118). Upon
isoform-specific activation, PLCs act to generate the secondary
messengers, inositol 1,4,5-triphosphate (IP3) and DAG, by
hydrolyzing phosphatidylinositol 4,5-bisphosphate (PtdIns
(4,5)P2) (119). The released IP3 can then bind and activate IP3-
gated calcium channels in the ER leading to increased cytosolic
calcium. This increase in cytosolic calcium can stimulate secre-
tion via SNARE-mediated exocytosis and further signaling by
conventional protein kinase C isoforms. Importantly, the DAG
generated by PLCs can activate both conventional and novel
isoforms of protein kinase C (as well as other proteins) that
further potentiate signals (120).

Phospholipase D (PLD) is the final type of phospholipase.
PtdCho is the natural substrate of the mammalian PLD1
and PLD2 (121). The hydrolysis of the phosphodiester bond of
PtdCho by PLD results in the production of free choline and
phosphatidic acid. PLD1 is found in a variety of subcellular
compartments, including the Golgi apparatus, endosomes, and
lysosomes, whereas PLD2 is found primarily at the PM. The
activation of these enzymes leads to the localized production of
PA. The small headgroup of PA promotes membrane curva-
ture, and PLD activation has been reported to be required for
optimal clathrin-mediated endocytosis (122, 123). Addition-
ally, as PA is negatively charged, it could also contribute to the
activation or recruitment of proteins with polybasic regions
such as Rac1. Finally, a variety of proteins have been described
to bind PA in a “lock-and-key” manner, including mammalian
target of rapamycin (mTOR), its downstream activation of S6
kinase, and Raf1 kinase (97).

Phosphoinositides

Among GPLs, the phosphorylated derivatives of PtdIns often
referred to as “phosphoinositides” or “PIPs” are especially
important in signal transduction and protein targeting. As
described above, the metabolism of the seven PIP species is
controlled by the actions of 19 phosphoinositide kinases and 28

phosphoinositide phosphatases, for information, please see the
extensive review by Balla (124). Each of the seven PIPs displays
its intracellular distribution with variable overall abundance.
The PIPs display a highly-relative turnover rate compared with
PtdIns, which likely helps control the magnitude of the signal-
ing transduction or the coordination of vesicular trafficking.
For instance, a small fraction of the plasmalemmal PtdIns
(4,5)P2 can be converted to phosphatidylinositol 3,4,5-trispho-
sphate (PtdIns(3,4,5)P3) by the actions of PI 3-kinase. In turn,
PtdIns(3,4,5)P3 leads to the recruitment and activation of Akt
to promote cell survival and protein synthesis. PtdIns(3,4,5)P3
is also rapidly dephosphorylated at the 3- or 5-hydroxyl posi-
tions thereby terminating and in some circumstances prolong-
ing its signaling, respectively (125, 126). Beyond their role in
signal transduction, individual PIP species support many cellu-
lar functions. This includes but is not limited to the following:
(i) contributing to the establishment of organelle identity; (ii)
recruiting small GTPase to support actin polymerization,
organelle, and vesicular transport; and (iii) serving as a ligand
for cytosolic proteins thereby recruiting or regulating their
function. Collectively, phosphoinositides can mediate a large
variety of effects, including survival, differentiation, prolifera-
tion, migration, endocytosis, and endosomal maturation (127).

Conclusion

Lipid metabolism and transport continue to be significant
and intriguing areas of biochemistry and cell biology. To date,
nearly all of the enzymes involved in the synthesis and catabo-
lism of lipids have been identified. The next phase of lipid
research will build on this wealth of knowledge generated by the
research community and seek to investigate the more exquisite
details of the biology of lipids and the proteins that bind and
transport them. How control and integration of the lipidome
are achieved and its relation to the broader metabolome will
also be critical for understanding health and pathophysiology.
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