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Summary

The functional impact of the vast majority of cancer somatic mutations remains unknown, 

representing a critical knowledge gap for implementing precision oncology. Here, we report the 

development of a moderate-throughput functional genomic platform consisting of efficient mutant 

generation, sensitive viability assays using two growth-factor–dependent cell models, and 

functional proteomic profiling of signaling effects for select aberrations. We apply the platform to 

annotate >1000 genomic aberrations, including gene amplifications, point mutations, indels, and 

gene fusions, potentially doubling the number of driver mutations characterized in clinically 

actionable genes. Further, the platform is sufficiently sensitive to identify weak drivers. Our data 

are accessible through a user-friendly, public data portal (http://bioinformatics.mdanderson.org/

main/FASMIC). Our study will facilitate biomarker discovery, prediction algorithm improvement, 

and drug development.

Graphical abstract

Ng et al. develop a moderate-throughput functional genomic platform and use it to annotate 

>1,000 cancer variants of unknown significance. The approach is sufficiently sensitive to identify 

weak drivers, potentially doubling the number of driver mutations characterized in clinically 

actionable genes.

Introduction

Next-generation sequencing technologies, including recent consortium projects such as The 

Cancer Genome Atlas (TCGA) have identified thousands of unique mutations and fusions 

across cancer types (Cancer Genome Atlas Research et al., 2013). Mutations observed in 
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cancer tissues may exert different functional effects, ranging from oncogenic activation to 

tumor suppression to no obvious functional impact. Importantly, diverse mutations in the 

same gene have been observed, often depending on tumor contexts (Chang et al., 2016; 

Kandoth et al., 2013; Yi et al., 2017). Classical gene knockout or knockdown approaches for 

characterizing gene function cannot resolve the diverse functional impacts caused by 

different mutations in the same gene. Even for the most actively studied cancer genes such 

as PIK3CA, only a fraction of the variants identified in tumors have been functionally 

characterized (Cheung et al., 2011; Dogruluk et al., 2015). A critical challenge in developing 

and implementing cancer therapies and improving patient care is to distinguish causal driver 

mutations from non-pathogenic passenger variants and elucidate their oncogenic 

mechanisms (Sahni et al., 2013; Scott and Powers, 2016; Takiar et al., 2017). Therefore, 

there is an urgent need to functionally characterize large numbers of cancer variants of 

unknown significance (VUS) in a systematic way.

More than a dozen computational algorithms have been developed to predict functional 

impacts of cancer mutations based on frequency, conservation, and the 3D protein structure 

(Carter and Karchin, 2014; Porta-Pardo et al., 2017). However, the results of these methods 

vary greatly, their accuracy is often limited, and there is no “gold standard” for rigorously 

evaluating their predictive power. Further, computational algorithms can only identify 

general impact and fail to pinpoint the detailed functional effects of specific mutations. 

Conventional experimental studies can only characterize a small number of variants in an 

inefficient way. This is due at least in part to the difficulty in creating, expressing and 

characterizing large numbers of specific mutants in sensitive functional assay systems.

Several recent studies have functionally characterized a large number of VUS using 

systematic approaches including pooled (in vitro and in vivo) strategies (Berger et al., 2016; 

Kim et al., 2016; Kohsaka et al., 2017), which represent significant advances in the field. 

However, the competition between mutations with different activities in the pooled assays 

remains a critical concern. Strong drivers can become dominant in the pool and outcompete 

with many others that have lower activity levels, which decreases the sensitivity of the assay. 

In addition, in vivo assays are highly time- and resource-consuming. Therefore it is 

necessary to develop more sensitive, efficient, and systematic approaches to assess how and 

to what extent a particular somatic mutation contributes to cancer development.

Results

Development of a Versatile Functional Genomic Platform

To annotate functional impact of VUS, we developed a moderate-throughput functional 

genomic platform. Different from the in vivo ‘pooled-format’ screening used in other 

studies, our platform tested mutations and fusions on an individual basis using an in vitro 
system that shortened the time-to-result interval to approximately 6 weeks and avoided the 

potential masking effect of strong activating mutations for identifying weak drivers. Our 

platform consists of four main steps: (1) selection of somatic mutations from large-scale 

patient cohort data; (2) generation and sequence confirmation of bar-coded expression 

clones by a HiTMMoB approach (Tsang et al., 2016); (3) in vitro screening in two growth-

factor–dependent cell models to generate consensus functional annotation of mutations and 
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fusion genes; and (4) functional proteomic profiling of selected mutations through reverse-

phase protein arrays (RPPAs) (Li et al., 2017) (Figure 1A).

Our primary mutation list was based on TCGA mutation datasets of 33 cancer types, 

including recurrent mutations in selected clinically actionable genes (such as EGFR, 

PIK3CA, BRAF, and ERBB2). The list was further expanded with selected mutations in 

more potentially druggable genes, such as PTEN, ALK, PDGFRA and FGFR2, identified in 

the MD Anderson Cancer Center patient database. We generated 1049 mutations and 95 

wild-type lentivirus constructs using the HiTTMoB technique and sequenced all constructs 

in full-length to confirm that unexpected mutations were not introduced in the template 

(wild-type) clones (Table S1). We estimated how many of the mutations we tested have not 

been previously annotated in the literature by comparing our mutation list with publicly 

available knowledge-based mutation annotation databases OncoKB (Chakravarty et al., 

2017) and Personalized Cancer Therapy (PCT) (Kurnit et al., 2017) and via text mining in 

PubMed. Importantly, only 21.3% of mutations (using OncoKB) and 18.4% (using PCT) 

had been previously annotated, and 22.8% of mutations were found through text mining in 

PubMed (Figure 1B). Among the top 10 mutated genes surveyed, the literature coverage was 

in the range of 0-40.3%, with an average of 19.1% (Figure 1C). Altogether, the resource 

presented provides functional annotations of >1000 mutations, including >800 VUS.

To examine whether screening individual mutations can overcome the potential masking 

effect of highly active driver mutations in the pooled format, we carried out parallel pooled 

and individual screens of 29 PIK3CA mutants and wild-type PIK3CA in the Ba/F3 cell line 

under both in vivo and in vitro settings (Figure S1). Ba/F3 cells depend on interleukin-3 

(IL-3) for growth and proliferation but can be transformed to IL-3 independence in the 

presence of an oncogenic event, making it useful for detecting driver mutations that affect 

cell proliferation and survival (Warmuth et al., 2007). PIK3CAK111delK had the strongest 

activating mutation score in both the pooled and individual in vitro formats. Six more 

mutations were also scored in the pooled format, among which 5 were also captured in the 

individual format. Notably, 10 mutations (e.g., E39K, G106V and I112N) were only scored 

(i.e., >2-fold change to the wild-type) when screened as individual mutations (Figure S1A). 

For the in vivo pooled format (Figure S1B), the enrichment of 3 mutations (E110delE, 

K111delK and C604R) was found to be less than that from the in vitro pooled screening, 

which is consistent with higher sensitivity for detecting driver mutations in vitro. To further 

test whether the effects of moderately active oncogenic mutations were masked in the pooled 

in vivo screen, G106V, a moderate driver scored in the individual in vitro screening, was 

tested individually in vivo, with PIK3CAK111delK and wild-type PIK3CA as controls. Tumor 

growth of Ba/F3 expressing K111delK was the strongest, while the wild-type counterpart 

did not form a tumor during the experiment duration (Figure S1C). Consistent with the 

individual in vitro screening, G106V induced weaker tumor growth than K111delK, but had 

significantly stronger tumor formation effects than wild-type. Thus an individual evaluation 

of mutations can improve sensitivity and subsequent classification of individual aberrations.

We next tested the candidates in IL-3-dependent Ba/F3 cells and EGF- and insulin-

dependent MCF10A cells (a non-tumorigenic breast epithelial cell line) in parallel, using a 

lentiviral approach with wild-type counterparts as well as negative and positive experimental 
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controls in each screen (STAR Methods). Our hypothesis was that activating mutations, also 

known as “drivers”, would confer survival advantage to cells in the absence of dependent 

growth factors; while non-functional mutations, also known as “passengers”, would not. We 

classified wild-type genes and mutations into different functional categories. Overall, we 

obtained qualified functional annotation for 1042 mutations and 94 wild-type genes in Ba/F3 

cells and 951 mutations and 95 wild-type genes in MCF10A cells (Table S1).

Fusion genes caused by genomic rearrangements can be drivers and important therapeutic 

targets. We generated 93 fusions identified from human cancers using a modified HiTTMoB 

approach (Li et al., 2017) and assessed their activity in our platform. Among them, 15 

fusions increased proliferation compared to green fluorescent protein (GFP) negative 

controls (NCs) (Table S1). This provides functional annotation of a large collection of fusion 

genes and highlights the versatility of the platform.

Functional Classification of Wild-type Genes and Mutations

We annotated wild-type genes and mutations in both Ba/F3 and MCF10A models separately 

based on their cell viability data. In order to allow accurate comparison across different 

screens, corresponding wild-type controls were always run in parallel with the mutations of 

interest in each batch. The first step of the decision tree (Figure S2A) is annotating the wild-

type genes, which were classified into three categories (positive, no effect and negative) by 

comparing viability measurements to GFP/mCherry/Luciferase (NCs) that were run in each 

experiment batch. If a wild-type gene had higher mean cell viability than the NC, it was 

classified as positive (e.g., EGFR in both models); if a wild-type gene had cell viability 

lower than the NC, it was classified as negative (e.g., PTEN in both models); otherwise, the 

gene was classified as no effect (e.g., BRAF in Ba/F3 and PIK3CA in MCF10A). Next, 

mutations were annotated by comparing cell viability signals to their corresponding wild-

type genes. For positive wild-type genes, mutations were annotated as activating if the cell 

viability of the mutations was higher than that of the wild-type gene at the same time point 

in the same experiment; the mutations were annotated as neutral or inactivating if their cell 

viability measurements was similar to or lower than that of the corresponding wild-type 

constructs, respectively. For inactivating mutations, the viability of cells overexpressing the 

mutations was lower than that of the NC, so they were annotated as inhibitory to indicate 

that the mutations may potentially inhibit cell viability rather than simply inactivate wild-

type function. For no effect wild-type genes, mutations were annotated as activating, neutral 

or inhibitory in the same way. For negative wild-type genes, mutations were classified as 

neutral or non-inhibitory if their cell viability was no different from or higher than that of the 

wild-type construct, respectively. Among the non-inhibitory mutations, if the cell viability of 

the mutations was higher than that of the NC, they were annotated as activating to 

distinguish them from typical non-inhibitory mutations that inactivate tumor suppressor 

genes. Activating mutations in a negative wild-type gene therefore actively promote cell 

growth/proliferation instead of relieving the inhibitory effect of the wild-type gene. 

Furthermore, for some genes, such as ERBB4, CDH1 and IDH1, none of the mutations and 

corresponding wild-type constructs tested showed any activity (either activating or 

inhibitory) in the cell models. We cannot determine whether the cell models were not 

responsive to the gene product or the mutation functions were not different from wild-type. 
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We therefore annotated these wild-type genes and their mutations as non-informative. It is 

important to note that non-informative mutations are not necessarily non-functional, as they 

may exhibit functional effects if evaluated in other model systems.

We functionally annotated 1049 mutations, including 923 missense, 74 indel, and 25 

nonsense mutations (Figure 2A). In addition, 27 silent mutations across multiple genes were 

included to serve as controls for annotation. The overall dataset consists of 95 genes, 

including 21 genes with more than 10 mutations per gene (Figure 2B). Four major allelic 

series of clinically actionable cancer genes, EGFR, BRAF, PIK3CA and ERBB2, 
contributed 479 mutations. For PTEN, a known tumor suppressor gene, and PIK3R1, a gene 

with tumor suppressive properties (Cheung et al., 2011), more indel and nonsense mutations 

were included. In Ba/F3 cells, 14, 10 and 8 wild-type genes were annotated as positive, no 

effect and negative, respectively (Figure 2C). A similar pattern with more positive genes was 

found in MCF10A cells: 29, 13 and 7 wild-types genes were annotated as positive, no effect 

and negative, respectively (Figure 2C). Notably, 62 and 45 genes were respectively classified 

as non-informative in the Ba/F3 and MCF10A models. The number of non-informative 

genes using the consensus annotation was reduced to 40, whereby the gene was reclassified 

if functional in one of the two models. Another potential contributing factor to the number of 

non-informative genes is that only a few mutations were tested since the median number of 

mutations assessed was only 2 for the non-informative genes. Presumably, this issue could 

be addressed by including more mutations, more cell lines and orthogonal functional assays.

For individual mutations, we annotated 228 activating, 532 neutral, 32 inactivating, 31 non-

inhibitory and 4 inhibitory mutations in the Ba/F3 model (Figure 2D). Similarly, we 

annotated 231 activating, 539 neutral, 80 inactivating, 22 non-inhibitory and 5 inhibitory 

mutations in the MCF10A model (Figure 2D). Across the two cell models, 753 mutations 

had informative annotations, with 570 (75.7%) having concordant functional calls (Figure 

S2B). The mutation-level concordance between the two models was likely underestimated 

since one major reason for discordance was differential wild-type gene activity between the 

two models. For example, BRAF and ERBB2 wild-type genes were highly active (i.e., 

positive) in MCF10A cells, but were annotated as having no effect in Ba/F3 cells. Further, 

high activity of the wild-type gene narrowed the window to observe effects of activating 

mutations in the MCF10A model. For example, BRAFP731S, BRAFT599_V600insP and 

ERBB2V659E were annotated as neutral in MCF10A, but as activating in Ba/F3. However, 

since the BRAF and ERBB2 wild-type genes were annotated as having no effect in Ba/F3 

cells, we were unable to observe any inactivating mutations in the Ba/F3 model. For 

example, BRAFD594H/A/V and ERBB2V308M were called inactivating in MCF10A, but 

neutral in Ba/F3. To estimate the concordance of these two cell models in more detail, we 

further divided the dataset into two groups: mutations with concordant wild-type annotation 

and mutations without concordant wild-type annotation (Figure S2C and S2D). The 

concordance rate of mutation annotation was 79.6% for the concordant wild-type group and 

73.3% for the discordant wild-type group.

We generated consensus functional annotation for each mutation or wild-type gene by 

combining the functional annotations of Ba/F3 and MCF10A models based on an “OR gate” 

logic. Briefly, whenever an aberration was functional (i.e., positive and negative for wild-
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type genes; activating, inactivating, inhibitory and non-inhibitory for mutations) in either 

cell model, we used that call in the consensus annotation. In total, we made consensus 

functional annotations for 1049 unique mutations (Figure 2E) and 95 wild-type genes (Table 

S1).

Virus infection rate and expression of transgenes are key factors affecting functional 

consequence of a mutation. To determine their effects on our functional annotation, we 

measured virus titers used for infection and mRNA expression of transgenes in independent 

experiments. We observed no significant difference in virus titers or the expression levels of 

transgenes among different functional annotation groups (Figure S2E and S2F), confirming 

that their variations were relatively small. More importantly, our functional annotation did 

not correlate with these factors.

We rigorously assessed the reproducibility of functional annotation. First, we examined the 

performance of five experimental controls (mCherry and GFP/Luc, PIK3CA wild-type, 

M1043I and H1047R) in 60 independent Ba/F3 and 57 independent MCF10A experiments. 

In the Ba/F3 model, two negative controls did not demonstrate activity among all 60 

experiments, while the PIK3CA wild-type, M1043I and H1047R exhibited weak, moderate 

and strong activities, respectively, as reported in a prior study (Dogruluk et al., 2015), in 

57-59 out of 60 (95-98%) experiments (Figure S2G). In the MCF10A model, the negative 

controls did not demonstrate activity among all 57 experiments, while the PIK3CA wild-

type and the two mutants exhibited expected activities in the majority (77-88%) of 

experiments (Figure S2H). Second, we ran an independent repeat experiment of 34 selected 

mutations and corresponding wild-type with different functional annotations of each of 4 

allelic series, BRAF, EGFR, PIK3CA and ERBB2 (Table S2). Based on this subset, the 

reproducibility rate was 92.5%. Third, for EGFR mutations, we compared our Ba/F3 

functional annotation with those characterized by a recent study (Kohsaka et al. 2017) using 

a similar in vitro arrayed approach, and found that the concordant rate was 90.5% (Figure 

S2I). Collectively, these results highlight the robustness of functional annotation made by 

our approach.

High-Sensitivity Functional Mutation Annotation

We compared our annotations with the results from the two published studies (Berger et al., 

2016, Kim et al., 2016) that involved in vivo pooled screens. Only 3 out of 21 mutations 

assayed in both Berger et al. and our platform were positive in Berger et al. (Figure S3A, 

Table S3), while our platform captured both positive overlapping mutations from the in vivo 
pooled screen plus 15 additional mutations as activating. Only 4 out of 14 overlapping 

mutations assayed in both Kim et al. and our platform were positive (>1% of reads) in Kim 

et al. (Figure S3B, Table S3), while our platform captured all 4 positive overlapping 

mutations plus classified 7 additional mutations as activating. These results suggest that 

individual mutation-based functional screening is more sensitive in identifying activating 

mutations, including well-known and, importantly, weak to moderate activating mutations.

Due to the limited number of mutations that could be directly compared with in vivo pooled 

screening studies, we compared our annotation calls (only activating and neutral mutations) 

with OncoKB (Chakravarty et al., 2017), which classifies mutations as oncogenic, likely 
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oncogenic, likely neutral and inconclusive. Among193 mutations annotated in both OncoKB 

and our dataset, OncoKB only has positive annotations (i.e., oncogenic/likely oncogenic), 

while our dataset has both positive (i.e., activating/positive) and negative (e.g., inactivating 

and inhibitory) directions. To provide an accurate comparison, negative annotations were 

excluded from the comparison. Among 187 shared annotated mutations (Figure 3A), 76 out 

of 94 (80.9%) oncogenic mutations and 57 out of 79 (72.2%) likely oncogenic mutations 

were annotated as activating in our dataset. The discrepancies between OncoKB and our 

dataset may arise from different experimental conditions or context-dependent functional 

effects. For example, ERBB3V104M is oncogenic in OncoKB based on the finding that it 

activated signaling and induced cell survival only when co-expressed with wild-type ERBB2 
(Jaiswal et al., 2013). In addition, 6 out of 14 likely neutral mutations in OncoKB were 

annotated as activating in our dataset. We further categorized our activating mutations into 

strong, moderate and weak activating mutations based on the degree of activation compared 

to that of the corresponding wild-type genes in the cell viability assay. Interestingly, strong 

activating mutations were enriched in the oncogenic category (Fisher's exact test, p < 0.01), 

and the proportion gradually decreased from oncogenic to likely oncogenic and likely 

neutral. We performed a similar analysis using the mutational effects of the two in vivo 
screening studies (Figure S3C). We also found additional evidence supporting the vast 

majority of weak activating mutations identified (Table S3). These results further indicate 

that our platform has a high sensitivity to capture mutational functionality and associated 

information.

Systematic assessment on computational algorithms for predicting mutation effects has been 

limited due to the lack of large-scale experimental data. We tested 21 computational 

algorithms commonly used with our annotation as the reference standard (Figure 3B). The 

receiver operating characteristic (ROC) analysis showed that the 21 algorithms yielded an 

area under the ROC curve (AUC) ranging from 49.7% to 76.0%. The top three algorithms 

were CanDrA plus (Mao et al., 2013) (AUC: 76.0%), CHASM (Wong et al., 2011) (AUC: 

73.4%) and VEST3 (Carter et al., 2013) (AUC: 72.9%). Although these computational 

algorithms achieved some level of accuracy, none fully recapitulated our experimental 

results. Apart from the conventional prediction algorithms that are mainly based on the 

sequence information of the gene or protein, computational predictions using 3D 

information have been recently developed. We therefore tested whether the mutations in 

clusters detected by 3D prediction algorithms are more likely to be activating compared to 

those not in a cluster. We compared 855 missense mutations with informative functional 

annotations to the 3D cluster predictions of TCGA mutation dataset from 3D Hotspots (Gao 

et al., 2017), HotSpot3D (Niu et al., 2016) and HotMAPS (Tokheim et al., 2016). We 

observed significant enrichment of activating mutations in 3D clusters using all three 

predictions (Fisher's exact test, p < 2.2×10-16, Figure 3C).

We further examined the associations of our functional annotations with a number of 

common mutation properties, including the mutation position in a protein, mutation 

frequency, and amino acid conservation. As expected, mutations located in protein domains, 

hotspot positions, or in conserved amino acids were more likely to be functional (Figure 

S3D-H). We also found that mutations in amino acids that have lower relative surface 

accessibility (i.e., tend to be inside the core of the protein 3D structure) or those that caused 
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changes in amino acid charge from positive to negative were more likely to be functional 

(Figure S3G and S3H). These results support prior work relating protein biophysics to 

functional mutations (Bustamante et al., 2000; Wang and Moult, 2001).

Functional Proteomic Analysis of Annotated Mutations

Signaling aberrations downstream of mutations inform us of the biological functions of 

mutations and can elucidate related therapeutic vulnerabilities. We performed functional 

proteomic analysis of 256 MCF10A cell lines that stably expressed different mutations using 

RPPAs with 304 antibodies (including 69 antibodies that specifically target post-

translational modification events). The expression of the introduced mutations of all cell 

lines was verified at the RNA level by qPCR prior to RPPA analysis. Importantly, 

concordant with the transcripts, overexpression of the construct was also observed at the 

protein level (Figure S4A). We first focused on BRAF and EGFR allele series to assess 

whether RPPA profiling can capture functional annotations of different mutations within the 

same gene. We ranked the effects of specific mutations relative to a line expressing a 

reference mutation based on protein expression similarity between samples using all proteins 

profiled. We found that mutations with the same annotation tended to cluster together in 

rank-based maps based on the patterns of all proteins expressed in the cells (Figure 4A and 

4B). We next performed unsupervised clustering analysis across all the mutations in 

different genes to assess the global signaling pattern. We found that mutations were grouped 

into 6 main clusters, primarily based on gene of origin (Figure 4C). BRAF mutations and 

ERBB2 mutations formed their own clusters, and EGFR mutations formed two clusters 

(EGFR1 and EGFR2), suggesting that the signaling pathways altered by the different EGFR 
mutations were distinct. In contrast, most mutations of PI3K signaling pathway genes 

(PIK3CA, PIK3CB and PTEN) grouped together in the same cluster, indicating common 

altered signaling pathways. This was somewhat surprising based on PTEN functioning as a 

tumor suppressor and PIK3CA and PIK3CB being oncogenic, and may be due to the PTEN 
mutations potentially demonstrating gain of function compared to the wild-type gene.

We observed activation of target proteins and linked activation of downstream signaling 

targets in the stable lines. For example, high expression levels of p-B-Raf p-RAF1 and p-

MEK1 were associated with BRAF mutations; high expression levels of p-EGFR, p-SHP-2 

and p-Stat3 were linked to EGFR mutations; and high levels of p-Akt or p-HER2 were 

associated with PIK3CA mutations and ERBB2 mutations, respectively. Interestingly, a 

large proliferative group of mutations, defined by high expression of proliferation-related 

proteins (cyclin-B1, CDK1, FoxM1, PLK1 and p-Rb), were found across cell lines carrying 

BRAF mutations in the BRAF cluster, EGFR mutations in EGFR1 cluster, ERBB2 
mutations in the ERBB2 cluster and all PIK3CA, PIK3CB and PTEN mutations. We also 

found activation of mTOR signaling defined by p-S6, p-mTOR and p-4EBP1 in a sub-group 

of BRAF and EGFR mutant cell lines.

All mutations within the PI3K cluster (PIK3CA, PIK3CB and PTEN mutations) displayed 

high levels of p-Chk2 and, surprisingly, Bcl2 and IGFRb. The three PTEN frameshift 

mutants in the cluster exhibited decreased PTEN protein levels and were associated with 

high p-Akt, p-S6 and p-mTOR levels comparable to those of PIK3CA mutations. Three 
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PIK3CA mutations (E39K, R38C and I112N) were not clustered with the rest of the 

PIK3CA mutations, and did not display high expression of Bcl2, IGFRb, and p-Akt. Instead, 

high expression levels of p-NF-κB and p-YAP suggested that these mutations were signaling 

rewired variants (i.e., neomorphs). Strikingly, our findings align with the notion that p110α 
(encoded by PIK3CA) and p110β (encoded by PIK3CB) mediate distinct signaling cascades 

(Thorpe et al., 2017).

We also performed pathway analysis based on pathway scores, which were indicative of 

pathway signaling activity (Akbani et al., 2014). Across different clusters, there were 

significant differences in cell cycle score: PI3K and EGFR2 clusters showed the highest cell 

cycle scores, while EGFR1 and mixed clusters had the lowest scores (Figure 4D, Table S4). 

Within the PI3K cluster, activating mutations showed higher PI3K pathway activity than 

other mutations (Figure 4E); and in the BRAF cluster, activating mutations showed a higher 

epithelial–mesenchymal transition score than other mutations (Figure 4F). Multiple 

pathways showed differential activities between the two EGFR clusters (Figure S4B). These 

results illustrate the utility of RPPA analysis to elucidate the functional effects of driver 

mutations on pathway activities.

Analysis of EGFR and BRAF Mutant Allelic Series

EGFR and BRAF are among the most important clinically actionable genes, and their 

mutation status has been routinely used to guide clinical cancer therapies. We assessed >120 

mutations for each of these genes (Figure 5, Figure S5, Table S1) in the two cell models, 

facilitating the development of new predictive biomarkers for existing clinical therapeutics.

For EGFR, we used our platform to screen 138 mutations, including 12 indel, 1 frameshift 

and 8 silent mutations (Figure 5A, Figure S5A). We identified 71 activating mutations, 

including known driver hotspot mutations A289D/T/V, G719A/C/D/S and L858R. Among 

these mutations, 34 have been annotated in OncoKB, and 32 out of 34 (94.1%) were 

classified as oncogenic or likely oncogenic. The remaining 37 activating mutations were not 

annotated in OncoKB. Our study has therefore likely doubled the number of potential driver 

mutations in this therapeutically relevant gene. Importantly, 63 of the VUS assessed in 

EGFR are unlikely to engender sensitivity to therapeutics that target EGFR, enhancing our 

ability to stratify patients for the appropriate treatment regimens. Further, compared with 

non-hotspot mutations, we found that there was >2-fold enrichment in the likelihood that 

hotspot mutations are functional in the cell lines tested (Figure 5A, Figure S5A, Fisher's 

exact test, p < 0.001). However, most activating mutations identified were still of low 

frequency, highlighting the need to functionally annotate rare mutations identified in cancer 

tissues. Our data also showed that some rare functional mutations are only detected by 3D 

prediction algorithms and not by conventional algorithms. For example, L62R is neither 

annotated in OncoKB nor classified as hotspot (Figure 5A, Figure S5A). Although far away 

from any known driver in the linear protein sequence, L62R clustered with three oncogenic 

mutations (R108K, T263P and A289V) based on HotMAPS and HotSpot3D prediction 

(Figure 5B).

Since exon 19 deletions and exon 21 mutations (L858R) are FDA-approved predictive 

biomarkers for afatinib and erlotinib in metastatic non-small cell lung cancer, any other 
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activating mutations in exons 19 and 21 may be potential predictive biomarkers for these 

agents. We examined 7 exon 19 indels and 25 missense mutations (5 in exon 19, 20 in exon 

21) using our platform (Figure S5A). All 7 indels and 12 missense mutations (2 in exon 19 

and 10 in exon 21) were activating, including L858R, which suggests their potential as 

predictive biomarkers for EGFR tyrosine kinase inhibitors. Apart from the deletions in exon 

19, 3 deletions in exon 20 were annotated as activating. Thus these newly identified 

mutations should be considered as potential predictive biomarkers for EGFR inhibitors.

For BRAF, we screened 129 mutations, including 7 indel, 2 frame-shift and 2 silent 

mutations (Figure 5A, Figure S5B). Among them, 54 mutations were annotated as 

activating, including well-known V600 mutations. Of the 31 aberrations annotated in 

OncoKB, 29 (93.5%) were annotated as oncogenic and likely oncogenic, and the 23 

remaining mutations are UVS. Similar to EGFR, although an enrichment of activating 

mutations in hotspots was observed, a number of functional mutations were not hotspots. 

From 3D predictions, novel activating mutations (e.g., L613F and S467L) were found in a 

cluster with well-known driver mutations, but they are far apart in the linear sequence 

(Figure 5B). BRAF inhibitors (vemurafenib or dabrafenib) alone or combined with MEK 

inhibitors (trametinib) are FDA approved for treating melanoma with BRAFV600 mutations. 

Since several activating mutations were in the same structural cluster with V600 (Figure 

5B), the possibility of using the V600 clustered activating mutations as predictive 

biomarkers for BRAF inhibitors is worthy of further assessment.

Web Portal for Exploring Functional Effects of Cancer Somatic Mutations

In order to facilitate the broad use of our resource, we developed a user-friendly, interactive 

and open-access web portal, FASMIC (Functional Annotation of Somatic Mutations in 

Cancer), for querying and visualizing mutation associated data in a comprehensive manner 

(http://bioinformatics.mdanderson.org/main/FASMIC). All our assayed mutations have been 

curated in FASMIC, which currently includes six modules: summary, 3D structure, 

literature, mutation frequency, function prediction and protein expression (Figure 6A). To 

find a mutation, users can first query its gene symbol in the input box and select the matched 

gene to show all related mutations (Figure 6B). All the queried mutations are displayed in a 

table view along with basic information for each mutation, such as gene name, genomic 

location, amino acid change, and functional annotation. There are six modules under the 

table. i) “Summary” shows detailed information for the selected mutation, including genome 

build version, genomic coordinate, nucleotide change, variant classification, variant type, 

and functional annotations. ii) “3D structure” uses dynamic 3D animation to show the 

location of the queried mutation in a 3D protein structure (Figure 6C). iii) “Mutation 

frequency” displays the mutation frequency obtained from TCGA mutation data in a bar plot 

(Figure 6D). iv) “Function prediction” provides function predictions made by popular 

computational algorithms (Figure 6E). v) “Protein expression” provides rich protein 

expression data of the MCF10A lines altered by mutations compared to the wild-type genes, 

helping to interpret the specific functional consequences of the mutant (Figure 6F). vi) 

“PubMed” provides all related PubMed references in a list view. The portal also provides 

cell viability data supporting the functional annotation.
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Discussion

High-throughput functional screenings of mutations using in vivo screening in a pooled 

format have identified a number of rare oncogenic mutations. However, it remains unclear 

whether the results are affected by competition between mutations with different driver 

activities. In vivo screening of individual mutations has been shown to identify weak 

mutations (Kim et al., 2016), but it is too time-consuming and labor-intensive to use in 

screening large numbers of mutations. To address these problems and obtain reasonable 

throughput, we tested mutations individually in a moderate-throughput platform. Comparing 

to OncoKB, our platform captured more known oncogenic mutations (80.9%) than the two 

in vivo pooled screens (30.3% and 40.9%) (Berger et al., 2016, Kim et al., 2016) (Figure 3A, 

Figure S3C). Furthermore, mutations in tumor suppressor genes such as PTEN and 

CDKN2A can be screened in our platform but not in the in vivo screening setting. In our 

platform, PTEN and CDKN2A wild-type genes demonstrated cell growth inhibition. Out of 

24 PTEN mutations tested, 9 truncation mutations and 12 missense mutations caused loss of 

the inhibiting property of the wild-type gene. Similarly in CDKN2A, the only frame-shift 

mutation (L78Hfs*41) out of 4 mutations assessed caused loss of the inhibiting property of 

the wild-type gene. Our data clearly demonstrate that our platform can screen functional 

mutations in selected tumor suppressor genes.

Sensitivity and specificity in functional annotation are trade-offs. Along with increased 

sensitivity to capture activating mutations, one concern for our platform is potential false 

positives. In the present study, we assessed the functional effects of 27 silent mutations, none 

of which were different from the corresponding wild-type, suggesting a high specificity. 

Further, only six activating mutations we captured are annotated as likely neutral in 

OncoKB. However, OncoKB is a purely literature-based database, which is heavily biased 

toward oncogenic mutations and the number of likely neutral mutations present is limited. 

Assessment of the false-positive rate of our platform cannot be done with the OncoKB 

database alone and should be addressed with other experimental-based functional annotation 

databases when they are available in the future. Overall, 75.7% of functional annotations of 

mutations are consistent between the Ba/F3 and MCF10A models, which limits the potential 

for false positives. Only 22 weak activating mutations identified in the Ba/F3 model were 

not confirmed as activating in the MCF10A model, which indicates they are potential false 

positives. To evaluate our functional annotations for these 22 mutations, we looked for 

evidence supporting their activating property from knowledge-based databases (OncoKB 

and PCT), computational predictions (CanDrA and CHASM, which are the best preforming 

algorithms based on our data) and 3D predictions (HotMAPS and HotSpot3D). Among the 

22 weak activating mutations, 18 mutations were supported as activating mutations from at 

least one of the above evidence-based sources (STAR Methods and Table S3). Thus, the 

number of potential false-positive annotations obtained from our platform could be as low as 

4 out of 301 (1.3%) activating mutations. Moreover, a recent study (Watanabe-Smith et al., 

2017) suggested that Ba/F3 cells transfected with weak activating mutations can acquire 

extra mutations on the transgene during prolonged culturing under IL-3-replete conditions. 

Importantly, each of our constructs was from an individual clone and was sequenced prior to 

use, which limited the potential for pre-existing mutations in the construct. In addition, IL-3 
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was not added after transduction and our assays were limited to 3 weeks, which further 

reduced the potential for acquired mutations.

We recognize additional limitations of our platform. First, the size of the genes tested in the 

platform is restricted by the lentivirus packaging limit of 4.5 kb. Second, the effects of some 

mutations may strongly depend on tumor context. To limit this concern we employed two 

cell models with totally different genetic backgrounds and further our previous studies have 

shown that Ba/F3 and MCF10A results can be largely recapitulated in relevant human cell 

lines and xenograft models (Cheung et al., 2014; Dogruluk et al., 2015; Liang et al., 2012). 

Our data showed that 24 non-informative genes in the Ba/F3 model were informative in the 

MCF10A model, while 6 non-informative genes in the MCF10A model were informative in 

the Ba/F3 model. The well-known tumor suppressor gene IDH1 was tested in our platform 

and had no activity of the wild-type gene as well as all mutations tested. That suggested 

some genes need to be assessed in other tumor tissue-specific contexts to elucidate their 

function. The functional effects of those genes or mutations would have been missed in our 

platform. Third, we only assessed the effects on cellular viability and proliferation. However, 

these are hallmarks of cancer and represent the key targets of most therapeutic approaches. 

Finally, we note that pooled screening and in particular in vivo pooled screening have 

benefits in terms of scale and cost and capturing the effects of tumor microenvironment. 

Thus, our approach and the pooled screening approaches are complementary, collectively 

providing the most valuable information to the research community.

Star Methods

Contact for Reagent and Resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Han Liang (HLiang1@mdanderson.org).

Experimental Model and Subject Details

Tissue Culture Cells—LentiX-293T cells (Clontech) were cultured in DMEM (with high 

glucose, glutamine and sodium pyruvate) with 5% FBS and 1× non-essential amino acid. 

LentiX-293T cells were used to make lentivirus. Ba/F3 cells are murine pro-B suspension 

cells that depend on exogenous IL-3 for cell survival. Growth medium for Ba/F3 cells was 

advanced RPMI with 1× GlutaMAX, 5% FBS and 1 ng/ml mouse IL-3. Assay medium for 

Ba/F3 was growth medium without IL-3. MCF10A cells are human non-tumorigenic 

mammary epithelial cells that depend on exogenous EGF and insulin for proliferation. 

Growth medium for MCF10A cells was DMEM/F12 medium with 5% HS, 20 ng/ml EGF, 

0.5 mg/ml hydrocortisone, 100 ng/ml cholera toxin, 10 μg/ml insulin, 1× Pen/strep. Assay 

medium for MCF10A cells was MEBM basal medium (Lonza #CC-3151) with 100 ng/ml 

cholera toxin and 52 ng/ml bovine pituitary extract (BPE) (Lonza #CC-4009).

Method Details

Construction of lentivirus vector by HiTMMoB—The lentivirus vector of barcoded 

wild-types, mutations, fusion genes and controls were constructed with pHAGE-EF1α-GFP 

or pHAGE-EF1α-PURO backbone by High-Throughput Mutagenesis and Molecular 
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Barcoding (HiTMMoB) technique as described previously (Dogruluk et al., 2015; Tsang et 

al., 2016; Lu et al., 2017). The ORF entry clones used were from Life Technologies or the 

ORFeome 8.1 (http://horfdb.dfci.harvard.edu/). All ORF sequences were shown in Table S1. 

All mutant clones were full-length sequenced before assays to ensure that no unwanted 

mutation was introduced comparing to template ORFs. Mutant and wild-type constructs are 

made available through Addgene for sharing with the cancer research community.

Ba/F3 and MCF10A Growth-Factor Independence Assay—To assess the function 

of the candidates, two growth-factor–dependent cell models, Ba/F3 and MCF10A cell 

models, were used. Both cell types stop proliferating and die in the absence of the required 

factor(s). The rationale is that a “driver” mutation will confer survival and proliferation 

advantages to the cells in the absence of required growth factor(s), but “passenger” 

mutations will not. The mutation candidates were put into both cell models with various 

types of controls. First, two experimental negative controls (GFP, mCherry or Luciferase) 

and three experimental positive controls (PIK3CA wild-type, M1043I and H1047R) with 

different activities (i.e., wild-type < M1043I < H1047R) served as technical controls to 

check if the experiments performed well. Second, mutations and their corresponding wild-

type counterparts were assessed in parallel in the same experiment, the latter of which 

determined the basal activity of the genes in the cell models. Third, for selected genes, silent 

and literature-reported driver mutations were used as additional controls to determine the 

basal and activated activities of the genes, respectively. In total, 1049 mutations were tested 

in batches, with up to 33 mutations per batch. In each experiment (i.e., batch), the set of 5 

experimental controls (2 negative and 3 positive) and corresponding wild-type clones were 

included. Additional silent and gene-specific positive mutations were also included if 

available.

For each experiment, pHAGE constructs of mutants and wild-type genes were freshly 

prepared from a single colony and used for generating lentivirus for Ba/F3 and MCF10A 

transduction. Lentivirus was generated in the LentiX-293T cells by transfecting the pHAGE 

and two packaging plasmids (psPAX2 and pMD2.G). The medium of the transfected cells 

was refreshed at 16 hours post-transfection. The virus was harvested at 3 days post-

transfection by filtering with 0.45 μM filter. Ba/F3 cells (0.6 million cells) were transduced 

by spinoculation at 1000× g for 3 hours in the presence of polybrene (final concentration: 8 

μg/ml). After spinning, cells were resuspended in the Ba/F3 assay medium in a 24-well plate 

format. For MCF10A cells, 5,000 cells were seeded into 96-well plates 1 day before 

transduction and transduced by spinoculation at 906× g for 2 hours in the presence of 

polybrene (final concentration: 2.7 μg/ml). The medium was refreshed after spinoculation 

with the MCF10A assay medium. Transduced cells were incubated at 37°C for 3 weeks. Cell 

viability of Ba/F3 and MCF10A cells was measured at 4 time points (at intervals of 3 or 4 

days) during the 3-week assay period. The functional annotations of mutations were based 

on a comparison to the corresponding wild-type clones (Figure S2A).

In vivo Pooled Screening—Barcoded mutations and wild-type counterparts were 

transduced into Ba/F3 cells by lentivirus individually, and transduced cells were expanded in 

puromycin-selective conditions for a week until reaching enough cells for injection to mice. 
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Cells were injected (s.c.) into the mice. Tumors were harvested within 50 days depending on 

the size of tumors. Barcodes were sequenced. Oncogenicity of mutations were presented by 

enrichment of corresponding barcodes in the harvested tumors compared to input at the 

injection day.

Comparison to OncoKB Annotation, Literature Mining and Computational 
Predictions—To compare our functional annotation to the previous in vivo studies (Berger 

et al., 2016; Kim et al., 2016), we first identified the mutations commonly assayed between 

our platform and the previous studies, in which 21 and 14 shared mutations, respectively. To 

compare our annotation with OncoKB, we downloaded the mutation annotation from http://

oncokb.org, and identified 193 common mutations, among which 95 are oncogenic, 83 are 

likely oncogenic and 15 are likely neutral. To compare our functional annotation with 

predicted mutational impacts from commonly used algorithms, we tested 21 algorithms for 

913 point mutations. Except for CanDrA plus and CHASM (Douville et al., 2013), we 

obtained the other 19 algorithms from dbNSFP (Liu et al., 2016). The ROC curves were 

generated based on the ranking scores defined in dbNSFP.

To evaluate whether any given mutations had been reported in the literature, we used gene 

symbols and amino acid changes as keywords to query PubMed. We calculated the 

proportion of our tested mutations that were reported in specific genes. In addition, 

mutations curated by the OncoKB and PCT databases were included for comparison.

Reverse-Phase Protein Arrays—Cell pellets were washed twice with PBS and lysed 

(1% Triton X-100, 50 mM HEPES, pH 7.4, 150 mM NaCl, 1.5 mM MgCl2 1 mM EGTA, 

100 mM NaF, 10 mM Na pyrophosphate, 1 mM Na3VO4, 10% glycerol, protease and 

phosphatase inhibitors). Protein concentration was adjusted to 1-1.5 μg/μl and denatured by 

1% SDS. Cell lysates were two-fold serial diluted for 5 dilutions (from undiluted to 1:16 

dilution) and arrayed on nitrocellulose-coated slides in 11×11 format. Samples were probed 

with antibodies by the CSA amplification approach and visualized by DAB colorimetric 

reaction.

Slides were scanned on a flatbed scanner to produce 16-bit tiff images. Spots from tiff 

images were identified and density quantified by Array-Pro Analyzer. Relative protein levels 

for each sample were determined by interpolation of each dilution curve from the “standard 

curve” (Supercurve) of the slide (antibody). Supercurve was constructed using a script 

written in R (“Supercurve Fitting”, http://bioinformatics.mdanderson.org/Software/

supercurve). Each dilution curve was fitted with a logistic regression model. This fit a single 

curve using all the samples (i.e., dilution series) on a slide with the signal intensity as the 

response variable and the dilution steps as the independent variable. The fitted curve 

(“Supercurve”) was plotted with the signal intensities on the y-axis and the relative log2 

concentration of each protein on the x-axis using the non-parametric, monotone increasing 

B-spline model. During the process, the raw spot intensity data were adjusted to correct for 

spatial bias before model fitting. A quality control metric was returned for each slide to help 

determine the quality of the slide: if the score was less than 0.8 on a 0-1 scale, the slide was 

dropped. In most cases, the staining was repeated to obtain a high-quality score.
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The protein concentrations of each set of slides were then normalized by median polish, 

which was corrected across samples by the linear expression values using the median 

expression levels of all antibody experiments to calculate a loading correction factor for each 

sample. These values (given as log2 values) are defined as Supercurve log2 (raw) values. All 

the data points were normalized for protein loading.

Pathway Score Analysis—For each sample j in a pathway k, pathway scores (Skj) were 

calculated based on the z-scores (Zi) of each protein member i using the formula (Akbani et 

al., 2014), described below, where Wki is the weight for each protein i in the pathway k, and 
‖Pk‖ represents the number of proteins in pathway k. The pathway protein members and 

their corresponding weights were obtained from the previous studies.

Sk j =
∑i = 1

‖PK‖
(Zki j ⋅ Wki)

∑i = 1
‖PK‖

Wki

Text Mining of Cancer Mutations—To evaluate whether a specific mutation had been 

reported in literature, we used gene symbols and amino acid changes as keywords to query 

the PubMed. We calculated the proportion of mutations that were reported by the end of 

2016. This process was performed by the R package ‘RISmed’. Mutations curated by the 

OncoKB database and PCT (www.personalizedcancertherapy.org) were also included for 

comparative purposes.

Pfam Domain and Hotspot Analysis—Protein sequences of these genes were obtained 

by using R package ‘biomaRt’. We mapped Pfam domains to the genes using HMMER 

(Finn et al., 2011) and obtained the presence of a Pfam domain and the corresponding range 

(start and end residues). Mutations were mapped relative to the range of the Pfam domains 

to determine whether a mutation was inside a Pfam domain or not. Fisher's exact test was 

used to assess the difference of the proportion of functional mutations in versus outside the 

Pfam domains. In addition, we calculated the proportion of functional mutations mapped to 

hotspots and non-hotspots, and used Fisher's exact test to assess the difference.

Structural Analysis and Lollipop Plots—To evaluate whether the mutations were 

located on the surface or core of a protein, protein sequences were subjected to the NetSurfP 

program (Petersen et al., 2009), and the relative surface accessibility (RSA) and absolute 

surface accessibility (ASA) scores were retrieved for each protein residue. We then mapped 

mutations to the protein sequence to obtain the related scores for each mutation, and 

assessed the score differences for functional and non-functional mutations by the Wilcoxon 

rank-sum test.

We downloaded all mutation data of EGFR and BRAF from cBioPortal in all TCGA and 

GENIE cancer samples and identified 252 mutations for functional annotation. We next 

calculated the number of mutated samples for each mutation. The lollipop plots were 

Ng et al. Page 16

Cancer Cell. Author manuscript; available in PMC 2019 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.personalizedcancertherapy.org


generated using MutationMapper (Vohra and Biggin, 2013). The heatmaps for mutations in 

hotspots or reported in the literature were plotted using the R package ‘pheatmap’.

3D Structural Predictions for Mutation Impact—HotSpot3D was run on mutations 

from the MC3 MAF as well as the mutations that were validated to see which mutation 

clusters were on the protein structure (Niu et al., 2016). The default HotSpot3D parameters 

were used, and only missense mutations and in-frame insertions/deletions were clustered. 

Mutations that were labeled as both a deletion and insertion were removed and were not 

clustered. For the resulting clusters, the cluster closeness was calculated, which was simply 

the sum of the closeness centralities of the mutations in the cluster. Closeness centrality is a 

measure of how close a mutation is to other mutations as well as how close a mutation is to a 

highly recurrent mutation. We identified clusters that were from known cancer genes as 

previously defined (Tamborero et al., 2013). The top 20% of cluster closeness values of the 

cancer gene distribution was used as a threshold to determine the significance (Cc >8.2). 

Using the same MC3 MAF file, HotMAPS v1.1.0 was used in each cancer type and all 

cancer types grouped together (“PANCAN”), as described previously (Tokheim et al., 2016), 

to generate hotspot regions, and estimate the background distribution of mutational density 

in protein structures. Only missense mutations were mapped to available protein structures 

and homology models using the MuPIT database (Niknafs et al., 2013). We then mapped 

missense mutations to the same set of protein structures, and mutational densities were 

calculated based on the TCGA data. HotMAPS detects whether mutated amino acid residues 

have higher three dimensional mutation density then expected by chance. Since the assay 

was not cancer-type specific, we took the minimum p value across cancer types and 

PANCAN as representative of each residue. We assigned all mutations occurring at the same 

amino acid residue the same p value. Statistical significance was established at a threshold 

false discovery rate of 0.01 (Benjamini-hochberg method). Only mutations in clusters with 

the significance above the thresholds were highlighted in the heatmaps in Figure 5 and 

Figure S5. For visualization of clusters, we utilized Protein Data Bank (PDB) structures 

3NJP for EGFR and 4MBJ for BRAF in Figure 5B. Mutations assayed by 3D Hotspots were 

annotated with http://www.3dhotspots.org.

FASMIC Data Portal Construction—The FASMIC web interface was implemented in 

JavaScript. All data used in FASMIC were curated in a CouchDB database; tabular results 

were displayed by DataTables; box and scatter plots were generated by HighCharts; protein 

3D structure information was obtained from PDB and visualized by 3Dmol.js (Rego and 

Koes, 2015).

Quantification and Statistical Analysis

Definition of significance of various statistical tests were described and referenced in their 

respective Method Details sections.

Data and Software Availability

Functional annotation and cell viability data for each mutation and RPPA protein profiles of 

selected mutations are available in the FASMIC Data portal (http://

bioinformatics.mdanderson.org/main/FASMIC).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Developed a versatile functional genomic platform for somatic mutation 

annotation

• Annotated >1000 genomic aberrations, doubling the number of known driver 

mutations

• Assessed performance of existing algorithms for mutation functional 

predictions

• Built a user-friendly, open-access data portal for community-based 

investigation
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Significance

Recent sequencing studies have identified thousands of unique somatic mutations across 

patient tumors, the vast majority of which are cancer variants of unknown significance. 

Importantly, diverse mutations in the same gene could have distinct functional effects in 

cancer development and drug response. Using a versatile, sensitive functional genomic 

approach, we systematically assess the effects of a large number of somatic alterations on 

cell viability and downstream signaling. We identify many potential driver mutations that 

had not been characterized. Our results and the related bioinformatics data portal 

represent a valuable resource to improve patient care and therapy development.
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Figure 1. Overview of the functional genomic platform and cancer mutations tested
(A) Mutations (muts), corresponding wild-type (WT) and fusion genes were selected from 

TCGA projects and MD Anderson Cancer Center patient databases. Clones were generated 

by the HiTMMoB approach, and tested in in vitro growth-factor dependent cell viability 

assays with Ba/F3 and MCF10A cell models. Mutations and wild-type variants were 

classified into functional categories based on these results. MCF10A cell lines stably 

expressing selected mutations were generated for reverse-phase protein array (RPPA) 

analysis. The numbers of mutant, wild-type and fusion constructs are annotated at each step. 

(B) Pie charts showing the proportions of the mutations annotated in OncoKB or 

Personalized Cancer Therapy (PCT) or PubMed literature among all the 1049 mutations 

tested. (C) Bar plots showing the literature coverage of mutations for the top 10 genes with 

the greatest number of mutations tested, as shown by the percentages of tested mutations per 

gene annotated in OncoKB or PCT or PubMed. See also Figure S1 and Table S1.
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Figure 2. Functional annotation summary of wild-type genes and mutations
(A) The numbers of missense (purple), indel (orange), nonsense (red) and silent (white) 

mutations tested are shown in parentheses. (B) The distribution of mutation types tested per 

gene for the 21 genes with >10 mutations tested is shown. (C, D) The functional annotations 

for wild-type genes (C) and mutations (D) in Ba/F3 (blue) and MCF10A (red) cell line 

models are presented based on the growth-factor independent cell viability assay results. (E) 

The number of mutations in each functional annotation is shown in parentheses. Eleven 

mutations with inconclusive functional annotations in Ba/F3 and MCF10A models were 

excluded. See also Figure S2 and Table S2.
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Figure 3. Comparison of our functional annotation with literature data and computational 
predictions
(A) Activating and neutral mutations from our (non-pooled) in vitro platform results were 

compared to oncogenic, likely oncogenic, and likely neutral mutations annotated from 

OncoKB. The percentage of mutations in each category is shown. Activating mutations were 

further classified into strong, moderate and weak based on the degree of activating 

comparing with the corresponding wild-type genes. Numbers on the bars indicate the 

mutation numbers in each group. (B) ROC curves of 21 commonly used computational 

algorithms based on the functional calls in this study, with AUC scores for the top 5 

algorithms. (C) Enrichment of activating mutations in three 3D computational algorithms. 

Numbers on the bars indicate the mutation numbers in each group. ****, p < 10-5. See 

Figure also S3 and Table S3.
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Figure 4. Functional proteomic profiling of select mutations in MCF10A
(A, B) A rank order plot showing the overall reverse-phase protein assay (RPPA) protein 

expression pattern of each BRAF mutation relative to BRAFL584F (A) or each EGFR 
mutation relative to EGFRG719D (B). Spearman rank correlations were calculated based on 

all the proteins profiled, and the mutants are color coded by their functional annotations. (C) 

RPPA unsupervised clustering analysis of 268 MCF10A cell lines stably overexpressing 

selected mutations was performed. Cluster names are annotated in the top row of the feature 

track. Gene names and functional calls are also presented in the feature track. Key 

differentially expressed proteins across clusters are highlighted on the right. (D) Differential 

cell cycle pathway activities among different clusters. (E) Differential PI3K/Akt pathway 

activities between activating and non-activating mutations in the PI3K cluster. (F) 

Differential EMT pathway activities between activating and non-activating mutations in the 

BRAF cluster. (D-F) The middle lines indicate median values, the top and bottom of the box 

indicate 25th and 75th percentiles, and whiskers indicate 10th and 90th percentiles. See also 

Figure S4 and Table S4.
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Figure 5. Analysis of EGFR and BRAF mutation allelic series
(A) Functional annotations of EGFR (top) and BRAF (bottom) allelic series. Only recurrent 

mutations of the series are shown. The frequency (based on TCGA and GENIE databases) 

and location of mutations tested are shown in lollipop plots. In the heatmap (from top to 

bottom), the consensus functional annotation, OncoKB annotation, computational prediction 

by 3D structural cluster (HotSpot3D, HotMAPs), population-based (VEST) cancer-focus 

(CanDrA), Mutation Assessor and hotspot predictions (based on Chang et al., 2016) of 

mutations tested in this study are shown. (B) Structural clusters of activating mutations in 

EGFR (left) and BRAF (right). Filled color and border color of the mutation label indicate 

the OncoKB annotation and our consensus functional annotation, respectively. See also 

Figure S5.
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Figure 6. Overview of FASMIC portal
(A) Data portal summary. (B) Mutation table of EGFR. (C) The 3D protein structure of 

p110α (encoded by PIK3CA) with residue K111 highlighted in red. (D) Bar plot of 

mutational frequency in different cancer types. (E) Functional predictions of various 

computational algorithms shown in a table with damaging mutations highlighted in dark red. 

(F) Differential protein expression profile of an EGFR mutant related to the wild-type gene 

is displayed in a sorted scatter plot.
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