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Mesenchymal stem cells (MSCs) are widely used in laboratory experiments as well as in human cell therapy. Their culture requires
animal sera like fetal calf serum (FCS) as essential supplementation; however, animal sera pose a risk for clinical applications.
Human blood derivatives, for example, platelet-rich plasma (PRP) releasates, are potential replacements of FCS; however, it is
unclear which serum variant has the best effect on the given cell or tissue type. Additionally, blood derivatives are commonly
used in musculoskeletal diseases like osteoarthritis (OA) or osteonecrosis as “proliferative agents” for the topical MSC pool.
Hyperacute serum (HAS), a new serum derivative, has been designed to approximate the natural coagulation cascade with a
single-step, additive-free preparation method. We investigated the effects of HAS on monolayer MSC cultures and in their
natural niche, in 3D subchondral bone and marrow explants. Viability measurements, RT-qPCR evaluation for gene expression
and flow cytometry for cell surface marker analysis were performed to compare the effects of FCS-, PRP-, or HAS-supplemented
culture media. Monolayer MSCs showed significantly higher metabolic activity following 5 days™ incubation in HAS, and
osteoblast-specific mRNA expression was markedly increased, while cells also retained their MSC-specific cell surface markers.
A similar effect was observed on bone and marrow explants, which was further confirmed with confocal microscopy analysis.
Moreover, markedly higher bone marrow preservation was observed with histology in case of HAS supplementation compared
to FCS. These findings indicate possible application of HAS in regenerative solutions of skeletal diseases like OA or osteonecrosis.

1. Introduction

Mesenchymal stem cells (MSCs) can be found in almost all
tissues in the human body. They, being multipotent, can
differentiate into multiple mature cell types like osteocytes,
chondrocytes, or adipocytes under certain physiological or
experimental conditions. Besides, they are able to replenish
simultaneously the stem cell pool through self-renewal [1].
These features make them potential elements of cell-based
therapies of the musculoskeletal system, for example, in
case of osteoarthritis [2, 3], osteonecrosis [4], or other bone

and cartilage injuries. The isolation method of this cell type
is well described; therefore, it is an everyday process to
extract MSCs from bone marrow, and a similar cell
population can be obtained from adipose tissue, umbilical
cord blood, or skeletal muscle [5-8]. As a drawback, during
expansion in culture, animal sera like fetal calf serum (FCS)
must be included as a supplement; otherwise, the cells stop
proliferating. Bovine serum has economical, ethical, and sci-
entific disadvantages such as immunogenicity, contamina-
tions with prions and other pathogens, and the cost and
ethical issues surrounding slaughtering calves just for their
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serum. These problems render animal serum a serious
bottleneck of clinical applications [9-11]. However, it is
unavoidable to supplement cell cultures with serum-specific
growth factors, and other, still-unidentified factors of the
serum as MSCs cannot survive in the absence of such
components. Thus, human blood-derived additives like
human serum albumin (HSA) [12] or platelet releasates such
as platelet-rich plasma (PRP) are considered as efficient
alternatives to replace FCS [13, 14]. The scientific rationale
behind platelet-rich products is that thrombocytes provide
a diverse growth factor supply such as platelet-derived
growth factors (PDGFs), transforming growth factor beta-1
(TGEB-1) or vascular endothelial growth factor (VEGEF),
coagulation factors, serotonin, mitogens, and adhesion fac-
tors like fibronectin, fibrin, or vitronectin to support healing
[15]. On the one hand, these molecules play a role in the
proliferation and differentiation of expanded cells in vitro
or during the early phases after implantation into the host.
Besides, these same factors are crucial in the chemotaxis of
helper cells like pluripotent stem cells from the ambient tis-
sues [16]. In clinical indications, PRP is already widely used
as a general “proliferative agent” in musculoskeletal diseases
[17] such as knee osteoarthritis [18], rotator cuff pathology
[19], osteonecrosis [20, 21], patellar tendinitis [22], muscle
injury [23], and even total knee and hip replacements [24].
However, preparation protocols and nomenclature of these
blood-derived products vary widely amongst authors and
are often not well defined; therefore, results are difficult
to reproduce and compare [25]. Additives like exogenous
activators of the platelets (e.g., CaCl, and bovine throm-
bin) can cause significant pain and burning sensation in
the area of administration probably because of the pH
alterations and the induced immune reactions of these
additives [26, 27].

It is important to highlight that osteoarthritis (OA) is a
prevalent disease with characteristic bone marrow lesions in
the subchondral region [28, 29]. The loss of regenerative
capacity of the cells in this location leads to bone cyst forma-
tion [30] and cartilage degeneration [31-33], which induces a
chronic inflammatory cycle and breaks down the barrier of
the joint space [34-36], inevitably destroying the joint.
Regeneration of the healthy joint is mainly dependent on
the subchondral bone marrow where MSCs are responsible
for bone remodelling and the bottom-up restoration of the
cartilage layer. An appropriate molecule cocktail could help
the topical cells to overcome the degeneration and to regain
their vitality at least to some extent which may kick-start
the healing process.

Hyperacute serum (HAS) has been designed to avoid a
number of disadvantageous effects of platelet releasates,
since it works through natural coagulation in a single-
step preparation process, avoiding issues with the overcon-
centrated plasma derivatives. Our research goal was to find
cellular-level mode of action of HAS that is already being
investigated for degenerative bone pathologies such as OA
and osteonecrosis. Specifically, bone marrow lesions are
observed in these pathologies due to the loss of regenera-
tive capacity of the cells in this location. We set out to
perform preclinical laboratory investigations on monolayer
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MSC cultures and in their natural niche, in a 3D subchondral
bone marrow culture model (BMEs).

2. Materials and Methods

2.1. Blood Derivatives. Blood samples were obtained from 8
healthy donors, men and women (24-45 years), under IRB
approval. The female donors were not pregnant and did not
take medicine regularly, and they had no heavy diseases
in the last two years (like myocardial infarction or cancer).
Exclusion criterion was blood donation (over 250 mL) in
the last six months. For HAS preparation, blood was col-
lected in VACUETTE® 9mL Z Serum C/A tubes (Greiner
Bio-One, Austria) and centrifuged at 1710g for 5 minutes
at room temperature. The fibrin clot formed in the tube
was gently removed with a tweezer and placed onto a sterile
Petri dish. With the use of a flat forceps, the serum portion
was squeezed out of the fibrin clot, typically resulting in
1-2mL HAS per tube. For PRP isolation, whole blood
was obtained from donors in VACUETTE 9mL K3 EDTA
blood collection tubes (Greiner Bio-One, Austria) and centri-
fuged at 320g for 12 minutes at room temperature. The
platelet-rich layer above the buffy coat was aspirated and
transferred into a 15mL tube and centrifuged at 1710g for
10 min. The resulting platelet pellet was resuspended in the
same volume as the isolated HAS from the same donor
in order to maintain comparability at the donor level
(Supplementary Figure 1). Blood derivatives were either
used fresh or stored at —20°C until use. All HAS and PRP
samples were pooled samples containing at least two
donor’s blood sample. In order to determine the blood
derivatives’ platelet, white blood cell, red blood cell, and
growth factor, profile automated cell counter, Proteome
Profiler Assay, and LUMINEX Assay were used, and
data are published in an earlier publication [37].

2.2. Cell Culture. All cell culture procedures were carried
out in a sterile laminar flow tissue culture hood. Cells were
maintained in an incubator at 37°C and 5% CO, at 95%
humidity. Human mesenchymal stem cells (MSCs) were
purchased from Lonza (Walkersville, USA) and ATCC
(Manassas, USA). The experiments were performed with
at least 2 batches of MSCs. The cells were seeded at
5000 cells/cm? in T-75 tissue culture flasks and maintained
in standard growth medium. The growth medium was com-
posed of Dulbecco’s modified Eagle’s medium (DMEM),
4,5¢/L glucose, GlutaMAX™ Supplement, and pyruvate
(Gibco, Paisley, Scotland), supplemented with 10% (v/v)
fetal calf serum (FCS, Gibco, Paisley, Scotland), basic
fibroblast growth factor (bFGF) at 1 ng/mL (Sigma-Aldrich,
St. Louis, USA), 2% penicillin/streptomycin (Sigma-Aldrich,
St. Louis, USA), and 1% amphotericin (Sigma-Aldrich, St.
Louis, USA). Cell culture medium was refreshed twice
a week.

2.3. Cell Proliferation Measurements of MSCs. MSCs between
passages 3 and 9 were seeded in standard growth medium in
5 parallel wells of a 96-well plate (2000 cells/well). Forty-eight
hours after the start of the incubation, on day zero, standard
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FIGURE 1: Bone marrow tissue explantation model. During total hip replacement surgery, the femoral head was discarded (a) and replaced
with an endoprosthesis. For experimental reasons, small bone pieces from the cut surface of the femoral head were isolated with a sharp
chisel (b). uCT image shows the structure of the BMEs (c). (d) The experimental setup of the BMEs’ and MSC cell cultures.

growth medium called “FCS” (hereafter) was refreshed
only in the control wells; in the others, it was changed
with 10% (v/v) FCS+1ng/mL bFGF in “FCS+bFGF”
group (hereafter), or 10% (v/v) PRP in “PRP” group (here-
after), or 10% (v/v) HAS in “HAS” group (hereafter). The
PRP-supplemented medium contained 2U/mL heparin
(Clexane, Sanofi Aventis, Paris, France) in order to prevent
clotting in the culture medium. As negative control, serum-
free medium was used (“serum-free” group hereafter). Cell-
free wells were used as a technical background. Cell viability
at 0, 2, and 5 days in culture was determined using Cell
Proliferation Kit II (XTT; Roche, Mannheim, Germany)
according to the manufacturer’s instructions. Absorbance
was measured after 4 hours’ incubation in the staining
solution using a PowerWave microplate spectrophotometer
(BioTek, Winooski, VT, USA) at 480 nm with a reference
wavelength at 650nm. The experiments were replicated
three times.

2.4. Isolation, Culture, and Viability Measurement of Bone
and Marrow Explants (BMEs). BMEs of approximately
2mm in diameter were harvested from patients undergoing
routine total hip replacement surgery at the Department of
Orthopedics, Semmelweis University (Budapest, Hungary).
All patients were more than 40 years old and diagnosed
with osteoarthritis. The femoral heads that would have oth-
erwise been discarded were used for BME harvesting under
IRB approval. The femoral head was cut in half with a wide
bone chisel, and BMEs were harvested from the cut surface
with a small chisel (Figure 1). Explants were delivered to
the laboratory in the standard growth medium and incubated
under standard cell culture conditions for 48 hours before
any further experiments. BMEs were treated with the same
media as MSCs, that is, FCS, HAS, and serum-free media.

PRP was not used as serum supplement in case of BMEs,
because of its special effect experienced in MSCs’ culture.
Its unique influence on BMEs in comparison with HAS is
also intriguing, and a separate study may summarize it. For
XTT viability measurements, bone pieces were transferred
into a new plate immediately before measurement in order
to exclude cells that may have grown out from the tissue
onto the plastic surfaces. The protocol was the same as in
the case of MSCs. Results were normalized with the dry
weight of the BMEs considering that it is proportional to
the number of active cells.

2.5. Flow Cytometry. Flow cytometry with lineage-specific
markers (Beckman Coulter, CA, USA) was performed to
detect lineage shift in the presence of various blood deriva-
tives. According to the manufacturer’s recommendation,
only cells between passages 3 and 9 were used for the
experiments. The same amount (250000 cells per flask) of
MSCs were seeded in four T-25 flasks and cultured for 48
hours with standard growth medium. After this preincuba-
tion, old media were discarded, and new media were added
containing FCS, FCS+bFGF (the medium recommended
by the manufacturer, which warrants the MSC phenotype),
PRP, or HAS as supplement. Media were exchanged every
48 hours, until cells in one or more groups reached 100%
confluency (5 days after special media were added). Cells
were detached with Accutase (Sigma-Aldrich, St. Louis,
USA), centrifuged two times (10 min, 500g) in FACS buffer
(1% [v/v] ECS in phosphate-buffered saline [PBS]), and half
of each cell culture pool was stained with antibodies, as
described in Supplementary Table 2 (Human MSC Analysis
Kit, BD Biosciences, St. Louis, USA). The other unlabelled
half of the pool was used as control isotypic antibodies to
exclude nonspecific staining.



2.6. RT-qPCR. Total RNA from MSCs was isolated by using
High Pure RNA Isolation Kit (Roche Diagnostics GmbH,
Mannheim, Germany). Experiments were replicated five
times. For RNA isolation from BMEs, 4 or 5 frozen bone
chips from the same patient and from the same treatment
were homogenized in a mortar in liquid nitrogen. Four
patient’s samples were used for this evaluation. The tissue
slush was lysed in TRIzol Reagent (Invitrogen, CA, USA),
centrifuged once at 12000g for 30 seconds, and the superna-
tant was cleaned with Direct-zol™ RNA MiniPrep Kit (Zymo
Research CA, USA). RNA yield was determined using a
NanoDrop 1000A spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA). The quality of RNA extract was
verified based on the generally used ratio of absorbance at
260/280 nm and 260/230 nm, and by electrophoretogram of
the samples on 1% agarose gel. The isolated RNA was reverse
transcribed using ReadyScript™ reverse transcription kit
(Sigma-Aldrich, St. Louis, USA) primed by an oligo(dT)
primer according to the manufacturer’s instructions. Taq-
Man Gene Expression Assays were purchased from Thermo
Fisher Scientific Inc., and real-time quantitative polymerase
chain reaction (RT-qPCR) was performed with an Applied
Biosystems 7500 real-time PCR system. Details of the Taq-
Man assays are listed in Supplementary Table 1. The AAC,.
method was used for quantification, where the threshold
cycle values were normalized to the corresponding one of
actin beta mRNA and viability of the samples.
Experimental times were scheduled in the same way as it
was in case of viability tests; namely, RNA was isolated
on day 0 and after 5 days’ incubation in FCS, FCS
+bFGF, PRP, or HAS medium. In case of BMEs, the
results are expressed as fold values compared to those of
the starting day of the experiments and multiplied with
the actual viability showing the net increase of the
expression level.

2.7. Confocal Microscopy of BMEs

2.7.1. Live/Dead Staining. After incubation of BMEs in differ-
ent media, bone chips were washed three times with PBS and
stained in PBS containing 1M Calcein-AM (Invitrogen,
Carlsbad, CA, USA), 5ug/mL ethidium homodimer (Invi-
trogen, Carlsbad, CA, USA), and 5 ug/mL Hoechst 33342
(Invitrogen, Carlsbad, CA, USA) for 40 minutes. The exper-
iments were performed in case of two patients’ four-four
BMEs (8 replica) after 5 days’ incubation in FCS, HAS, or
serum-free media, in total 3 different media. The samples
were washed three times with PBS and imaged immediately
with a Nikon A1R confocal microscope (Nikon-KOKI Imag-
ing Center, Budapest).

2.7.2. Immunostaining. BMEs were fixed in 4% paraformal-
dehyde for 40 minutes at room temperature and stained with
Human Mesenchymal Stem Cell Kit’s anti-CD19 and anti-
CD44 component (Merck Millipore, Germany) according
to the manufacturer’s instructions. The experiments were
performed in case of two patients’ four-four BMEs after
5 days’ incubation in FCS, HAS, or serum-free media.
Samples were imaged in PBS buffer in glass bottom dishes
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using a Nikon Ti A1R confocal scanning microscope with 4x
and 10x objective (Plan Fluor, NA =0.3).

2.8. Histology. BMEs were fixed in 4% formalin and dehy-
drated in an ascending alcohol series at room temperature,
embedded in a special resin developed for mineralized tissues
(Technovit 9100, Kulzer), and decalcified. Sections of 6-8 ym
were cut using Leica RM2255 sawing microtome and stained
with hematoxylin and eosin (H&E), von Kossa (VK), and
Masson’s trichrome (MT). Three bone biopsies were taken
from 3 different patients (at the same day); each contained
several BMEs, enough for all planned conditions. Three
BMEs of each patients were fixed on day 0 (in FCS buffer,
used as control) and the remaining 3-3 BMEs following 5
days’ incubation further in FCS buffer or in HAS medium
as replacement for FCS buffer, leading in total to 3 treatment
groups. Three-three replicates of one type of treatment group
but from different patients were finally mixed and then
analyzed regardless of the origin (patient), to get statistically
acceptable results. For the evaluation of the slides, Nikon
Eclipse 80i light microscope was used. Quantification of the
percentage of osteoid tissue on bone lamellae surface was
performed using Image] software and was determined as area
of the osteoid tissue section/(area of the mineralized bone
lamellae section x area of the osteoid tissue section). Histo-
logical scores for the bone marrow integrity analysis were
tested by 4 persons; the possible scores were as follows:
no valuable bone marrow structure=0, minimal level of
bone marrow structure=1, average level of bone marrow
structure =2, and high level of bone marrow structure=3.

2.9. Statistical Analysis. One-way analysis of variance
(ANOVA) with Tukey post hoc analysis was used to compare
means of experimental groups using a significance level of
p>0.05. Analysis was performed using Prism software.
Data are presented as mean + SEM.

3. Results

3.1. Mesenchymal Stem Cells (MSCs) Proliferate Intensely in
HAS-Supplemented Cell Culture. MSCs form the basis of
the regenerative capacity of the osteochondral niche. We
tested the effects of serum derivatives on these cells in vitro.
Subconfluent MSC cultures were incubated for 2 or 5 days
in serum-free DMEM medium, or medium supplemented
with FCS (standard constituent of stem cell media), FCS +
bFGF, PRP, or HAS, 10% (v/v) each. Viability of the samples
was measured with XTT assay on the 1st, 2nd, and 5th days
of the experiment.

As shown in Figure 2(a), SF, FCS, and FCS+bFGF
had no mitogenic effect after 2 days of incubation. In the
presence of PRP and HAS, viability of cells was elevated
7.18 £0.18-fold and 9.57 + 0.94-fold, respectively.

In the period between the 2nd and 5th days, FCS + bFGF
caused an intense (14.18 £0.56-fold) cell number elevation.
FCS and PRP reached similar viability to that of FCS + bFGF
for the 5th day, 11.84+0.74-fold and 15.54+0.33-fold,
respectively. HAS had the strongest effect as supplement
in the cell culture medium, whereby the cell viability was
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FIGURE 2: Time-course effect of serum supplements on MSCs. (a) Subconfluent MSCs were cultured in DMEM in the absence of supplement
(serum free (white bar)), or supplemented with FCS (light-gray bar), FCS + bFGF (dark-gray bar), PRP (black bar), or HAS (red bar). (b) Cell
morphology of MSCs using phase-contrast microscopy. ***Confidence interval P-value: 0.0001 to 0.001, extremely significant.

20.11+1.43-fold higher compared to that at the starting
day (day 0). This effect is very remarkable considering that
the widely used culture medium and the treatment with a
growth factor were less effective (Figure 2(a)).

The morphology of the cells was not visibly altered
by the various treatments; all preserved the typical MSC
morphology (Figure 2(b)).

3.2. MSC Markers Are Retained When Cells Are Cultured in
HAS-Supplemented Medium. Since faster proliferation may
lead to lineage shift, immunophenotyping analysis was
performed to characterize that MSCs cultured for 5 days
in differently supplemented media preserved their MSC
characteristics. MSCs cultured in FCS, FCS +bFGF, or HAS
medium were positive for CD90-FITC, CD105-PerCP-
Cy5.5, and CD73-APC in more than 93.94%. While CD90-
FITC and CD73-APC expression was above 99% in case of
the PRP-supplemented samples, CD105-PerCP-Cy5.5 level
decreased by 13.95%, and two distinct peaks appeared; how-
ever, both peaks still fell into the desired ranges. This finding
indicates that MSCs in PRP may have already started to vary
in some aspects in the early phase of incubation (Figure 3).
This was not observed with FCS or HAS treatments.

3.3. MSC-Specific Gene Expression Does Not Change in Case
of HAS Supplementation. The potential lineage-specific
changes were screened with gene expression analysis. The
expression of MSC-specific genes was confirmed by real-
time qPCR after 5 days’ incubation in FCS-, FCS+bFGF-,
PRP-, and HAS-supplemented media. The results are pre-
sented as fold values compared to those of the medium rec-
ommended for culture by the manufacturer, which contains
FCS and preserves totally the mesenchymal stem cell sur-
face markers. ALCAM/CD166, ITGB1, ENG/CD105, and
ANPEP expression was retained and slightly elevated in
the HAS-supplemented samples when compared to that
of the FCS-supplemented group by 1.25+0.13-fold, 1.24+
0.06-fold, 1.03 +0.03-fold, and 1.16 + 0.09-fold, respectively.

While FCS +bFGF had no effect (0.96 +0.05-fold, 1.06+
0.063-fold, 0.77 +0.05-fold, and 0.98 +0.08-fold, resp.) on
the expression of the same markers, in case of the PRP-
treated cells, remarkable increase was observed: 1.09 +0.16-
fold, 1.18 +0.04-fold, 1.42+0.19-fold, and 2.01+0.17-fold,
respectively (Figure 4(a)).

3.4. HAS Supplementation Induced Osteogenic but Not
Adipogenic Differentiation in MSC Culture. Since MSCs are
the common progenitor cells of adipocytes and osteoblasts,
adipocyte-specific and osteoblast-specific gene expression
was investigated in the variously supplemented MSC cul-
tures by real-time qPCR. PPARG and ADIPOQ expres-
sion, markers of adipogenic differentiation, was retained or
decreased when FCS supplementation was changed to FCS +
bFGF, PRP, or HAS (Figure 4(b)), indicating that the cells
are not differentiating into these lineages. COL1A1, ALPL,
and RUNX2 are characteristic of osteoblastic differentiation.
The expression of these markers was slightly changed in
cultures supplemented with FCS+bFGF (0.51 + 0.08-fold,
1.14 £ 0.04-fold, and 1.2+0.07-fold, resp.). PRP had the
same effect: 0.79 +0.8-fold change in COL1A1 expression,
0.75+0.2-fold change in ALPL expression, and 0.81+0.11-
fold change in RUNX2 expression compared to those of the
FCS-supplemented group.

Interestingly, HAS supplementation resulted in a signifi-
cant increase of osteoblastic gene expression. COL1A1 mRNA
level elevated 2.38 +£0.51-fold, ALPL level 3.68 +0.65-fold,
and RUNX2 level 0.94 + 0.04-fold compared to those of the
FCS-supplemented group (Figure 4(c)). This pattern of gene
expression, together with the proliferation, phenotype, and
CD marker data, suggests that HAS is the most proliferative
factor for MSCs, outperforming even PRP despite the fact
that PRP has much higher amounts of growth factors. The
phenotype of MSCs is largely unaffected by the treatments,
with a trend towards more osteogenic lineage in case of the
presence of HAS.
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3.5. BAX/BCL2 Ratio Was Highly Increased When MSC
Culture Was Supplemented with PRP. BAX and BCL2 are
two members of a gene family involved in the regulation of
cellular apoptosis. BAX is characterized as an apoptosis-
promoting factor while BCL2 as an apoptosis-suppressing
factor. The cells with a high BAX/BCL2 ratio are more sensi-
tive to the apoptotic stimuli than are those with low BAX/

BCL2 ratio. In case of MSCs, BAX/BCL2 ratio decreased by
FCS + bFGF supplementation by 1.74 + 1.5-fold in compari-
son to FCS supplementation, and also, HAS supplementation
did not cause remarkable change in this value (1.72 +0.69-
fold). In case of PRP supplement, this ratio elevated to
5.27 + 1.44-fold of the normal value (Figure 4(d)), which indi-
cates important increase of cellular sensitivity to apoptosis.
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3.6. HAS Promotes Cell Viability of Bone Marrow Explant
(BME) Cells. For a better understanding, we continued
our experiments at the tissue level, in freshly harvested
human osteoarthritic bone and marrow explants, as its clini-
cal situation is closest to that of a bone marrow lesion. BMEs
were isolated from osteoarthritic subchondral space-femoral
heads discarded at hip replacement operations and main-
tained under normal cell culture conditions, and supple-
mentation of the media with either FCS or HAS was
required for cell growth; cell proliferation was investigated
in a similar 5-day time frame on BMEs as in MSCs.
Hence, the size of the bone pieces was slightly different,
and the measured absorbance values were normalized with
the dry weight of the BMEs. Figure 5(a) shows that the
serum-free culture environment, as it was expected, did
not promote cell proliferation neither for the second day
nor for the 5th day. However, the viability of the BMEs
elevated significantly for both the second and 5th days in
case of FCS (1.66+0.26-fold and 2.36+0.12-fold, resp.)
and HAS supplementation (1.87+0.18-fold and 2.46+
0.19-fold, resp.) (Figure 5(a)). We visualised with confocal
microscopy the cells on the surface of bone lamellae. In
serum-free environment after 5 days’ incubation, a very
low amount of living cells were detectable, green-labelled

cell cytoplasms that were not that much observable. Some
red areas show dead cells on the surface. In case of FCS
and HAS, at 5-day-long supplementation, a high amount
of living cells were observable on the surface of the bone
lamellae. Immunostaining of the HAS-supplemented sam-
ples was performed with anti-CD19 antibody for detection
of hematopoietic stem cells on the BMEs’ surface. Hoechst
nucleus staining showed a high number of living cells that
were not CD19 positive (green); that is, they were not
hematopoietic stem cells. Anti-CD44 staining detected living
MSCs on the bone lamellae.

3.7. HAS Initiates Osteogenic Differentiation in BMEs. We
compared gene expression of BMEs cultured within serum-
free medium, FCS, or HAS. A set of characteristic mesenchy-
mal markers was analyzed after 5 days of incubation. As
shown in Figure 6(a), MSC markers’ mRNA level was retained
or elevated in culture of FCS (ALCAM/CD166: 3.37 +0.72-
fold; ITGBI: 2.06 +0.34-fold; ENG/CD105: 0.97 +0.11-fold;
ANPEP: 0.89 + 0.17-fold) and stayed unchanged or decreased
in HAS (ALCAM/CD166: 2.76 + 1.00-fold; ITGB1: 1.14+
0.08-fold; ENG/CD105: 0.39+0.07-fold; ANPEP: 0.53+
0.11-fold, resp.) for the 5th day in comparison to the day
0 values.
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We analyzed the expression of a wide panel of characteris-
tic hematopoietic stem cell (HSC) markers to examine the
opportunity of proliferation of resident HSCs. As shown
in Figure 6(b), CD34, CD14, and PTPRC expression was
unchanged or increased in FCS (1.51 +0.25-fold, 1.09 + 0.47-
fold, and 0.75 +0.32-fold, resp.) but markedly decreased in
HAS (0.51 +0.25-fold, 0.54 +0.25-fold, and 0.44 +0.13-fold,
resp.). These observations support that findings that in
HAS-supplemented environment, the not-grown HSCs
provide the increase of measured viability values.

MSCs are the common progenitor cells of adipocytes
and osteoblasts; therefore, characteristic genes’ expression
of these two lineage was examined as well. PPARG, ADI-
POQ, and FABP4, the adipocyte-related genes, were mostly
downregulated or unchanged in all culture environment
(0.89 £0.15-fold, 5.36 + 3.52-fold, and 1.85 + 1.11-fold, resp.,
in FCS; and 0.56+0.12-fold, 1.17+0.65-fold, and 0.38 +
0.24-fold, resp., in HAS) (Figure 7(a)). However, COL1A1
and ALPL, the specific osteoblast markers, showed a trend
towards upregulation at the 5-day time point (5.92 + 1.34-
fold and 1.33+0.31-fold, in FCS, resp.; 10.42 +4.35-fold
and 1.54+0.37-fold, in HAS, resp.) (Figure 7(b)). Inter-
estingly, RUNX2, one of the most examined osteoblast
differentiation-related markers, did not increase (0.79 + 0.13-
fold in FCS and 0.55 + 0.06-fold in HAS) (Figure 7(b)). Char-
acteristic osteocyte-specific genes were analyzed, as well as
DMP1, MEPE, and PDPN; however, according to the results,
this cell type did not survive the applied culturing conditions
(0.38 +£0.17-fold, 0.56 +0.17-fold, and 0.71 + 0.06-fold, resp.,
in FCS; 0.22 +0.04-fold, 0.27+0.07-fold, and 0.47+0.11-
fold, resp., in HAS) (Figure 7(c)).

3.8. More Preserved Bone Marrow Integrity Was Found in
Case of HAS Supplementation of BMEs. Culturing BMEs
in HAS-supplemented medium for 5 days preserved bone
marrow integrity as representative hematoxylin and eosin-

stained sections show. FCS supplementation for 5 days
appeared less effective therein (Figure 8(a)). We evaluated
with histological scores of the bone marrow integrity in case
of the control samples (day 0) and after 5 days’ incubation in
FCS- or HAS-supplemented medium. HAS supplementation
showed obvious increase in marrow structure preservation or
formation as did the other supplementation (Figure 8(b)).
The quantification of the percentage of osteoid tissue on
bone lamellae showed less decrease in case of HAS supple-
mentation as in case of FCS supplementation of the culture
medium compared to that in the control day (day 0), when
the experiment started (control day: 0.0047 + 0.0010%; 5 days
in FCS: 0.0025 £ 0.0003%; 5 days in HAS: 0.0037 £+ 0.0006%).

4. Discussion

Hyperacute serum (HAS) extraction protocol was designed
to be as close to the physiological activation of blood upon
injury as technically possible. The resulting serum is free of
cells, platelets, fibrin, anticoagulants, and exogenous activa-
tion substances and represents the extracellular matrix milieu
immediately after injury and blood clotting [37]. Conse-
quently, it avoids the disadvantages of activated and enriched
blood plasma varieties and the more complex preparation
process they require. On the other hand, since HAS contains
physiological concentrations of growth factors and cytokines,
which may be diluted at the place of application, enriched
preparations may have an advantage depending on local
factors at the host tissue. Interestingly, in the current study,
we have observed that the most proliferative cell culture
milieu was provided by HAS supplementation, and not with
PRP, despite the higher number of growth factors in the lat-
ter. One explanation can be that the cells respond best to
optimized conditions, and any deviation from this, either
too little or too much paracrine signals, turn into inhibition
or act against each other on the same cell. HAS supports
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FIGURE 6: MSC-specific and hematopoietic stem cell-specific gene expression profiles of BMEs as determined by RT-qPCR. Total RNA
extraction was performed from BMEs cultured either in serum-free medium (white circles) or in medium supplemented with FCS (gray
triangles) or HAS (red diamonds) after 5 days’ incubation. ** Confidence interval P-value 0.001 to 0.01, very significant.

the proliferation of MSCs in monolayer; moreover, the
influence on proliferation outperforms that of the standard
culture conditions (FCS or FCS+bFGF) or that of PRP-
supplemented media. The positive changes foreshadow the
effective future application in ex vivo expansion of bone
marrow or other human tissue-derived stem cells before
administration in diverse cell therapies. According to our
flow cytometry analysis, MSC characteristics of the cultivated
cells were retained in case of all supplement types; however,
PRP-supplemented cells showed two distinctive peaks that
indicate a change in their phenotype. This supplement leads
to increased BAX/BCL2 ratio on mRNA level, which pre-
sumably implies disadvantageous effects as is related to initi-
ation of apoptotic processes. During a cell transplantation

procedure, a live but apoptotic cell mass is useless in terms
of expected therapeutic effects. Thus, the use of PRP does
not seem to be the optimal choice for cell therapy supple-
mentation due to the overdose of introduced cytokines on
the one hand and the proapoptotic effect on the other.

We have found that gene expression analysis following
the treatment of MSCs with HAS showed significant increase
in the expression of osteoblast markers COL1A1 and ALPL.
This raises the possibility of the medical use of this HAS sup-
plementation in musculoskeletal diseases, where impaired
bone metabolism is observable such as in osteoarthritis
(OA) or osteonecrosis. In OA, the regeneration of the healthy
joint is mainly dependent on the subchondral bone marrow
where MSCs are responsible for bone remodelling and the
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bottom-up restoration of the cartilage layer. Therefore, it can
be hypothesized that restoring the regenerative capacity of
subchondral bone marrow may hinder the progression of

OA. For the better understanding of this process, we used
an in vitro 3D model, namely, human subchondral osteoar-
thritic bone pieces (BMEs) cultured with various serum
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supplements. The positive influence of HAS on the prolifera-
tion of resident MSCs on the surface of the bone lamellae has
been proven by viability tests and fluorescence microscopy
analysis, basically reproducing the data obtained in mono-
layer in a complete bone tissue. Similarly, the gene expres-
sion pattern of the mixed cell population of the explants
shows a relative increase of MSC and osteoblast markers
(COL1A1 and ALPL). In addition, osteoblast and osteoar-
thritic chondrocyte proliferation rates were higher in HAS-
supplemented media compared to PRP, indicating that the
positive effects are also observed on other musculoskeletal
cell types (Supplementary Figures 2 and 3). This has been
also shown in histology analysis where more preserved bone
marrow structure was demonstrated after HAS treatment.

5. Conclusion

Despite their seemingly similar preparation methods, serum
derivatives can have very divergent biological effects as it
was demonstrated here between hyperacute serum and
PRP. Taken together, the five separate lines of experimental
observations regarding the effect of hyperacute serum point
in one direction—(1) MSCs proliferate better, (2) MSCs
shift lineage towards the osteoblastic line, (3) osteoblasts
proliferate faster, (4) chondrocytes proliferate faster even
when affected by osteoarthritis, and (5) bone marrow
structure—is more preserved: hyperacute serum may be
applicable in therapeutic protocols targeting the degenerative
bone marrow niche.
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Supplementary Figure 2: proliferation effect of serum sup-
plements on osteoblast culture. Subconfluent osteoblasts
(Lonza, Walkersville, USA) were cultured in high-glucose
DMEM with pyruvate (Gibco, Paisley, Scotland) and with
antibiotics (penicillin 200 U/mL, streptomycin 0.2 mg/mL,
and amphotericin B 2.5 yg/mL) (Sigma-Aldrich, St. Louis,
USA) and L-ascorbic acid (50 ug/mL; Sigma-Aldrich, St.
Louis, USA) in the absence of supplement (white bar), 10
(viv)% of FCS (light-gray bar), 10 (v/v)% FCS+1ng/mL
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bFGF (dark-gray bar), 10 (v/v)% PRP (black bar), or 10
(v/v)% HAS (red bar). XTT viability assay was performed
on the third, 11th, and 18th days. Results are presented as
means of triplicate samples in three separate cultures (n =9
altogether). Supplementary Figure 3: proliferation effect of
serum supplements on osteoarthritic chondrocytes. Cells
were cultured in DMEM/F12 (Gibco, Paisley, Scotland) with
antibiotics (penicillin 200 U/mL, streptomycin 0.2 mg/mL,
and amphotericin B 2.5 ug/mL) (Sigma-Aldrich, St. Louis,
USA), and L-ascorbic acid (50 yg/mL; Sigma-Aldrich, St.
Louis, USA), in the absence of supplement (white bar), 10
(vIv)% of FCS (light-gray bar), 10 (v/v)% FCS+1ng/mL
bFGF (dark-gray bar), 10 (v/v)% PRP (black bar), or 10
(vIv)% HAS (red bar). XTT viability assay was performed
on the 4th and 8th days. Results are presented as means
of triplicate samples in three separate cultures (n=9
altogether). (Supplementary Materials)
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