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Abstract

Systems medicine is a holistic approach to deciphering the complexity of human physiology in 

health and disease. In essence, a living body is constituted of networks of dynamically interacting 

units (molecules, cells, organs, etc.) that underlie its collective functions. Declining resilience due 

to aging and other chronic environmental exposures drives the system to transition from a health 

state to a disease state; these transitions, triggered by acute perturbations or chronic disturbance, 

manifest as qualitative shifts in the interactions and dynamics of the disease-perturbed networks. 

Understanding health-to-disease transitions poses a high-dimensional nonlinear reconstruction 

problem that requires deep understanding of biology as well as innovation in study design, 

technology, and data analysis. With a focus on the principles of systems medicine, this Review 

discusses approaches for deciphering this biological complexity from a novel perspective, namely 

understanding how disease-perturbed networks function; their study provides insights into 

fundamental disease mechanisms. The immediate goals for systems medicine are to identify early 

transitions to cardiovascular (and other chronic) diseases, and to accelerate the translation of new 

preventive, diagnostic or therapeutic targets into clinical practice, a critical step in the development 

of personalized, predictive, preventive and participatory (P4) medicine.
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Introduction

Excessive spending and poor outcomes in health care and drug development necessitate the 

search for new research paradigms to translate cutting-edge, scientific discoveries of systems 

medicine into the clinic more quickly and efficiently.1,2 Despite the advent of technological 
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breakthroughs in collecting and analyzing big data for human physiology, there are serious 

concerns about whether the research enterprise is ready to deliver on its promise for 

transforming health and health care.3 Meeting this challenge is particularly pressing for 

cardiovascular diseases (CVDs) that account for ~17% of the US national health spending 

and impact the life of three out of five adults over the age of 60.4 Surprisingly, <15% of 

clinical guidelines are based on high-quality research-based evidence.5,6 Moreover, 

guideline-driven care, although effective on a population scale, fails to account for the 

individual’s unique susceptibility to disease and their response to therapeutic interventions. 

Therefore, healthcare stakeholders seek research solutions that offer personalization yet 

apply to the population scale and translate easily and safely into clinical practice. Herein, we 

review new approaches rooted in the principles of systems medicine that can provide the 

foundational framework for a novel translational research paradigm. At the heart of this new 

paradigm is the individual-specific interpretation of a high-dimensional data space for 

personalized and precise health management.

Systems Medicine: A new paradigm in medicine based on systems theory

A fundamental concept of systems medicine is the human body as a “network of networks” 

(Figure 1). Each level of biological complexity, from the genome to molecules, to cells, to 

organs and finally to individuals, can be modeled as networks with specific components 

(nodes) and interactions between them (edges). The architecture of highly interconnected 

biochemical, molecular and cellular networks of living systems contradicts the reductionist 

philosophy of deterministic linear relationships between causal agents and physiological 

responses that underlies current clinical practice and pharmaceutical research. The nonlinear 

physiological responses to internal and external stimuli do not enable an intuitive 

interpretation. Hence, there is a need to establish a new conceptual framework that takes into 

consideration the high-dimensional, multi-scale, dynamical nature of our bodies, and to 

study human physiology with respect to the fundamental characteristics of systems, such as 

resilience and state transitions (Table 1). These concepts are not foreign to medicine. For 

instance, the physiological underpinning of resilience is homeostasis: the adaptation of 

physiological interactions of regulatory networks following a perturbation to maintain 

consistency of the tissue and organ composition and function.7 This optimal, tightly 

regulated physiological steady state is self-stabilizing (a systems set-point of “attractor 
state”) yet adaptive, thereby establishing a health continuum that depends on both the 

genetic makeup of each individual and the environmental exposures over their lifetimes, as 

we discuss below. Therefore, disease can be conceptualized as a failure to maintain the 
health state for an individual system. Eventually, this results in a transition towards a 

suboptimal and unfortunately self-stabilizing state that we recognize as a disease state and is 

maintained by distinct disease-perturbed network architectures.8,9

Resilience, Reversibility and Health-to-Disease Transitions

Within the formal framework of homeostasis as a manifestation of systems dynamics, we 

can conceptually visualize health and disease as the basins of attraction (Table 2) of two 

alternative stable states of the system (Figure 2).10 The “width” and the “steepness” of the 

health state attractor basin determine the system’s resilience – its capacity to absorb a 
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perturbation without shifting to an alternative state but instead to relax back to the healthy 

state. In contrast to acute perturbations that may or may not kick the system out of the basin 

of attraction, chronic exposure to environmental risk factors can alter the architecture of 

system’s regulatory networks that mathematically “shape the potential landscape”. Thus, in 

formal terms, such disturbance of the network architecture can result in the flattening of the 

basin of attraction, which translates into system’s destabilization, and therefore eventually 

facilitate a transition to a disease state – or at least reduce the barrier to such a transition. 

This process represents a critical state transition (Table 2) that can be observed as an abrupt 
qualitative (discontinuous) shift of a system’s state. Such behavior, long known in ecological 

systems, was recently experimentally validated at the biochemical and cellular levels of 

human physiology—and represents a powerful new conceptual tool for dealing with 

biological complexity of organism at many levels.11–13

Within this framework, a three-stage model of health-to-disease transitions has been 

proposed.12,13 (A) In the healthy state, the system is resilient to perturbations. (B) In the 
destabilized but still healthy (pre-disease) state, the system has low resilience and is sensitive 

to environmental or genetic perturbations. Defined as the limit of a health state that 

corresponds to what is sometimes considered a pre-disease state by clinicians (e.g., pre-

hypertension and pre-diabetes). Very importantly, with appropriate interventions the system 

can still revert to the health state. (C) In the disease state (a new attractor state), the system 

cannot spontaneously recover and return to the normal state, which contrasts it to the pre-

disease state. In few clear-cut instances, a one-time therapeutic intervention can restore the 

system back to the health attractor, as best documented in the case of arrhythmia and 

measures that restore normal rhythm.14 However, in most diseases (other than in surgical 

treatment) therapy cannot cleanly achieve such reversal to the healthy attractor, but is limited 

to strengthening compensatory mechanisms that prevent the initial disease state from 

progressing or causing further damage, as in the case of hypertension and diabetes. 

Therefore, identifying the “point of no return” at which the pre-disease state inexorably 

transitions to disease is of utmost importance for clinical practice. This conceptualization 

could not just revolutionize disease prevention, but also opens a new vista on health and 

wellness management, and can thus help shape the patient’s expectations. We will discuss 

this point further below.

The state of the art

Omics biomarkers

Genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms 

(SNPs) associated with chronic disease-specific clinical phenotypes or their risk factors, for 

instance blood lipids and C-reactive protein for CVDs.15,16 The general consensus is that 

while individual genetic variants and risk markers exhibit only modest disease associations, 

when combined into polygenic or multivariate risk scores they can explain a significant 

portion of the variation in disease incidence in the general population.15,17,18 Still, in the 

case of genetic risk factors the heritability explained by the most significant variants is 

approximately 10%, whereas the estimates of total heritability from family studies are 

substantially higher, between 30% and 50%.19,20 This “missing heritability” conundrum is 
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typical for complex traits and emphasizes the need for continued development and 

evaluation of disease risk models that incorporate not only genetic factors or complex 

genetic phenomena, such as epistasis, that interfere with the effort to pinpoint particular 

genetic variants as predictors of genetic risk, but also considers non-genetic and dynamical 

dimensions of human physiology, as well as environmental risk factors.21 By contrast, whole 

genome sequencing of families with rare cardiovascular disorders, cases where the 

predominance of a genetic cause is likely, have enabled the rapid identification of new genes 

related to cardiovascular development and function (BOX 1) and drives the adoption of 

genome sequencing as a frontline diagnostic tool.22

Despite the potential role of genome sequencing to predict disease risk and stratify patient 

cohorts into subclasses of diagnosis and to predict the patient-specific response to a therapy, 

personal genome information is still rarely used, today, for clinical evaluation and 

management of CVDs.23 Instead, physicians assess a given patient’s physiological state by 

measuring proteins and other metabolites (e.g., hs-CRP, pro–BNP, and troponin) whose 

utility have been established only in large cohorts and thus have unknown validity for each 

individual case. This gap could be soon addressed by adopt additional multi-omics 

technologies that combines genomics with metabolomics and proteomics in the clinical 

setting. Overcoming the barrier of CLIA-certified, cost-effective applications for systems 

medicine technologies (Table 3) and, thus, enabling dense, unbiased, molecular profiling of 

an individual, it has the potential to (1) support a personalized clinical management of health 

and disease and (2) accelerate biomarker discovery by an exhaustive characterization of 

health- and disease-specific network states.24,25 This compendium includes extensive 

reviews for each of the omics technologies in cardiovascular research.

Herein, we only refer to specific examples that have been powered by the newest 

technologies and present novel biomarker niches (BOX 2). However, it is important to 

highlight that despite significant technological advances and the availability of rich data, 

biomarker discovery has been only marginally successful. The Institute of Medicine report 

on Omic Diagnostic Technologies enumerated major challenges to biomarker discovery, 

highlighting the disagreement between the large number of academic research-based, high-

profiled publications on biomarkers and the poor translation into clinical practice.57 The 

aforementioned report specified issues that reduce the signal-to-noise ratio; for instance, 

unknown genetic and other risk factors that confound the signal to noise increasing the false 

discovery rate.57 All together, to increase the frequency of successful translational stories, 

the research enterprise needs to re-design research studies by considering the complexity and 

variability of human physiology, and by collecting high-dimensional datasets that will allow 

researchers to identify confounding variables and to stratify populations at early phases of 

biomarker discovery.58

The landscape of translational research studies

The study design of translational and clinical research depends heavily on the project goals 

and budget (Figure 3). For instance, cohort studies or randomized clinical trials are the 

cornerstone of quantifying the effect of risk factors or interventions, respectively. Such 

cohort or “class”-based studies inform on the average health or disease states or the average 
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response to therapeutics for a population (class) presumed to be homogeneous. More 

importantly, due to their enormous cost, these studies traditionally obtain a “low-
dimensional snapshot” of the physiological state for hundreds of participants, limiting our 

ability to (1) capture information about health-to-disease transitions in the time dimension, 

(2) perform comparative outcome research across studies that measure different variables 

and (3) expand our understanding of explanatory end points.60 On the other hand, seminal 

studies, such as the Framingham Heart Study, the Nurses’ Health Study, and the Women’s 

Health Initiative, depart from the traditional “class-based” design and epitomize the power 

of longitudinal data for large population cohorts.61–64 These studies do in fact investigate 

how healthy individuals transition to a disease state, revealing risk factors and biomarkers 

that affect such transitions. However, the variables assessed are largely based on traditional 

clinical established measures or questionnaire – whose design is biased by established 

knowledge. By contrast, a new study model combines high-dimensional (dense), 

longitudinal profiling using the scientifically unbiased tools of omics measurements. This 

approach avoids the self-fulfilling prophecy of circular thinking associated with applying 

knowledge derived from population-averaging studies to yet another population study and 

therefore paves the way for new discoveries – such as individual specific biomarkers that 

may never have been discovered in population-averaging studies. Successful stories for such 

individualized, dense omics-based longitudinal studies for detecting early signs of disease 

transition in individuals begin to emerge, as in the case of diabetes and inflammatory bowel 

disease (IBD).65,66

These two study-design extremes for longitudinal monitoring, the averaging over thousands 

of individuals, measuring known at relative low dimensionality vs. single individual, dense 

(omics-wide) unbiased profiling present distinct ways of prior knowledge utilization and 

thus distinct opportunities for discovery. The second approach brings personalization to a 

new level because it does not rely on risk indicators that had been derived from averaging 

large populations but instead rely on the progression of the individual case to establish 

biomarkers for intervention planning. However, to achieve generalizability of the observed 

health transitions and outcomes, experience from many such transition in many individuals 

must be aggregated and explained within a formal framework of molecular pathophysiology.
67 The first step is the acquisition of data by longitudinal dense profiling in large 
populations. Towards such a data-rich Framingham Heart-like study for the digital age, the 

Pioneer 100 Wellness study (herein, P100 study) prototyped a new research model using 

personal, dense, dynamical data (pD3) clouds for 108 individuals.17,68 Finally, there are 

“hybrid” study designs that are perfectly suited to address specific problems that can benefit 

from low-dimensional continuous data collection at large populations. Between these two 

extremes is the hybrid model study: It still stratifies healthy individuals into classes and 

tailors prevention strategies but utilizes their dynamic response to specific perturbations – a 

novel aspect deeply rooted in the ideas of “N-of-1” and systems medicine.69 Below we 

illustrate this hybrid model (Strategy 1) and the new multi-omics longitudinal model 

(Strategy 2).
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Strategy 1: The Hybrid Methods

Stress tests, such as the commonly used oral glucose tolerance test and the metabolic 

exercise stress test, measure the body’s resilience to perturbations. The time it takes to return 

to the initial state (recovery time, ranging from minutes to hours) can be associated with the 

width and the steepness of the health state attractor (described above) and has the potential 

to stratify patients in healthy or pre-disease states (Figure 4). The quantification of recovery 

time requires monitoring human physiology at higher time resolution than used in many 

traditional research studies. Also, it raises an interesting question: Is there a proper sampling 

frequency to investigate health-to-disease transitions? The optimal frequency of study will 

certainly depend on the nature of the tested trait and disease. External perturbations such as 

diet and medical interventions can shift blood physiology within minutes or days, while the 

manifestation of clinical phenotypes may require years.

Like CVDs, diabetes is a chronic, complex disease that is strongly associated with 

individual’s lifestyle, such as poor diet. Evidence-based guidelines have long been used to 

provide uniform pharmacological and lifestyle management recommendations for the 

“average” patient. But to begin to expose what individuality is lost in such population-based 

guidelines, notably with respect to the kinetics of stress-response, Zeevi et al (2015) applied 

an innovative study design that combines continuous monitoring of blood glucose and dense 

omics profiling for 800 participants to expose the inter-individual systems differences. 

Postprandial glycemic response (PPGR) to every meal assessed by standard continuous 

glucose monitoring allowed researchers to establish a metric of resilience for each 

individual. The study not only confirmed that high PPGR values are associated with 

metabolic syndrome but also opened a new vista on individuality of kinetics of homeostatic 

response because of the additional omics dimensions measured for each proband.70–72 Food 

diary logs, blood metabolomics and gut metagenomics were integrated for the interpretation 

of each individuals PPGR/meal. With this additional high-dimensional information of 

potential response modifiers, researchers were able to predict individual-specific response to 

diet. The predictive capability comes from a statistical machine learning approach that 

leverages the large number of individual and their diverse responses.

This study illustrates the power of longitudinal high-dimensional N-of-1 trials for large 

populations in two distinct ways: (1) The physiological response to diet is highly 

individualized and general dietary guidelines can be harmful in individual cases, drawing 

our attention to other critical issues on disease management, such as drug prescription. (2) A 

relatively small number of individual, high-resolution profiles that exhibits diversity (as 

opposed the uniformity that is favored in standard statistical analysis) can inform about 

physiological principles in the response to a perturbation (nutritional and therapeutic 

interventions).

To design an equivalent study for coronary artery disease (CAD), what would be the single 

parameter we should and could measure at high temporal resolution? Continuous 

noninvasive monitoring of complex physiological variables, such as heart rate and heart rate 

variability (HRV), is an active research field.73–77 Since HRV integrates the responses of the 

sympathetic and parasympathetic systems, it can serve as a marker for many disease states 
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beyond CVD.78–80 The key point is that the routine measurement of complex phenotypes in 

combination with a high-dimensional molecular systems characterization using multi-omics 

(see Strategy 2) can reveal many different aspects of healthy and disease states.

The new type of phenotype-biomarkers such as PPGR or HRV that result from complex non-

linear network dynamics, can now be collected through connected digital devices. By 

leveraging such digital biomarkers, e.g., how patients are responding to a drug or treatment 

in the real-world, healthcare professionals would be able to adjust and improve tailored care 

plans. At the same time, new high-throughput microfluidic platforms may soon achieve 

high-dimensional and dense longitudinal bedside measurement. Recently, Gao et al (2017) 
published a mass-spectrometry-based lipidomics analysis of human dried blood spots.39 

They were able to measure >1,200 lipid molecular species from a single blood sample in 

postprandial response kinetics experiments, of the kind as Zeevi et al (2015) performed. 

They identified significant alterations in triacylglyceride species that could be further 

investigated to reveal nutritional risk factors with atherosclerosis.

Strategy 2: Personal, Dense, Dynamic Data (pD3) Clouds

The Pioneer 100 Wellness study was a feasibility study focused on generating personal, 

dense, dynamic data clouds for two primary purposes: (1) to show that actionable 

information could be readily identified from the data that, when acted upon, would result in 

health benefits to each individual (based on connections that are already known and 

approved); and (2) to build a dataset that can be mined for novel biological and medical 

discovery, including early-stage diagnostics and prevention and early-stage disease reversal 

strategies.17 This project profiled 108 individuals using whole-genome sequencing, 

proteomics, metabolomics, clinical chemistries and gut microbiomes every three months 

over the course of nine months. Specifically, these data included 218 clinical laboratory 

tests, >800 metabolites and proteins in the body fluids, as well as the abundances of >4,000 

gut microbial species. There were three primary outcomes of this study. First, it identified 

over 3,000 statistically significant associations across the diverse data categories. The 

resulting inter-omic cross-sectional correlation network resulted in 766 nodes connected 

through 3,470 statistically significant interactions (edges). Second, the whole-genome 

sequencing data were used to calculate polygenic risk scores for 127 GWAS-assessed traits 

or conditions, including blood pressure, heart rate, QT interval, and LDL cholesterol. These 

genomic indicators were then associated with the measurements in the blood (proteins, 

metabolites, and clinical chemistries) to identify ways in which the genetic risk was 

manifesting in the body (e.g., the concentration of cystine in the plasma is negatively 

correlated with the genetic risk for Inflammatory Bowel Disease). These types of 

observations can provide hypotheses for patient stratification of potential confounding 

factors, as well for personalized prevention, early-disease reversal or treatment.

Finally, as the size of the pioneer population is increasing and time of observation expanded, 

we can identify biomarkers of biological as opposed to chronological age. Phenotypes, such 

as lung function, grip strength or bone mineral density have long been used as indicators of 

biological aging. However, a large portion of the observed phenotypic variance remains 

unexplained and a comprehensive understanding of most complex phenotypes is lacking. 
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Erikson et al (2016) pursued genome sequencing of healthy aged individuals (Wellderly) to 

understand the genetics of disease-free aging without medical intervention.81 The authors 

concluded that healthy aging is associated with having a lower genetic risk for select 

diseases, and particularly, cognitive decline. However, they emphasized the difficulty to 

achieve genome-wide significance due to small sample size and the complexity of a rare 

phenotype, such as healthy aging, that takes years to accrue. Therefore, monitoring the 

temporal change of pD3 clouds for each individual will help us to startify the entire 

population based on individual’s “wellderly” potential (decreased genetic risk for chronic 

diseases) and follow their aging process to identify how individual’s environmental 

exposures influence his/her biological aging and chronic disease delay.

The principle of equifinality: early vs. late disease stage biomarkers

The current disease-oriented paradigm of clinical research and practice precludes detailed 

knowledge about the early presentation of CVDs.82 Biomarkers for clinical decision-making 

and drug development represent cardiovascular disease endpoints limiting the diagnosis and 

management of early stages of CVDs, as well as drug discovery and development that 

reverse or delay the progression of subclinical phenotypes. In general, the clinical efficacy of 

developed drugs has remained unimpressive, owing in large part to the heterogeneous 

manifestation and progression of CVDs.83 The latter highlights why longitudinal, omics 

profiling (pD3 clouds) will provide a window into individual-specific mechanisms that cause 

or contribute to health-to-disease transition and disease progression, which could ultimately 

enable the ‘precise’ targeting of these mechanisms.

Investigators have found that neurodegeneration following prion infection in mice, 

progresses through gradual gene expression shifts that can be presented as disease-perturbed 

networks.9 When they summarized the results across individuals, they identified specific 

state transitions (gene network states) as the diseases progresses. However, there was 

significant heterogeneity in the sequence of the gene expression changes depending on the 

mouse strain- and infectious agent.9 This is a critical departure from traditional biomarker 

research, even of multi-marker signatures, because it becomes evident that the network 

architecture reconfigures, and not just individual nodes favoring a high-dimensional, systems 

biology approach.

We hypothesize that there are multiple possible trajectories from health to disease that 

depend on the genetic makeup and environmental exposure of each individual – a view 

consistent with the systems principle of equifinality (Table 1), which highlights the notion of 

disease states being stable attractor states as explained earlier. If this is the case (as it seems 

highly likely), what does this mean for biomarker discovery and how can we analyze the 
diversity of the possible trajectories, and identity those that pertain go a given patient?

We picture that the array of perturbed regulators across individuals in a pre-disease state, 

like pre-hypertension, affect collectively a specific regulatory subnetwork (Figure 5). Still, 

each individual may present changes in distinct nodes of this apparent “disease-perturbed” 

network, depending on their genetics and environmental exposure. In other words, the 

“reaction norm” postulated by early geneticists is what is determined by the genome: it 

Trachana et al. Page 8

Circ Res. Author manuscript; available in PMC 2019 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shapes the detailed structure of the basin of attraction of the health state and hence, the 

individual-specific exit trajectory. This concept underscores the notion of not just multi-

marker panels for CVD diagnosis and drug discovery but that such panels need to be further 

stratified by the polygenic risk of individuals. pD3 clouds offer the underlying data needed 

to define relevant marker panels that represent disease-perturbed networks and their 

dynamics. Since disease-related physiological parameters and their response to perturbations 

vary so much between individuals, a new strategy is to define some apparent networks of 

markers based on pairwise functional relationships between markers. One obvious type of 

relationship is the correlation between markers, measured as their co-variation across a 

cohort of individuals, thus precisely exploiting the inter-individual variability that otherwise 

would appear as noise. In this way, Price et al (2017) built 70 relevant subnetworks that 

appear as modules of markers (or “community networks”) and essentially represent sets of 

physiologically related variables.17 For instance, one module contained C-peptide, 

triglycerides, insulin, homeostatic risk assessment–insulin resistance (HOMA-IR), fasting 

glucose, high-density lipid (HDL) cholesterol, and small low-density lipid (LDL), which the 

authors labelled the “cardiometabolic health” network. This network-based data 

representation is expected to be more sensitive for detecting minute departures from the 

healthy state in individuals given that each person may follow distinct trajectories when 

exiting the health state. Without knowledge of data representation, the inter-individual 

variability in the high-dimensional data space would be considered noise and lost. This 

method could for instance facilitate the discovery of biomarker that could assist in clinical 

decision-making and drug development of conditions, such as pre-hypertension or pre-

diabetes that epitomize the earliest stage of departure from the health attractor. This is 

important because, in accordance with the principle of equifinality, the earlier in the disease 

process, the higher the inter-individual variability. Knowledge of the existence of the 

“community networks” and their members thus may be key for future multivariate blood 

diagnostics.

Data translation to actionable possibilities

As described above, we can design a framework to study disease complexity using principles 

from systems theory. An important component of the proposed framework is to quantify 

individual response to nutritional, therapeutic and other interventions (e.g., exercise, 

inflammation, nutrition, etc.). The participants in the Zeevi et al (2015) study had to follow a 

specific diet protocol and self-report activity or medication that could affect glucose levels.69 

On the other hand, the participants in the P100 study didn’t follow a specific protocol, as this 

study had a broader goal: to improve participants’ overall health – not a single dimension.
17,84 Therefore, a unique aspect of the P100 study was to provide personalized health 

coaching on actionable information based on the genetics and the longitudinal clinical and 

‘omics assessments. Essentially, coaches presented personalized actionable items to 

participants who could decide on and actively participate in their health amelioration. The 

key point is that the coaches acted as behavioral specialists and determined before the study 

the objectives of health care for each individual. The coaches then both explained the 

actionable possibilities and placed them in the context of each individual’s health objective. 

Previous reports where individuals actively annotated data with environmental and 
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behavioral information has presented new scientific hypothesis for translational research and 

improved clinical outcomes.3,85,86 The effect of each “perturbation” was measured in the 

next two rounds of data collection. This unique design of P100 study demonstrated that it is 

possible to 1) study human health and disease considering social and psychological 

interactions, and 2) build a fast-track, data-driven translational research platform. Operating 

on the nascent field of scientific wellness – the early transitions to disease, a clinically-

neglected realm, researchers managed to minimize the distance between “diagnosis” and 

“intervention” and achieve personalization through patient participation.

Systems medicine strategies to personalized in vitro models

Understanding the underlying molecular and cellular mechanisms of disease manifestation is 

an important step in the development of efficient and effective therapies for cardiovascular 

diseases. While the improvements in genome-wide molecular techniques provide a powerful 

lens to study human disease, there are obvious limitations to what kinds of samples can be 

collected from humans. For CVD, researchers have access only to what is released from 

acutely injured tissues (e.g., during myocardial infarction with widespread necrosis, 

inflammation, and invasion of acute-phase response cells). In other words, the reported 

networks (Fig 1) represent just snapshots of tissue state that only remotely resemble the 

normal or diseased tissue under stable conditions. Therefore, designing and developing 

research strategies to study human health-to-CVD transitions non-invasively at scale will be 

paramount to implement the new systems medicine in CVD (BOX 3). Pioneering work in 

Yamanaka’s lab has provided a major breakthrough for stem cell research through the 

discovery of induced pluripotent stem cells (iPSCs).87 The ability to create individual-

specific stem cells and then differentiate them to any cell type provides a unique opportunity 

to study genetic diseases in vitro. Several studies have now reproduced the disease 

phenotypes, molecular and electrophysiological abnormalities and drug responses in patient-

derived cells for several cardiomyopathies, tachycardias, Barth, Marfan, long QT and 

LEOPARD syndromes.52,53,87 Recently, Ang et al. generated iPSCs for individuals from the 

same family with cardiac septal defect, differentiated them to cardiomyocytes, and used a 

systems approach to uncover how the mutated GATA4 impairs the cardiac gene program.88 

The study showed that some of the disease phenotypes such as impaired contractility, 

calcium handling, and metabolic activity in cardiomyocytes are replicated in the in vitro 
model; it also unmasked how the mutation in GATA4 disrupts recruitment of TBX5 at the 

enhancers leading to aberrant chromatin states and a faulty transcriptional program.89

In the medicine of future, our ability to generate patient-derived cell types will enable 

predicting their personalized drug response even before administering the drugs. Recently, 

Matsa et al. demonstrated this in the lab using transcriptome data from iPSC-derived 

cardiomyocytes from seven patients.56 The study showed that the cells derived from 

different patients retained patient-specific gene expression profiles and this could be used to 

predict the drug response.67 Patient-derived cells can serve as a platform for screening 

effective therapy strategies as well as to study cardiotoxicity using small molecule libraries. 

One of the main reasons for failure of candidate drugs at late stages of development is 

cardiotoxicity, which could be avoided by pre-screening such drugs on in vitro 
cardiomyocyte models or liver toxicity models.90
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BOX 1

Rare Family Syndromes and Whole Genome Sequencing

There are >150 rare heart syndromes or conditions for which there are no basic 

mechanistic insights beyond the phenotypic manifestation of the disease.91 Rare diseases 

comprise a heterogeneous set of conditions that affect various organ systems and have 

wide ranging prognoses. Family genomics is an approach that integrates observed genetic 

variations in multiple individuals in a family – affected and unaffected – and 

characterizes these observed variants according to their confidence level, their predicted 

deleteriousness, the match between their population frequencies and the prevalence of the 

disease, their mode of transmission through the pedigree, and whether they match the 

disease status of the individuals.92 This integrative strategy is particularly suited for 

analysis of rare diseases, where the same set of variants can be assumed to cause the 

disease in multiple affected individuals in a family, or variants arising de novo in the 

same gene(s) can explain disease patterns in families with single affected individuals. In 

the former case, the number of meioses separating the affected individuals determines the 

power, effectively narrowing the search space within the genome to the regions identical 

by descent; frequently, a single family may suffice to identify compelling candidate 

variants and genes. In the latter case, novel mutations are evidenced in individuals 

relative to their parents.

The family genomics method was successfully applied to study Adams-Oliver Syndrome 

(AOS), which is defined as aplasia cutis congenita (ACC) with transverse terminal limb 

defects. AOS has a number of associated developmental anomalies affecting the central 

nervous system, congenital heart defects (23% of cases) and other vascular anomalies 

(14% of cases).93 To date, mutations in six genes have been implicated in AOS 

(ARHGAP31, DOCK6, EOGT, RBPJ, NOTCH1 and DLL4), with both dominant and 

recessive modes of inheritance and were identified via family genomics analysis.93–98 

Additionally, the causal GATA4 variant in a pedigree affected with cardiac septal defects 

was originally identified by targeted sequencing; the family genomics approach using 

whole-genome sequencing successfully re-identified this variant with genome-wide 

significance and objectively confirmed the absence of other candidate causal variants.
88,99 Even common diseases like bipolar disorder can be caused by combinations of rare 

variants.100 In this case, a family-based sequencing strategy can detect the effects of 

transmitted rare variants with moderate to large effect sizes within a pedigree. Family-

based sequencing has certain advantages over sequencing individual, unrelated affected 

individuals. When variants are observed in more than one family member, there is higher 

confidence that they are not sequencing errors. Also, under many disease models one 

expects stronger or more numerous risk variants in familial cases than in sporadic cases.
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BOX 2

Cell population structures as a new class of biomarkers

Over the last decade, advances in genome sequencing and microfluidics allow scientist to 

explore new aspects of human physiology, such as the microbial communities in our gut, 

skin and other body cavities, as well as the cellular composition of human blood and 

other tissues. This present the opportunity to consider a new biomarker class that is 

related to the population structure of the microbial communities, or our own cells. The 

measured heterogeneity either reflected as different bacteria species or cell types and 

their states is a new biological observable in human health and disease.

Metagenomics

The recognition that microorganisms may play a critical role in maintaining human 

health than in generating diseases places metagenomics as one of the most relevant areas 

of future research.101,102 Several papers over the last decade investigate the impact of 

qualitative and quantitative changes in gut microbiota on the pathogenesis of 

cardiometabolic diseases in cohorts of well-phenotyped patients.103–105 The microbial-

mammalian symbiosis plays a critical role in metabolic health. Microbial metabolites 

emerge as key messengers in the complex communication between the gut microbiota 

and their host.36 Recent studies suggested that choline and phosphatidylcholine from the 

diet could be metabolized to trimethylamine (TMA) by intestinal microbiota which 

would be further metabolized to a proatherogenic factor – trimethylamine-N-oxide 

(TMAO).106 TMAO is associated with increased risks for both prevalent CVD and 

incident major adverse cardiac events (myocardial infarction, stroke or death).103 Further 

studies suggest that more plasma and urine metabolites like GlcNAc-6-P and mannitol 
with increased levels in patients with coronary heart disease might be of microbial origin.
32 While association analysis of species and function levels between intestinal microbes 

and these metabolites can reveal further biological insights highlighting the omics 

integration.36,107 Finally, there is the hypothesis how oral microbiota may provide a link 

between periodontal infection and cardiovascular disease, a well-established relationship.
108 As impaired dentition accompanies old age, it may be worthwhile to explicitly 

investigate the oral microbiome as this is likely a contributor to changes in GIT 

microbiota and consequently health status.101

Immune system populations at single-cell level

The development of single-cell technologies has enabled a new, high-resolution 

information to model and understand disease progression, as well as drug or other 

perturbation responses.12,13,40,44 For instance, single-cell analysis has now been used to 

understand the origin and role of cellular heterogeneity in progression and drug resistance 

of various types of cancers including colon cancer, glioblastoma, breast cancer and 

prostate cancer.109 However, cell population heterogeneity becomes an important 

“biological observable” for other chronic diseases as well. Profiling immune system at 

single-cell resolution has been demonstrated as a potential biomarker for disease 

progression or treatment-specific responses.110 For instance, using mass cytometry, 

which allows single-cell profiling of >30 protein markers, in whole-blood samples from 
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32 patients undergoing hip replacement, researchers characterized the phenotypic and 

functional immune response to surgical trauma.45 Similarly, mass cytometry was used to 

build a functional map of healthy fetal-maternal immunity that will allow identifying 

adverse maternal and neonatal outcomes.46 As innate and adaptive immune responses 

have an essential role in the development and progression of many cardiovascular 

diseases, cellular heterogeneity of immune cells may provide a new set of biomarkers for 

atherosclerosis, coronary artery disease or cardiac arrhythmia – all associated with 

chronic inflammation.111
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BOX 3

Health-to-disease transitions and their reflections

Ongoing preventive monitoring of heart physiology requires easily-accessible samples 

and minimally invasive procedures. Blood is a natural window into human physiology. It 

contains abundant information concerning the health and disease status of organs in the 

form of secreted RNAs, proteins, and metabolites, as well as cell population diversity.112 

Changes in the concentrations of some of these molecular and cellular components can 

provide reflections of disease processes. A proof-of-principle study comes from the field 

of infectious disease.9 Researchers studied the dynamics of prion infection in mice and 

identified the transition of a health- to a disease- network state through progressive 

activation of four distinct sub-networks that are related to neurodegeneration.9 Then, they 

leveraged the organ-specific nature of the perturbed proteins to prove that this transition 

is reflected in the blood, enabling the early diagnosis and disease stratification based on 

the stage and infectious agent weeks ahead of the clinical manifestation of the disease.113 

Importantly, these distinct network states can point to therapeutic targets or precede 

clinical symptoms, offering opportunities for intervention in disease progression. A 

similar ongoing effort for Huntington’s disease in mice aims to prove that this paradigm 

(reflections of early transitions) holds for complex, non-infectious, chronic diseases.114 

Traditional clinical biomarkers, such as Troponin T (TnT) and alanine aminotransferase 

(ALT) are classified under the paradigm of organ-specific (or organ-enriched) proteins. 

Their elevated levels in the blood reflect damage in heart or liver, respectively. In fact, 

TnT is the most significant predictive biomarker for subclinical myocardial injury in 30 

days than any other systemic inflammation marker, such as C-reactive protein and 

cholesterol lipids.115 Still, we lack longitudinal monitoring of TnT of populations at risk.
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Future perspectives

All of the above advocates for new workflows and infrastructure to enable fast and 

effective translation of research from bench to bedside. We foresee a new model for 

translational and clinical research, wherein virtually the entire population becomes an 

ongoing longitudinal study for P4 (predictive, personalized, preventive, and participatory) 

medicine. Personal, dense, dynamic data (pD3) clouds of an individual before the 

incidence of disease (baseline) and during subclinical stage of disease are crucial to 

understand early health-to-disease transitions that mark clinical onset. Expanded 

electronic medical records are a way to start: genetic data need to be incorporated into the 

medical record because of their potential to aid clinical decision-making, and to facilitate 

the adoption of future omics metrics. As efforts for integration of multiple streams of 

health data (electronic medical data, imaging, omics and biosensors) mature, generating 

more comprehensive pD3 clouds, it will become possible to measure and integrate new 

aspects of our physiology and to understand how (chronic) environmental exposures 

influence it. This can revolutionize the management of wellness and disease when 

applied to the same health systems and patient populations by designing a personalized, 

evidence-driven medical practice. The task now is to make actionable the distinct features 

in the pD3 clouds and to convert this information into effective metrics to be used in 

clinical settings, leading to improved patient outcomes.
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Figure 1. 
The Network-of-networks. Our bodies are made up of many networks that are integrated at 

and communicating on multiple scales.
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Figure 2. 
Health-to-Disease as a Critical State Transition. a) Health (blue line) and Disease (red line) 

are two alternative stable states of the system (reflected in the value of the vertical axis, the 

system state variable), as a function of a “parameter” × (ho horizontal axis) that 

characterizes the regime of behavior of a system (“bifurcation diagram). Dashed lines 

represent a possible path for the abrupt transition from one stable state (health) to another 

one (disease) as the parameter × increases. The empty circles mark unstable states that 

forces the system to undergo the switch-like transition to the alternative stable state and 

represent the critical thresholds (“tipping points”), where the qualitative behavior of the 

system state changes abruptly. A snapshot based on the parameter value ×1 cannot 

distinguish between health or disease state without obtaining more information about the 

actual system state (other variables in omics dimension, represented by y-axis), e.g., 120 

mg/dL of fasting glucose can indicate a pre-diabetic individual (blue line) or a diabetic 

patient under diabetic medication (red line). c) The healthy state (1): The width and 

steepness of the potential well (around stable lowest “energy” states) are shaped both by 

genetic and environmental perturbations. The measured variation over time of any active 

protein, metabolite or other omics measurements (dark blue nodes in the network) informs 

on individual’s healthy physiological range. At this state, the system is resilient to 
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perturbations. The destabilized healthy (pre-disease) state (2): The potential well has almost 

flattened allowing access to the disease state. The measured variation over time for certain 

proteins, metabolites or other omics measurements (light blue nodes) varies significantly and 

may corresponds to disease state markers (black box). The system has low resilience and is 

sensitive to perturbations. The disease state (3): The system has shift to a new, resilient 

steady state. The measured variation over time of any active protein, metabolite or other 

omics measurements (red nodes in the network) informs on individual’s disease progression. 

U: landscape potential, x: any systems parameter (e.g., fasting glucose, see Table 2)
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Figure 3. 
Clinical Research Study Landscape. We can categorize the selected study-designs based on 

their duration (long-term longitudinal vs. a single measurement/snapshot), the number of 

participants (single participant vs. thousands/big epidemiological cohorts) and the measures 

variables -dimensions (a few clinically important variants vs. all-omics-platforms). The P100 

study is the closest match to a long-term, high-dimensional longitudinal study for a large 

population. (iPOP: integrated Personal Omics Profiling, P100 study: Pioneer 100 Wellness 

study, RCT: Randomized Control Trial)
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Figure 4. 
A new strategy to stratify health prevention and identify early disease signs. Recovery time 

after exposure to a specific risk factor (stress test) can be a new biomarker to stratify 

patients. A, C) The individuals exhibit a very similar profile before stress test – although 

their resilience (width and steepness of the potential well) is different. B, D) After the stress 

test, omics profiling can identify the most variable proteins/metabolites for each individual 

(red boxes) enabling personalized recommendations. While the recovery time (t1 vs. t2) can 

identify the high-risk individuals (longer time, higher risk), who can be further profiled for 

early disease biomarkers (black boxes). U: landscape potential (Table 2).
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Figure 5. 
The principle of equifinality. A) The health state variability: Individuals show heterogeneity 

in the concentration of measured physiological dimensions (e.g., metabolites or proteins in 

the blood) as indicated by the color shade (dark blue corresponds to higher detected 

concentrations). B) The pre-disease state variability: Exposure to specific perturbations (e.g., 

nutrition, infection agent etc.) reveals the pre-disease state profiles. Blue nodes correspond 

to early molecular signs for a health-to-disease transition signifying the future disease-

perturbed network (black box), known as leading network hypothesis. Individuals may show 

“out-of-range” values for different nodes of the “leading network”. C) The disease state 

variability: Individuals show heterogeneity in the concentration of measured physiological 

dimensions as indicated by the color shade (dark red corresponds to higher detected 

concentrations).
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Table 1

Basic principles of Systems Biology that drive the proposed working framework for Systems Medicine.

Principle Definition Open Challenges

Equilibrium Systems move towards a stable steady state balancing 
internal or external forces that are strongly opposed 
to one another

Define steady states (health, disease):
How and why do they destabilize?

Critical State Transitions A sudden system shift from one stable steady state to 
another when certain parameters reach a threshold
(see Table 2)

Identify health-to-disease transitions:
When has the transition become irreversible (“tipping 
point” hypothesis)?
How do perturbations drive the transition?

Robustness
(or Resilience)

The system’s ability to maintain functions and 
behaviors in the face of changing internal and 
external environments (perturbations)

Define the limits of a stable steady state:
How to design clinical studies that test homeostatic 
mechanisms and include the concept of resilience?

Equifinality The existence of multiple trajectories that converge to 
a common end state (e.g., disease)

Identify possible trajectories towards a disease state:
What does this mean for biomarker discovery?
How to stratify individuals and their trajectories to 
disease?

Mutuality Since system’s components are reciprocally 
interdependent, it is impossible to know what 
“causes” something

Understand the limits of prediction:
How to develop multiple interventions protocols and tailor 
them for specific individuals?
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Table 2

Glossary for Critical State Transitions and Attractors in Systems Medicine.

Term Definition Example

Alternative stable states Different steady states of the very same 
system can be realized under the same 
external conditions, depending on history

Healthy State (fasting glucose <115 mg/dL) vs. Diabetic State 
(fasting glucose >180 mg/dL)
Since the pathological state is also a stable state (a new 
equilibrium) reversal is difficult, as best illustrated in the 
inherent challenge of weight loss by diet

Bifurcation
(Critical State Transitions)

The current stable state of a system 
disappears due to (slow) change of system 
characteristics and the system is forced to 
move to an alternative stable state

During the process of gradual health deterioration (e.g., fasting 
glucose >115 mg/dL – prediabetic state), poor diet results in a 
sudden catastrophic shift to a disease state that self-stabilizes in 
the new equilibrium (Figure 2)

Attractor An equilibrium state to which a system 
converges after some time; a stable steady 
state.

After an oral glucose tolerance test, blood glucose increases to 
an unstable value (>200 mg/dL) that will finally decrease to the 
health steady state value (<115 mg/dL)

Basin of attraction The entire set of initial conditions from which 
the system automatically moves to an 
attractor

Temporary deviations from an equilibrium state following acute 
perturbations after which the systems resettle in the steady state 
manifest the basin of attraction – e.g., normoglycemia following 
a large meal that caused a peak in blood glucose

Potential U(x) A mathematical quantity that captures the 
“driving force” in a dynamical system, and 
can be graphed as the elevation over each 
state space position × (a state variable) to 
obtain a landscape picture (potential well)

Can be approximated as the inverse of the t probability P(x)
to find individual in a population at that state space position x, 
where × is a state variable, e.g.,
x = fasting glucose (mg/dL)

Threshold A point where the system is very sensitive to 
changing conditions, e.g., at the “cusp” 
between two basins of attraction.
In a critical transition, the threshold becomes 
a tipping point

In a prediabetic individual, when the basin of attraction for 
glucose homeostasis is flat and blood glucose reaches a 
borderline value, e.g., >115 mg/dL, the individual is more 
sensitive to glucose challenge.

Tipping point The point in a critical transition at which the 
system flips to another attractor state

A specific value of a parameter × (characterizing disease 
progression) at which the system undergoes a critical state 
transition and moves to a new attractor.

Circ Res. Author manuscript; available in PMC 2019 April 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Trachana et al. Page 31

Table 3

Major technological advances that have accelerated the adoption of Systems Biology and Systems Medicine.

Technology Methods/techniques Examples

DNA Microarrays Transcriptomics, exome capture, epigenetics, small RNA expression, genotyping, 
metagenomics.
Transcriptomics now replaced by “RNA-sequencing” and genotyping increasingly 
replaced by WGS (see below)

26

Sequencing
(Next-Generation, nanopore, or long-read 
sequencers; Single-molecule sequencing)

Whole genome sequencing (WGS), exome analysis, epigenetics, whole 
transcriptome analysis (RNA-sequencing), small RNA sequencing, GWAS, 
metagenomics

15, 27–31

Mass spectrometry Proteomics, metabolomics, mass spectrometry imaging, lipidomics, glycomics, 
protein-protein interactions, post-translational modification analysis

32–39

Microfluidics Single cell assays including gene expression, whole genome sequencing, protein 
analysis and epigenome analysis

13, 40–44

Flow and Mass Cytometry Single cell protein analysis 45–48

Genome editing technology Genome-wide gene deletion assays, screening assays 31,49,50

iPSC technology In vitro models for diseases, drug screening 51–56
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