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Abstract

Reactive oxygen species (ROS) are well known for their role in mediating both physiological and 

pathophysiological signal transduction. Enzymes and subcellular compartments that typically 

produce ROS are associated with metabolic regulation, and diseases associated with metabolic 

dysfunction may be influenced by changes in redox balance. In this review, we summarize the 

current literature surrounding ROS and their role in metabolic and inflammatory regulation, 

focusing on ROS signal transduction and its relationship to disease progression. In particular, we 

examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome and 

endoplasmic reticulum, and discuss how ROS influence metabolic processes such as proteasome 

function, autophagy and general inflammatory signaling. We also summarize and highlight the 

role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes 

and stroke. To successfully develop improved therapies that target oxidative signaling, it is vital to 

understand the balance ROS signaling plays in both physiology and pathophysiology, and how 

manipulation of this balance and the identity of the ROS may influence cellular and tissue 

homeostasis. An increased understanding of specific sources of ROS production and an 

appreciation for how ROS influence cellular metabolism may help guide us in this effort to treat 

cardiovascular diseases.
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Introduction

Reactive oxygen species (ROS) regulate cellular homeostasis and act as prime modulators of 

cellular dysfunction contributing to disease pathophysiology. ROS are byproducts of 

numerous enzymatic reactions in various cell compartments, including the cytoplasm, cell 

membrane, endoplasmic reticulum (ER), mitochondria and peroxisome, as part of basal 

metabolic function. They are also generated specifically by enzymes such as NADPH 

oxidases and serve a signaling function in the cell. Depending upon the source of ROS, cell 
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type and tissue environment, ROS signaling may participate in normal physiological 

processes or contribute to a maladaptive response that leads to metabolic dysfunction and 

inflammatory signaling. Diseases associated with elevated inflammatory signaling and 

metabolic dysfunction such as atherosclerosis, diabetes and stroke are associated with an 

altered redox balance.1–3 Understanding the role of ROS signaling in the regulation of 

metabolic activity, inflammatory activation and diseases associated with metabolic 

dysfunction is important in our pursuit of novel therapies to treat these diseases. This review 

highlights the role of ROS signaling in basic metabolic processes and inflammatory 

signaling, and focuses on how this regulation contributes to disease development.

1. Sources of ROS and their role in metabolic function

I. Cytoplasmic

Cytoplasmic ROS (cytoROS) production is a cornerstone of cellular signaling and disease 

pathophysiology. One of the most well-known sources of cytoROS is the NADPH oxidase 

(NOX) family of enzymes. NOX2 (or gp91phox) is well-characterized for its role in 

phagocytic function;4 however, it and three homologs, NOX1, NOX4, and NOX5, are 

expressed throughout the cardiovascular system.5 NOX proteins produce O2
− through 

NADPH electron exchange, and NOX-dependent ROS production influence many metabolic 

processes and disease states.6 Briefly, endothelial cell (EC) NOX-dependent ROS production 

drives hypoxia inducible factor 1α (HIF1α)-mediated glucose transporter 1 (GLUT1) 

expression, hexokinase activity and resultant glycolysis in response to low oxygen tension as 

part of the angiogenic response.7 In response to inflammatory stimuli, neutrophil 

phosphofructokinase 2 colocalizes with NOX2, inducing its activation. NADP+ produced as 

a byproduct of NOX2 O2
− generation is used to facilitate an elevated glycolytic rate. A 

locally increasing NADPH concentration as a by-product of increased glycolysis is 

hypothesized to further enhance NOX2 activity; however, this has yet to be proven.8

In addition to NOX-dependent ROS production, the nitric oxide synthases (endothelial, 

neuronal and inducible) are sources of cytoplasmic ROS. Endothelial nitric oxide synthase 

(eNOS) produces O2
− through its oxygenase domain in a Ca2+/calmodulin-dependent 

reaction in the absence of tetrahydrobiopterin (BH4).9 Dysregulated or uncoupled eNOS is a 

hallmark of cardiovascular and metabolic diseases.10 The oxygenase domain is vital for O2
− 

production from neuronal and inducible NOS (nNOS and iNOS, respectively), and O2
− 

generation is dependent upon reduced L-arginine.11, 12 NOS uncoupling in various disease 

states results in a dysregulated NO response whereby synthesized NO combines with O2
− to 

produce peroxynitrite. Peroxynitrite enhances pentose phosphate pathway (PPP) activity 

through stimulation of glucose-6-phosphate dehydrogenase (G6PD), leading to elevated 

NADPH.13 A similar mechanism has been noted in response to H2O2, a downstream 

metabolite of O2
−.14 Thus, in the transient setting, peroxynitrite, and even H2O2, may 

promote a protective response through PPP-dependent increases in reducing equivalents. 

However, chronic stimulation of the PPP by ROS may instigate a toxic feedback loop 

whereby increased NADPH production results in excessive O2
− through NOX.15 In support 

of both hypotheses, G6PD deficiency and overexpression are protective against oxidative 
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stress16,17 However, further investigation into how ROS and metabolic diseases affect 

NADPH shuttling is needed.

CytoROS also induce AMP-activated protein kinase (AMPK) activity.18 AMPK is a central 

regulator of cellular metabolism implicated in multiple metabolic functions including 

glycolysis, lipid metabolism, mitochondrial function, cell growth and autophagy (discussed 

below).19 Hypoxia can regulate AMPK activity through an ROS-dependent ER Ca2+/

Stromal interaction molecule 1/Ca2+/calmodulin-dependent protein kinase kinase beta 

pathway in addition to indirect regulation via a change in the AMP/ATP ratio.20 H2O2 can 

directly modulate AMPK activity and downstream metabolic function through oxidation and 

S-glutathionylation of the α- and β-subunits of AMPK by targeting cysteines 299 and 304.21 

ROS-mediated impairment of the mitochondrial respiratory chain can also increase the 

AMP/ATP ratio which can activate AMPK,22 and peroxynitrite induces AMPK activation in 

bovine aortic ECs through a c-SRC(Tyr416)/phosphoinositide 3-kinase (PI-3K)/

phosphoinositide-dependent kinase-1 (Ser241) pathway. Peroxynitrite-dependent AMPK 

phosphorylation at Thr172 leads to phosphorylation of acetyl CoA carboxylase at Ser79, 

resulting in inactivation and increased fatty acid oxidation.23

Low oxygen tension in ECs increases glycolysis as part of the angiogenic response through 

NOX-mediated, ROS-induced HIF1α signaling.7 However, increased ROS signaling in some 

disease states inactivates the glycolysis rate-limiting enzyme pyruvate kinase M2, and 

diverts glycolytic substrates into the PPP pathway to generate reducing equivalents needed 

for ROS detoxification, thereby acting as a protective mechanism.24 In total, cytoROS 

signaling plays a critical role in the PPP and glycolytic pathways (Figure 1). Below we will 

outline the contributions of various cytoROS-producing entities in the development of 

metabolic disorders.

II. Mitochondria

Mitochondria are central regulators of aerobic energy production. Proper respiratory chain 

function requires a delicate balance between pro-oxidant and anti-oxidant systems. 

Importantly, mitochondrial respiration relies on electron transfer and a proton gradient to 

drive ATP production. ROS are a natural byproduct of this process; however, inflammatory 

and metabolic diseases are associated with perturbed mitoROS production.25, 26 MitoROS 

are generated by numerous mechanisms including Complexes I-III (Figure 2). Complex I 

serves as an entry point for electrons from NADH into the respiratory chain. O2
− is produced 

from the interaction of O2 with reduced FMN when the matrix NADH/NAD+ ratio is high, 

resulting in O2
− release into the matrix.27 In addition, mitoROS is produced through 

complex I via reverse electron transfer (RET). RET occurs in a 2-step process involving (1) 

reduced coenzyme Q (CoQ), and (2) a change in proton motive force that drives electrons 

back into complex I. Complex III is also a source of mitoROS. Under normal conditions, 

electrons flow from the CoQ pool to cytochrome C. Although complex III produces very 

low levels of O2
−, in the presence of Antimycin A, the Qi site is inhibited, which promotes 

O2
− production from the Qo site due to the interaction between O2 and a ubisemiquinone 

bound to the Qo site.28 O2
− generated from complex III is mainly released into the 

intermembrane space, but upon dismutation, H2O2 may diffuse into the matrix.29
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While complex I and III are well known for their contribution to mitoROS production, 

complex II may also serve as an ROS producing complex.30 Complex II oxidizes succinate 

to fumarate as part of the Krebs cycle and acts as the site of ubiquinone reduction in the 

electron transport chain (ETC). ROS are produced from complex II when both complex III 

and complex I are inhibited. Complex II ROS production is believed to proceed through a 

forward mechanism involving electrons from succinate, or in a reverse mechanism where 

electrons are provided through a reduced ubiquinone pool. Both mechanisms result in ROS 

production from the complex II flavin site.30

Other than complex-derived mitoROS, enzymes involved in metabolic reactions produce 

mitoROS (reviewed in 31, 32). Of importance, the α-ketoglutarate dehydrogenase (KGDHC) 

and pyruvate dehydrogenase (PDC) complexes produce ROS as a result of both forward 

electron transfer and RET.33, 34 KGDHC, PDC and branched-chain α-keto acid 

dehydrogenase complex, a dehydrogenase complex that catalyzes the oxidative 

decarboxylation of α-ketoacids, are thought to produce significantly more ROS than 

complex I.35 Recent evidence indicates PDC and KGDHC-derived ROS may be regulated 

through protein-S-glutathionylation. Interestingly, S-glutathionylation during forward 

electron transfer may attenuate ROS production, whereas S-glutathionylation during RET 

may increase ROS from PDC and KGDHC36 In addition to generating ROS, KGDHC is also 

an early target of oxidative stress. Similarly, aconitase, an enzyme responsible for the 

isomerization of citrate to isocitrate, is responsive to ROS.37, 38 In conditions of low 

oxidative stress, when aconitase activity and Krebs cycle substrate production is diminished, 

α-ketoglutarate levels and NADH production can be maintained through glutamate via 

glutaminolysis; however, in the presence of high oxidative stress, KGDHC is inhibited, 

reducing NADH production and mitochondrial respiratory capacity.38 RET-induced 

mitoROS can inactivate aconitase and pyruvate dehydrogenase kinase 2 (negative regulator 

of PDC) through reversible oxidation of cysteine 45 and 392 when the NADH/NAD+ ratio is 

elevated. This regulation is hypothesized to promote acetyl-CoA production via PDC from 

carbohydrates while simultaneously inhibiting β-oxidation, resulting in cytoplasmic export 

of citrate and stimulation of fatty acid synthesis.39 Reduced aconitase activity is associated 

with aging and diseases associated with metabolic dysfunction.40

Recent evidence indicates that a subset of NOX4 is localized to the mitochondria and is a 

regulator of mitoROS generation. NOX4 expression is increased in kidney cortex from 

diabetic rats and facilitates glucose-induced mitoROS production. Likewise, NOX4 induces 

cysteine oxidation, and resultant decreased activity, of aconitase and citrate synthase in 

cardiac myocytes,41 and influences mitochondrial morphology and complex I activity.42 

Additionally, ATP production from normal mitochondrial respiration negatively regulates 

mitochondrial NOX4-induced ROS production through direct interaction between ATP and 

the NOX4 Walker A binding motif,43 which suggests mitochondrial NOX4 may play a 

dynamic role in metabolic function.

Apart from ROS producing pathways, impairment of mitoROS scavenging pathways results 

in ROS accumulation leading to organelle and cell dysfunction. Within the mitochondria, the 

predominant ROS buffering systems include the glutaredoxin (Grx), glutathione and 

thioredoxin (Trx) systems.44 Dismutation of O2
− into H2O2 occurs through the superoxide 
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dismutase (SOD) family of proteins.45 In the matrix, dismutation primarily proceeds through 

SOD2 (MnSOD), whereas in the intermembrane space, dismutation is carried out by SOD1 

(Cu, Zn-SOD). H2O2 decomposition into O2 and H2O then occurs via the GSH redox 

system, which includes glutathione reductases, peroxidases (GPX) and peroxiredoxins 

(Prdx).46

The Trx and Grx systems also play a prominent role in mitochondrial ROS buffering. The 

mitochondrial Trx system involves thioredoxin-2 (Trx2), thioredoxin reductase-2 (TrxR2) 

and members of the Prdx family of proteins. Importantly, the antioxidant effect of Trx2 

activity results from reduction of other oxidized proteins, mainly the Prdxs. Oxidization of 

Trx2 is reversible and is remedied through TrxR2 using NADPH as an electron donor. 47 

Homozygous knockout (KO) of Trx2 is embryonically lethal, and heterozygous mice, while 

viable, show decreased mitochondrial respiratory function and increased mitoROS 

production,.48 Likewise, cardiac-specific TrxR2 KO mice exhibit cardiac structural changes, 

dysregulation of autophagy, decreased oxygen consumption and a change in their metabolic 

profile.49

Mitochondrial Grx family members include Grx2 and Grx5. Grx2 regulates O2
− production 

from complex 1 by catalyzing glutathionylation of two thiol groups, and Grx5 regulates iron/

sulfur enzymes.50–52 However, information regarding how the GRX and Trx systems 

regulate cardiovascular function is limited. Cumulatively, mitochondria maintain a delicate 

balance between oxidant and anti-oxidant systems, and dysregulation can result in organelle 

dysfunction resulting in metabolic stress.

MitoROS can also influence HIF1α stabilization and cell proliferation.53, 54 Hypoxia-

induced HIF1α promotes a metabolic shift favoring anaerobic glycolysis and reduced 

mitochondrial respiration by upregulating glucose transporters and glycolytic enzymes while 

also inhibiting PDC through activation of pyruvate dehydrogenase kinase 1.55, 56 Reduced 

PDC activity causes decreased Krebs cycle and ETC flux, which may in turn attenuate 

mitoROS production in hypoxic conditions. Likewise, HIF1α induces mitophagy resulting 

in decreased mitochondrial mass, O2 consumption and resultant ROS generation. Thus, in 

hypoxic conditions, mitoROS favor the stabilization of HIF1α, which induces a metabolic 

shift towards glycolysis, leading to reduced mitochondrial activity and mitoROS production.
57, 58 In normoxic conditions, inhibition of ETC function using rotenone (complex I 

inhibitor) or TTFA (complex II inhibitor) induces cell death through induction of mitoROS-

mediated autophagy.59 AMPK, a regulator of uncoordinated 51-like kinase 1 (ULK1) 

activity and downstream autophagy, can be regulated by mitoROS, and mitoROS contribute 

to autophagy through AMPK/ULK1-dependent signaling (discussed below).60, 61 Similarly, 

AMPK is responsible for the mitoROS/HIF1α-dependent extension of life span observed in 

Caenorhabditis elegans (C. elegans).62 Slightly elevated levels of mitoROS in mice are also 

associated with extension of lifespan.63 Interestingly, mice with heterozygote deletion of 

mouse clock-1, a protein involved in CoQ biosynthesis, exhibit increased longevity, 

increased inflammatory cytokine production and macrophage activation that is dependent 

upon elevated mitoROS. These mice also show enhanced resistance to infection, which may 

be due to the observed increase in macrophage phagocytic activity.64
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Mitochondrial fission and fusion are closely associated with mitochondrial function and can 

influence, and be influenced by, mitoROS production. (For a comprehensive review of 

mitochondrial fission and fusion, please refer to references.65, 66 With regard to 

mitochondrial fission, the small cytoplasmic GTPase dynamin-related protein-1 (Drp1) is 

implicated in ROS signaling. Drp1 activity regulates mitoROS production and downstream 

mitochondrial functional changes in a variety of environments,67–69 and oxidative stress 

influences Drp1 mitochondrial translocation and resultant fission.70 Mitochondrial fission 

also precedes mitophagy, which can be regulated by oxidative stress and is thought to be a 

negative regulator of mitoROS signaling through selective degradation of dysfunctional 

mitochondria.71, 72 Drp1 undergoes numerous post-translational modifications including S-

nitrosylation and phosphorylation, and data suggest that ROS signaling contributes to serine 

616 phosphorylation and activation of Drp1 GTPase activity.73–75 However, the contribution 

of ROS signaling to the regulation of other fission proteins is currently unknown and is an 

area ripe for future investigation.

Similar to Drp1 and mitochondrial fission, ROS signaling may regulate mitochondrial 

fusion. The inner mitochondrial membrane GTPase optic atrophy protein-1 (OPA1) is 

regulated by reactive oxygen species modulator 1 (ROMO1). In response to ROS, ROMO1 

is inactivated leading to OPA1 cleavage, cristae remodeling and mitochondrial fission.76 

Likewise, deletion of OPA1 induces morphological irregularities, respiratory defects and 

ROS generation.77 In addition to OPA1, mitofusin 1 and 2 activity can regulate and be 

regulated by ROS.78–80 The precise mechanism and contribution of fission/fusion-regulated 

ROS signaling to metabolic function remains to be explored; however, the contribution of 

ROS and mitochondrial morphology regulation in the setting of metabolic diseases will be 

explored below.

In summary, the mitochondria are dynamic players in metabolic regulation and signaling. 

MitoROS are produced as part of normal mitochondrial function, but various cellular 

stresses augment ROS levels either through increased oxidant production or decreased 

antioxidant activity. As discussed, mitoROS can regulate cellular metabolic function 

(illustrated in Figure 2), and in section 2, we will discuss the contribution of mitoROS to 

metabolic and cardiovascular diseases.

III. Peroxisome

Peroxisomes, like mitochondria, are vital organelles in aerobic metabolism that regulate key 

processes such as α- and β-oxidation, glyoxylate metabolism, amino acid catabolism, the 

pentose phosphate pathway, ketogenesis, polyamine oxidation and isoprenoid and 

cholesterol metabolism.81 Peroxisomes are also a significant source of ROS. In particular, 

peroxisomes produce H2O2 due to an abundance of O2-consuming oxidases, which include 

acyl-CoA oxidases (ACOX), D-amino acid oxidase, D-aspartate oxidase, polyamine 

oxidase, xanthine oxidase (also produces O2
−), L-α-hydroxyacid oxidase and L-pipecolic 

oxidase.82, 83 Unlike the mitochondria, peroxisomal electron transfer does not lead to ATP 

generation. Instead, free electrons are transferred to H2O to form H2O2.
83 In addition, 

peroxisomes can produce nitric oxide through NOS.84 However, similar to mitochondria, 

peroxisomes contain numerous oxidant scavenging enzymes including GPX, catalase, Prdx1 
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and 5, peroxisomal membrane associated protein 20, SOD1 and SOD2.82 For an in-depth 

review of peroxisomal enzymes, please refer to85.

Recently, a new role for peroxROS in mTOR complex (mTORC) 1 activity was defined. In 

response to elevated peroxisomal β-oxidation, peroxROS activate tuberous sclerosis proteins 

1 and 2 (TSC1 and TSC2), which are bound to the peroxisomal assembly proteins peroxin 

19 and 5 (Pex19 and Pex5), respectively. ROS induce TSC2-mediated GTPase activity of 

Rheb, leading to mTORC1 inhibition and autophagy induction.86 Pex5 binds ataxia-

telangiectasia mutated (ATM) and localizes it to the peroxisomal membrane. In response to 

peroxROS, ATM activation (Ser1981) induces AMPK and TSC2 activity and downstream 

mTORC1 inhibition, ULK1 activation and pexophagy. As part of this mechanism, ATM 

activation also induces the phosphorylation of Pex5 (Ser141), triggering ubiquination at 

lysine 209 and subsequent binding of p62, which is required for peroxisomal targeting to 

autophagosomes (Figure 3).87 In addition to pexophagy regulation, peroxROS can also 

disrupt the mitochondrial redox balance and promote mitochondrial fission/fragmentation88 

and mitochondrial-mediated cell death.89

IV. ROS and the Endoplasmic Reticulum

The ER has a well-established role in metabolic and cardiovascular diseases90, 91 due to its 

roles in Ca2+ handling, protein synthesis/folding and regulation of the secretory pathway. 

Protein-folding is highly sensitive to ER redox status and dysregulation of disulfide bond 

formation in response to ER stress increases luminal oxidative stress leading to a decline in 

ER function.92 One of the most well understood routes for disfulfide bond introduction into 

folded proteins is the protein disulfide-isomerase (PDI) and ER oxidoreductin 1 (ERO1) 

pathway. PDI introduces disulfide bonds through thiol oxidation in folding substrates 

leaving PDI in a reduced state. Reduced PDI is re-oxidized through ERO1, which transfers 

acquired electrons through a flavin adenine dinucleotide cofactor to molecular oxygen, 

forming H2O2. ER H2O2 can further be used by Prdx4 to re-oxidize PDI, thereby increasing 

the efficiency of ERO1-mediated disulfide bond transfer.93, 94 Overexpression of a human 

hyperactive mutant of ERO1 induces severe oxidative stress and induction of the unfolded 

protein response (UPR), an ER stress response involved in the pathogenesis of metabolic and 

cardiovascular diseases, highlighting the sensitivity of the ER to changes in redox balance.95 

Furthermore, UPR activation can induce ERO1 activation leading to increased oxidative 

stress and sustained UPR signaling, and administration of antioxidants can attenuate the 

UPR and improve downstream protein secretion.96 In addition to the PDI/ERO1 pathway, 

ROS is produced through the membrane associated monooxygenase system via cytochrome 

p450, cytochrome b5 reductase and through ER-localized NOX4 (Figure 4).97–99

As part of this redox balance, the ER contains an antioxidant system that is vital to proper 

ER function: peroxiredoxins (Prdx4, mentioned above) and glutathione peroxidases (GPX7 

and GPX8). GPX7/8 contain a KDEL ER localization sequence, making them ER-specific 

ROS scavengers. GPX7/8 both interact with ERO1α, one of two isoforms of ERO1, at 

cysteine208/cysteine41. Reduced GPX7/8 scavenges ERO1-derived H2O2, leaving GPX7/8 in 

an oxidized form.100 Oxidized GPX7, through its cysteine 86 residue, can bind to the 

cysteine41/420 residue of glucose-regulated protein, 78 kDa (GRP78). This binding promotes 
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GRP78 oxidation and enhanced protein refolding chaperone activity. Silencing of GPX7 

induces oxidative stress, accumulation of misfolded proteins and induction of the UPR.101 

PDI oxidation is regulated by GPX7/8 as well.100

The ER and mitochondria sit in close proximity to one another, and changes in the ER redox 

balance influence mitochondrial function. In response to ER stress, activating transcription 

factor 4 and C/EBP homologous protein (CHOP) induce ERO1α. In mitochondrial-

associated ER membranes (MAMs), ERO1α oxidizes the type 1 inositol 1,4,5-trisphosphate 

receptor (IP3R) inducing mitochondrial Ca2+ uptake and mitoROS production through 

mitochondrial respiration.102, 103 ERO1α-mediated cytoplasmic Ca2+ efflux through the ER 

IP3R is also hypothesized to contribute to NOX2-dependent ROS stimulation via CAMKII.
100 SHC-transforming protein 1 isoform p66 (p66shc) is a regulator of cellular oxidative 

stress104 that translocates to MAMs in response to cellular stress and produces mitoROS 

through cytochrome C oxidation,105 and is capable of inducing ER stress106 and inhibiting 

mTOR-dependent anabolic metabolism (Figure 4).107

In summary, maintenance of the ER redox balance is critical to proper ER function, and 

alterations in ER ROS producing and scavenging pathways provoke ER stress and contribute 

to metabolic dysfunction.

V. ROS and Inflammation

Inflammation and metabolism are intricately intertwined, considering that numerous 

metabolic and cardiovascular disorders exhibit chronic low-grade inflammation.108 

Canonical NF-κB signaling is associated with insulin resistance, obesity and atherosclerosis,
108–110 and circulating dietary factors such as fatty acids and glucose can trigger 

inflammatory signaling. It has also been suggested that NF-κB may regulate metabolic 

reprogramming favoring aerobic glycolysis.111 The influence of ROS on NF-κB signaling 

may depend upon the cellular location of oxidation (cytoplasmic vs nuclear).112 In general, 

ROS are known to activate NF-κB in response to inflammatory agonists.113 NF-κB nuclear 

translocation occurs in response to H2O2
114 through a mechanism involving IκBα tyrosine 

phosphorylation (Tyr42), phosphorylation of the serine/threonine PEST domain with 

subsequent degradation via calpain, and p65 phosphorylation (ser529).115, 116 ROS-induced 

NF-κB is inhibited by SOD2 overexpression,117 and the NOX family of proteins also 

influence,118 and are influenced by, NF-κB activity.119, 120

Specific inflammatory agonists utilize ROS as part of their signaling cascades. IL-1β 
induces active endosomal IL-1R complex assembly that involves MyD88 and NOX2 ROS-

induced tumor necrosis factor (TNF) receptor associated factor (TRAF) 6 endosomal 

recruitment.121 NOX4 activity is required for lipopolysaccharide (LPS)-induced NF-κB 

activation,122 and TNFα-induced NF-κB activation increases antioxidant expression leading 

to decreased TNFα-induced apoptotic signaling through a ROS/JNK pathway.123

Flow-induced activation of NF-κB is regulated by ROS signaling as well. Flow-mediated EC 

dysfunction and monocyte adhesion is dependent upon NOX-derived O2
− regulation of NF-

κB inducing kinase (NIK) and IKK signaling leading to NF-κB activation.124–126 As part of 

this response, bone morphogenic protein 4 and p21-activated kinase act as upstream 
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regulators of flow-induced ROS generation and downstream NF-κB signaling, contributing 

to oscillatory shear stress-induced vascular dysfunction and atherosclerotic lesion 

development.126, 127

An abundance of evidence points to a role for mitoROS in regulating inflammatory 

signaling. In response to inflammatory stimuli, proinflammatory cytokines are synthesized 

and released from cells. Importantly, mitoROS contribute to LPS-induced cytokine release25, 

thrombin induced NF-κB activation via IP3R Ca2+ signaling,128 and 

lysophosphatidylcholine-induced AP-1 activity and downstream endothelial activation.129 

Likewise, mitochondrial H2O2 production contributes to endothelial NF-κB activation in 

aged rat arteries,130 and inhibition of mitoROS through ETC inhibition abrogates hypoxia-

induced endothelial NF-κB activation and IL-6 secretion.131 Evidence also indicates that 

mitoROS may be a downstream result of NF-κB activation as well.132

RET-induced mitoROS are involved in metabolic changes associated with macrophage 

activation during inflammation. Macrophage proinflammatory signaling is supported in part 

by metabolic repurposing that favors glycolysis-derived ATP production and RET-induced 

mitoROS generation through mitochondrial hyperpolarization and succinate oxidation.133 

RET-derived mitoROS promote HIF1α stabilization,134 leading to regulation of glycolytic 

capacity and IL-1β mRNA and protein expression.135,133 In response to LPS, immune cells 

secrete IL-1β through the inflammasome. MitoROS signaling is a primary regulator of NLR 

Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation. NLRP3 

inflammasome activation consists of two phases: (1) a priming phase where agonists such as 

LPS stimulate NF-κB-mediated NLRP3, IL-1β and interleukin-18 (IL-18) transcription, and 

(2) an activation phase where a multi-protein complex consisting of NLRP3, Apoptosis-

associated speck-like protein containing a CARD, and caspase 1 is assembled.136 The fully 

assembled NLRP3 inflammasome, along with activation via potassium efflux,137 lysosomal 

destabilization and mitoROS,138, 139 regulates the maturation of IL-1β and IL-18.140 Thus, 

in LPS-stimulated macrophages, RET-induced mitoROS production, as a result of a 

metabolic shift towards glycolysis, regulates 1L-1β transcription (inflammasome priming), 

but may also regulate the maturation and secretion of IL-1β (inflammasome activation). 

However, alternative pathways of IL-1β processing independent of inflammasome activity 

also exist.141

Thioredoxin-interacting protein (TxNIP), a negative regulator of Trx, is an ROS-regulated 

proapoptotic factor that mediates mitoROS and NOX4 activity and influences glucose-

induced inflammasome activation in two ways.142, 143 First, TxNIP-dependent inhibition of 

Trx induces ROS which further exacerbate inflammasome activity and inflammatory 

cytokine signaling. Second, during inflammasome activation, TxNIP dissociates from Trx 

and interacts with NLRP3, which is required for proper inflammasome activity in response 

to glucose stimulation.142 In addition, IRE1α, an ER stress protein, increases inflammasome 

activity by regulating TxNIP mRNA stability.144, 145

Apart from ROS-dependent inflammasome activation, ROS are critical to macrophage 

phagocytic activity. Importantly, metabolic and cardiovascular diseases associated with 

chronic inflammation display impairments in macrophage phagocytic/efferocytic activity 
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that are correlated with changes in ROS signaling. NOX2-dependent oxidative signaling is 

required for sufficient phagocytic function and pathogen/apoptotic cell degradation,146 as 

shown by increased lung inflammation and abdominal aortic aneurysm progression in 

myeloid NOX2 KO mice.147, 148

Macrophage NOX-derived ROS induce microtubule-associated protein 1A/1B-light chain 3 

(LC3) translocation to the phagosome, which is required for lysosomal fusion and 

phagosomal clearance in LC3-associated phagocytosis (LAP).149 Toll-like receptor signaling 

promotes mitochondrial recruitment to phagosomes where augmented mitoROS kill 

phagocytosed bacteria and enhance NOX-dependent ROS production.150 As part of LAP, 

Drp1-mediated mitochondrial fission increases cytosolic Ca2+ through inhibition of the 

mitochondrial Ca2+ uniporter and mitoROS production, which are required for efficient 

phagosomal sealing and LAP-mediated apoptotic cell degradation.151 Drp1-dependent 

mitochondrial fission and resultant ROS production also contribute to NF-κB activation in T 

cells,152 and changes in mitochondrial dynamics regulate T cell metabolic reprogramming.
153

Mer tyrosine kinase (MerTK) is an essential membrane protein in macrophages that 

participates in efferocytosis. In response to inflammatory stimuli, proteolytic cleavage and 

inhibition of MerTK activity impair efferocytosis and downstream resolution of 

inflammation.154 In response to LPS, TLR4-TIR-domain-containing adapter-inducing 

interferon-β signaling induces MerTK shedding through a NOX2/PKCα/ p38 MAPK and a 

Disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) pathway, and 

macrophage-specific ADAM17 deletion protects against MerTK shedding in vivo.155 

MitoROS and AMPK also play a significant role in macrophage efferocytosis. Apoptotic 

cell-released lysophosphatidylcholine diminishes mitochondrial membrane potential and 

ATP production coupled with concomitant mitoROS generation and downstream AMPK 

activation. AMPK facilitates both metabolic reprograming towards glycolysis and tubulin 

synthesis that are needed for macrophage chemokinesis and efficient efferocytosis.156 

Macrophages experience defective efferocytosis in response to TNFα as well, potentially 

through phospholipase A2/arachidonic acid-dependent ROS and Rho activity.157

Overall, inflammation is an underlying component to many diseases including those that 

exhibit metabolic distress. ROS act as central regulators of inflammatory signaling, 

particularly with respect to NF-κB activation and inflammasome signaling (Figure 5). The 

following sections will highlight the contribution of ROS to specific cellular functions and 

their role in regulating metabolic dysfunction in various diseases.

VI. Secondary Products of ROS

Secondary products of ROS also mediate inflammatory signaling in a variety of cellular 

environments. For example, lipid peroxidation products, such as 4-hydroxynonenal, and 

oxidized phospholipids (OxPLs) regulate NF-κB activation and inflammatory signaling 

through numerous pathways,158–160 and can propagate ROS signaling; however, whether 

secondary ROS product signaling is protective or instigates a pathophysiological response 

may depend on ROS concentration, cell-type and cellular stress.159 In regards to 

pathophysiology, lipid peroxidation and OxPLs have been implicated in atherogenesis.
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161,162 Mechanistically, both products can regulate NF-κB activity and chemokine release 

resulting in arterial wall inflammation and immune cell recruitment.163–165 However, 

incubation of LPS-treated mice or macrophages with OxPLs suppresses NF-κB activation 

and TNFα secretion, suggesting that OxPLs may be protective in some conditions.166 It 

should also be noted that in a single agonist condition, OxPLs may influence macrophage 

polarization and contribute to the macrophage pro-inflammatory response.167

Secondary products of ROS can also regulate metabolic function in various tissues and 

cellular environments. In response to OxPLs, EC glycolytic and proliferative capacity are 

increased and are dependent upon NRF2 signaling.168 Similarly, oxidation of cholesterol 

may promote a protective response in macrophages by increasing autophagy and promoting 

effective efferocytosis.169 Lipid peroxidation can increase autophagy in rat VSMCs through 

an ER stress/JNK-dependent mechanism.170 In the mitochondria, lipid peroxidation affects 

membrane fluidity and is capable of modulating ETC complex activity, Krebs cycle 

enzymes, proteostasis and mitochondrial membrane potential (Figure 2).171 Overall, while 

secondary products are known to influence various enzymes and contribute to diseased states 

such as atherosclerosis and cardiac diseases, specific signal transduction pathways have yet 

to be fully elucidated. Nevertheless, secondary products of ROS signaling have a clear role 

in metabolic and inflammatory signaling.

VII. ROS and Autophagy

Autophagy is a highly conserved catabolic process in which cytoplasmic macromolecules 

and organelles are delivered to lysosomes for degradation.172 Constitutive basal levels of 

autophagy support metabolic homeostasis by promoting a balance between protein synthesis 

and degradation, as well as organelle biogenesis and degradation; however, dysregulated 

autophagic flux contributes to metabolic and inflammatory diseases.172,173. For an extensive 

review on the regulation of autophagic machinery, please refer to174.

Oxidative stress regulates autophagic flux through its influence on autophagic gene 

transcription, protein activity and organellular degradation.175 ROS induce macroautophagy 

(commonly referred to as autophagy), and selective degradation of oxidized proteins through 

chaperone-mediated autophagy (CMA) is important for cellular viability during periods of 

oxidative stress.176. Oxidative modification of CMA substrates increases their susceptibility 

to degradation, and CMA is enhanced through LAMP2a upregulation in cells challenged 

with ROS.176 Little is known about the effect of ROS on microautophagy and further work 

is needed to distinguish the roles of macroautophagy, microautophagy, and CMA in response 

to oxidative stress.

In addition to the role of ROS in autophagic flux, ROS are required for autophagy induced 

by starvation,177 dopamine,178 sodium selenite,179 mitochondrial electron transport chain 

inhibitors TTFA and rotenone,180 TNFα181 and LPS.182 The source and identity of ROS that 

mediate these effects remain unclear. Sources of ROS located at or near the plasma 

membrane, such as NOXs, are prime candidates to transduce signals from external stimuli 

into the cell. However, this hypothesis has only been verified in macrophages through LAP. 
149
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As mentioned, ROS can influence AMPK activation. In response to ROS, cytoplasmic ATM 

promotes liver kinase B1 (LKB1)-dependent AMPK activation and downstream autophagy 

through the regulation of TSC2 activity and mTOR inhibition.183,184 Furthermore, 

overexpression of catalase blocks H2O2-induced autophagy,177,182 and starvation-induced 

H2O2 production regulates cysteine oxidation of Atg4, a negative regulator of autophagy that 

delipidates LC3-II to LC3-1 and inhibits autophagosome formation.177 Starvation methods 

including the removal of glucose, L-glutamine, pyruvate and selenium or amino acids can 

also increase O2
− levels.185 Interestingly, amino acid starvation alone increases intracellular 

H2O2 levels, and overexpression of SOD2 in serum-starved, amino acid-starved and H2O2-

treated cells attenuates ROS production and inhibits autophagy.185 Mitochondrial 

antioxidants, such as SS-31 and SOD2, can block autophagy induced by stressors including 

mitochondrial inhibitors,180 sodium selenite,179 and immobilization.186 Given the critical 

role of ROS in the regulation of autophagy, further work is needed to clarify the specific 

mechanisms by which ROS influence autophagic machinery.

ROS are also implicated in regulating the selective degradation of mitochondria through 

mitophagy. MitoROS can trigger mitochondrial permeability transition pore opening and a 

burst of mitoROS, which has been described as ROS-induced ROS release.187, 188 Thus, 

ROS produced by damaged mitochondria may act as a self-removal signal,175 and while this 

hypothesis needs further verification, the benefits of selectively recycling mitochondria with 

oxidized proteins and damaged DNA as a secondary defense against oxidative stress are 

clear and have been demonstrated in yeast.72,189 This is supported by recent work 

suggesting that ROS are required for Phosphatase and tensin homolog-induced kinase 1/

Parkin-dependent mitophagy.190

VIII. ROS and the Proteasome

The proteasome is a highly organized multimeric complex responsible for the selective 

hydrolysis of cytoplasmic, nuclear and ER proteins191 which supports metabolic 

homeostasis by maintaining a stable pool of free amino acids for protein synthesis.192 The 

proteasome also promotes cellular viability in response to oxidative stress.175, 193 Amino 

acids are continuously subjected to oxidative modification as a consequence of aerobic 

respiration, and most of these modifications are irreversible and irreparable. Studies using 

antisense oligonucleotides against critical proteasome subunits 194 or proteasome inhibitors 
195 have implicated the proteasome as the primary pathway for degrading oxidized proteins. 

Thus, the proteasome serves as an important secondary defense against oxidants.

The central catalytic component of the proteasome is the barrel-shaped 20S core particle 

(CP) composed of four heptameric rings consisting of two outer “gate-keeping” α rings and 

two identical inner β rings that contain catalytically active/proteolytic β subunits.191,196 The 

20S CP may be flanked by regulatory subunits through α subunit interaction193 which 

modulate 20S CP activity and substrate specificity.197 The most common of these subunits is 

the 19S regulatory particle (RP),197 which along with the 20S CP, comprises the 26S 

proteasome. The 26S proteasome is a key component of the ubiquitin proteasome pathway 

(UPP) and regulates the degradation of ubiquitinated proteins.197,198 The 19S RP recognizes 

polyubiquitinated substrates and hydrolyzes ATP to unfold and translocate target proteins 
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into the 20S CP.197 The 20S CP may also associate with other regulatory proteins, such as 

PA28αβ, PA28γ, and PA200, for ubiquitin/ATP-independent protein degradation.198,199

Mildly oxidized proteins selectively and rapidly undergo proteolysis, and strong evidence 

suggests the 20S proteasome is largely responsible for this degradation.193,195,200 H2O2 

impairs ubiquitin conjugation and reduces ubiquitin/ATP-dependent proteolysis;201 however, 

disruption of the ubiquitin system does not affect oxidized protein degradation,195 

suggesting that the 20S ubiquitin/ATP-independent proteasome is responsible for protein 

degradation during oxidative stress. Concordant with these findings, in vitro studies using 

purified 26S show that the 26S proteasome, even in the presence of ATP and a functional 

ubiquitination system, does not degrade oxidized proteins.193 However, both the 26S and 

20S proteasome are sensitive to oxidative stress.202 In fact, in the presence of the activator 

PA28αβ, exogenous ROS enhances 20S protease activity202 while H2O2 disrupts 26S 

proteasome complex integrity and reversibly dislocates the 20S CP from the 19S RP.200. 

This dissociation is accompanied by a loss of 26S proteasome activity and enhances cell 

survival following H2O2-induced oxidative stress.200 Interestingly, dissociation of the 26S 

proteasome increases the fraction of 20S proteasome, which may account for an increase in 

cell survival.200 Consistent with this notion is the observation that yeast deficient in 26S 

assembly are more resistant to oxidative stress than their wild type counterparts.203

Some evidence, however, supports a role for the 26S proteasome in degrading oxidized 

proteins. Ubiquitin carboxyl-terminal hydrolase 14 (USP14), a 26S proteasome-associated 

deubiquitinating enzyme, decreases ubiquitin-protein conjugate degradation by 

disassembling polyubiquitin chains.204 Inhibition of USP14 enhances cell survival and 

reduces the accumulation of oxidized proteins in cells challenged by menadione,204 

suggesting that ubiquitination and the 26S proteasome are important for degrading oxidized 

proteins. Moreover, the expression of Ubiquitin conjugating enzyme (UBC) 4, an E2 

enzyme, promotes the degradation of glutathionylated proteins in lens fiber cells, and this 

degradation is blocked by a dominant negative form of ubiquitin and proteasome inhibitors.
205 Several studies also suggest that the 26S proteasome is critical for cellular viability 

during recovery from oxidative stress. Cells treated with H2O2 exhibit a transient increase in 

proteolytic activity and in ubiquitin conjugation post-treatment.201, 206 While oxidative 

stress negatively regulates 26S activity, 26S proteasome activity is almost completely 

restored 24 hours post-treatment.202 Finally, it has been observed that certain oxidized 

proteins are preferentially ubiquitinated.207 Thus, there is evidence to support a role for both 

the 20S and 26S proteasome in degrading oxidized proteins. However, further work may 

help to distinguish the different roles of the 20S and 26S proteasome in dealing with specific 

oxidized substrates.

The proteasome plays an important role in mitigating the effects of ROS, and oxidative 

modification of proteasome subunits modulates proteasome activity. Carboxylation of 

Regulatory Particle Triphosphate (RPT) 3, an ATPase subunit in the 19S RP, impairs ATPase 

activity and decreases 26S proteasome activity.208. Additionally, both carbonylation and 4-

hydroxy-2-nonenal (HNE) modification of two α-subunits in the 20S proteasome impair 

ubiquitin/ATP-independent proteolysis.209 Interestingly, S-glutathionylation directly 

modulates specific proteolytic activity of the 20S proteasome.210 Low doses of GSH or 
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GSSG enhance the chymotrypsin-like activity of purified proteasome, while higher doses 

inhibit this activity.210 The effect of S-glutathionylation seems specific to the chymotrypsin-

like activity, as GSH and GSSG do not affect the trypsin-like activity of purified 

proteasomes.210

Other post-translational modifications also modulate proteasome activity in response to 

oxidative stress. Poly-ADP ribosylation of the 20S proteasome by the redox-sensitive 

enzyme poly-ADP ribose polymerase enhances the chymotrypsin-like activity of the 20S 

proteasome in K562 leukemia cells.211 In addition, apoptosis signal-regulating kinase 1 

(Ask1) is activated by oxidative stress,212 and Ask1 phosphorylation of RPT5, a 19S 

subunit, negatively regulates 26S proteasome activity.213 Significantly, Ask1 is required for 

ROS-induced inhibition of 26S proteasome activity.214 Thus, Ask1-dependent proteasome 

phosphorylation may act as a critical regulatory mechanism for proteasome activity during 

oxidative stress.

Following oxidative stress, E1 activating enzyme expression and ubiquitin conjugation are 

increased in bovine lens epithelial cells.206 Increased expression appears to be due to 

increased translation of E1 mRNA.206 Consistent with the 20S proteasome playing a critical 

role in degrading oxidized proteins, H2O2 treatment increases α3, α4, β1, and β2 20S 

proteasome subunit expression without affecting the 19S RPS subunit S4.215 Interestingly, 

upregulation of immunoproteasome subunits has also been reported.215, 216 Low-molecular-

mass protein (LMP) 2, LMP7, LMP10 are β subunits that may replace constitutive β 
subunits in the 20S proteasome upon interferon-γ stimulation,217 and increased expression 

of these subunits has been reported in neural cells in response to exogenous ROS.216 The 

transcription factors that regulate immunoproteasome and standard proteasome subunit 

expression following oxidative stress require further study.

2. Cardiovascular and Metabolic Diseases

I. Atherosclerosis

NOX—Atherosclerosis is mediated in large part through subendothelial lipoprotein 

retention, endothelial dysfunction, vascular remodeling and a heightened inflammatory 

response, and is an underlying cause of heart disease and stroke.218,219 Of importance, 

metabolic disease risk factors typically observed in patients with obesity and diabetes 

(changes in cholesterol, elevated triglycerides, insulin resistance) increase the risk for 

atherosclerosis.220,221 Although the link between oxidized LDL and atherosclerosis was 

discovered nearly 30 years ago,222 the NOX enzyme family was only defined in the 

mid-1990s. Some of the first studies performed exploring NOX-induced ROS concluded that 

NOX-derived ROS have little influence on lesion development in ApoE−/− mice on normal 

chow diets. Neither p47phox−/− (NOX1 and NOX2 activator) nor NOX2 (gp91phox−/y) mice 

crossed with ApoE−/− mice show changes in aortic sinus lesion area, although 

NOX2−/yApoE−/− mice exhibit reduced plasma triglyceride and cholesterol levels.223,224 

However, these findings appear to be aortic sinus-specific, as further analysis of p47phox−/− 

ApoE−/− and NOX2−/y ApoE−/− mice (on chow and high-fat/western-type diets) revealed a 

reduction in descending aortic lesion development.225–227
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NOX1−/y ApoE−/− mice are protected from both atherogenic diet-induced and diabetes-

induced (atherogenic diet + streptozatocin, STZ) atherosclerosis,228–230 associated with 

decreased ROS production, inflammatory signaling and aortic macrophage infiltration. 

NOX1 likely exerts its effects in part by reducing VSMC proliferation and migration,231 and 

its phosphorylation on threonine 429 (Th4429) may be a contributing factor.232 However, the 

role of NOX1 in the initiation and progression of atherosclerosis remains controversial 

because recent findings in NOX1-deficient ApoE−/− mice indicate NOX1 may be protective 

against hyperlipidemia and plaque instability in response to a western-type diet.233

Similar to NOX1, the role of NOX2 in lesion etiology remains controversial. As mentioned, 

NOX2−/y ApoE−/− mice fed an atherogenic diet show reductions in the development and 

progression of atherosclerosis.226 Likewise, treatment of high fat diet fed ApoE−/− mice with 

a NOX2-specific inhibitor reduces aortic lesion area,234 and while there are compelling data 

regarding a role for global NOX2-induced ROS in plaque development, the tissue-specific 

role of NOX2 remains ill-defined. In ApoE−/− mice, EC-specific overexpression of NOX2 

increases inflammatory signaling and macrophage infiltration in early lesions, but does not 

influence diet-induced lesion progression.235 Bone marrow transplantation between 

p47phox −/− ApoE−/− mice and p47+/+ ApoE−/− mice shows that suppression of either bone 

marrow cell or vascular wall O2
− production attenuates western-type diet induced 

atherosclerosis.236 Moreover, suppression of NOX2 in bone marrow cells is associated with 

reduced plasma oxLDL, suggesting NOX2-derived ROS may regulate oxLDL production. 

oxLDL is scavenged and internalized by the lectin-like oxidized low density lipoprotein 

receptor 1 (LOX-1) and contributes to atherogenesis through ROS-dependent mechanisms 

involving NF-κB activation,237 inhibition of AKT/eNOS signaling,238 macrophage 

proinflammatory cytokine production and cell death,239,240 and VSMC apoptosis.241 The 

importance of NOX2-derived ROS within macrophages is also seen in its role in pathogen 

degradation after phagocytosis through a process called macropinocytosis. 242, 243

Given the diverse roles of both NOX1 and NOX2 in vascular disease, it is not surprising that 

NOX4 can also be both a harbinger of lesion development and a protector. As a protector, 

NOX4-derived ROS appear to be critical in maintaining vessel homeostasis in mouse models 

of atherosclerosis, because NOX4−/− Ldlr−/− and NOX4−/− ApoE−/− mice experience 

endothelial dysfunction and increased plaque burden as well as increased plaque formation 

in partial ligation plus high fat diet models.244,245 However, in diabetes-induced 

atherosclerosis, global NOX4 deletion may be protective or augment diabetes-induced lesion 

development, depending on the time frame.227, 229 NOX4 deletion in a 10-week STZ model 

of diabetes reduces plaque burden associated with T cell activation and infiltration,227 but in 

a 20-week model of STZ-induced diabetes, NOX4 deletion augments VSMC collagen 

deposition and proliferation, which may exacerbate lesion progression.246 The contribution 

of NOX4 in diabetic lesion development may also differ between early and advanced 

lesions, as NOX4 deletion has a minimal effect on early diabetes-induced plaque progression 

in the aortic arch,229 but is critical to suppressing the inflammatory response in advanced 

lesions.230

In tissue-specific NOX4 KO models, a more specific role for NOX4 signaling in 

atherosclerosis emerges. Expression of an EC-specific NOX4 mutation (human P437H 
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dominant negative mutation) in ApoE−/− mice exacerbates lesion progression in response to 

STZ;247 whereas EC overexpression of wild-type NOX4 attenuates high-fat diet-induced 

lesion development.248 As mentioned, NOX4 is upregulated in advanced lesions, as opposed 

to the upregulation of NOX1 and NOX2 in the early phases of plaque development.
225,249,250 While these studies indicate that this upregulation may be protective, other studies 

have shown NOX4 upregulation may promote lesion progression. Importantly, upregulated 

NOX4 in advanced plaques correlates with VSMC dysfunction and plaque instability,249 and 

smooth muscle-specific NOX4 deletion protects against western-type diet-induced 

atherosclerosis.251 Aged ApoE−/− mice fed a western-type diet and aged human carotid 

VSMCs exhibit increased mitochondrial NOX4 induction with parallel increases in 

mitoROS production, and inhibition of NOX4 increases aged VSMC mitochondrial complex 

I and II activity, decreases mitoROS and attenuates VCAM-1 induction.250 ER-derived 

NOX4 signaling is also implicated in VSMC apoptosis in response to 7-ketocholesterol, a 

major cholesterol oxidation product found in human plaques. 7-ketocholesterol upregulates 

IRE1 activity leading to JNK/AP-1-dependent NOX4 gene induction. Increased ROS 

production through NOX4 induces ER stress proteins GRP78 and CHOP and the apoptosis 

regulator Bcl-2-associated X protein (Bax).252 A role for NOX2 in CHOP induction has also 

been observed,253 and in vivo silencing of CHOP attenuates lesion area and plaque necrosis 

in hyperlipidemic mice.254,255

The PPP pathway can serve as both a biosynthetic pathway for nucleotides and a factory for 

NADPH production resulting in increased reducing capacity or NOX activity and O2
− 

production. G6PD catalyzes the first step of the PPP and generates NADPH as a by-product. 

With regard to atherosclerosis, deficiency in G6PD abrogates O2
− production and resultant 

inflammatory signaling and lesion growth in ApoE−/− mice fed a western-type diet.256 

However, G6PD overexpression in ECs reduces TNFα-induced ROS production and 

increases eNOS activity, suggesting a protective role for this protein.257 Future studies 

should aim to clarify the circumstances by which G6PD contributes to pro- and anti-oxidant 

signaling, as well as the role of other PPP enzymes, in NOX activity and atherogenesis.257

As noted above, a plethora of evidence indicates a role for NOX-induced ROS in 

atherogenesis, although these molecules play both a positive and negative role in lesion 

progression. It is becoming increasingly clear that no model of atherosclerosis is the same. 

Changes in diet (composition and timing), genetic background, and age all influence NOX 

signaling. Tissue-specific knockouts have helped to create a clearer picture of the role of 

NOX in various tissues as it pertains to atherosclerosis, and continued investigation will 

determine the suitability of NOX enzymes as potential therapeutic targets.

Mitochondrial ROS—MitoROS signaling plays a major role in atherosclerosis and 

associated vascular complications, and induction of mitoROS is correlated with human 

plaque development.53 In general, scavenging of mitoROS attenuates atherosclerosis 

development and complications associated with atherosclerosis.250,258 Genetic inhibition of 

mitoROS may also have beneficial effects on lesion development. Suppression of mitoROS 

signaling in macrophages through the overexpression of mito-targeted catalase reduces 

lesion area, inflammatory signaling and immune cell infiltration into the aortic root of Ldlr
−/− mice fed a western-type diet. In cultured mitoCatalase-overexpressing macrophages, LPS 
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and oxLDL-induced mitoROS promote IKKβ phosphorylation (serine 177) and downstream 

p65 phosphorylation (serine 536), and inhibition of this pathway blocks macrophage MCP-1 

induction.259 Furthermore, bone marrow transfer from mitoCatalase-expressing mice to aged 

WT Ldlr−/− mice diminishes neutrophil extracellular traps and lesion area, but is unable to 

perturb increased plasma cholesterol levels.260

As discussed previously, a dynamic interplay exists between mitoROS production and 

mitochondrial morphology. With regard to atherosclerosis and metabolic dysfunction, high 

glucose can induce mitoROS through Drp1-dependent mitochondrial fission in human ECs, 

and inhibition of fission with the pharmacological inhibitor mitochondrial division 

inhibitor-1 (Mdivi-1) attenuates diabetes-induced aortic oxidative stress, cell adhesion 

molecule expression and aortic root lesion development.261 However, there appears to be a 

cell type-specific role for mitochondrial fission in disease progression, as myeloid Drp1 

silencing in Ldlr−/− mice fed a western-type augments plaque necrosis due to impaired 

efferocytosis.151

Uncoupling protein 2 (UCP2) is a mitochondrial inner membrane protein and is reported to 

regulate ROS generation through feedback inhibition involving ROS-induced uncoupling 

and proton leak.262 UCP2 expression is increased in C57BL6 mice in response to an 

atherogenic diet, and deletion of UCP2 increases oxidative stress, endothelial dysfunction, 

VCAM-1 expression, macrophage infiltration and atherogenesis.263,264 Likewise, xanthine 

oxidase is found in various cellular compartments including the mitochondria, and 

pharmacological inhibition via febuxostat or tungsten reduces chemokine expression, 

endothelial dysfunction and lesion development.265, 266

Altogether, mitoROS play a significant role is lesion etiology. Given their unique position in 

regulating cellular energy metabolism, it is no surprise that alteration in mitoROS production 

influences mitochondrial function and cellular homeostasis and is a possible cause of lesion 

progression. There are numerous ROS producing complexes within the mitochondria, and 

teasing out their role in atherosclerosis is of paramount importance.

ROS Scavenging—Similar to inhibition of ROS producing enzymes, increasing ROS 

scavenging appears to have a beneficial effect on lesion development. Mice overexpressing 

catalase and catalase + SOD1,267 Prdx4,268 and Trx2 (EC-specific)269 all exhibit decreased 

lesion development. In contrast, deletion of ROS scavenging systems exacerbates lesion 

progression, as seen in mice with deletion of NF-E2 related factor 2,270 GPX1,271,272, 

SOD2,273 and Prdx1 and 2.274,275

The paraoxanase (PON) family of proteins may also serve an anti-oxidant role in 

atherosclerosis through their ability to hydrolyze lipid peroxides.276 Overexpression of the 

PON transgenic cluster (PONs 1,2 and 3 together) promotes plaque stability via increased 

collagen synthesis, decreased necrotic core area and reduced oxLDL and inflammatory 

markers. PON1 overexpression may also reduce monocyte-to-macrophage differentiation 

and promote macrophage resistance against oxLDL-induced foam cell formation277 and 

induction of the LPS + IFNγ inflammatory phenotype.278,279 In contrast, deletion of PON1 

increases vascular oxidative stress and leukocyte adhesion,280 and deletion of PON2 
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exacerbates lesion development.281,282 Recent evidence suggests that PON2 may localize to 

the mitochondrial inner membrane where it is bound to CoQ and contributes to ROS 

scavenging and maintenance of complex I and III activity.281

Cumulatively, ROS signaling has been shown to be an underlying causative factor that 

contributes to the complex etiology of atherosclerosis in animal models (Supplementary 

Table I). The studies presented highlight a unique role for ROS in the regulation of cellular 

responses to various atherogenic stimuli, and tissue-specific studies have begun to elucidate 

the role ROS signaling might play in various cell types and their contribution to lesion 

progression. However, even in the presence of an abundance of data indicating a causative 

role for ROS in atherosclerosis, mechanistic details regarding metabolic regulation and its 

role in ROS signaling are lacking.

II. Diabetes/Obesity

Obesity creates an increased risk for the development of cardiovascular and metabolic 

diseases including atherosclerosis, diabetes mellitus and hypertension.283 Obesity is 

associated with insulin resistance and hyperglycemia, which contribute to the development 

of type II diabetes mellitus, and clinical investigation has yielded novel insight into how 

diabetes-related complications contribute to systemic vascular and metabolic dysfunction. 

Clinical and animal research consistently point to oxidative stress as an underlying factor 

that mediates obesity- and diabetes-related health ailments.284,285 Importantly, glucose 

metabolism can produce ROS via sorbitol metabolism, hexosamine metabolism, α-

ketoaldehyde production, PKC activation, glycation and oxidative phosphorylation.286

Vascular System—Hyperglycemia is a consequence of diabetes and insulin resistance 

and plays a significant role in the accompanying vascular complications (atherogenesis, 

endothelial dysfunction, inflammation, altered vascular tone). Early studies highlighted the 

ability of glucose and free fatty acids to stimulate ROS production in vascular cells including 

VSMCs, ECs and human leukocytes, and showed that high glucose can impair PPP activity 

and generation of reducing equivalents.287–290 Since then, investigation has focused on 

unique pathways by which ROS may regulate vascular complications in diabetes and 

obesity.

ROS can regulate vascular tone in response to hyperglycemia via regulation of PKCβ and 

inhibition of eNOS activity.291 Hyperglycemia-induced ROS production activates the 26S 

proteasome leading to ubiquitination and degradation of the BH4 synthesis rate limiting 

enzyme guanosine 5′-triphosphate cyclohydrolase I (GTPCH). BH4 deficiency dysregulates 

eNOS activity which impairs endothelial-dependent relaxation, and treatment of STZ-

injected mice with TEMPOL restores GTPCH, BH4 and attenuates endothelial dysfunction.
292 Furthermore, PKCβII induces endothelial dysfunction through p66shc-mediated 

mitoROS production.291,293 Hyperglycemia increases p66shc acetylation (Lys81), which 

precedes PKCβII-induced phosphorylation (Ser36) of p66shc, and inhibition of p66shc 

reduces mitoROS, aortic lipid peroxidation and restores eNOS activity and endothelial-

dependent relaxation in diabetic mice.291, 293 PKCβ also regulates vascular tone through 

impairment in the large conductance Ca2+-activated K+ channel. In response to high glucose, 
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the β1 subunit of the Ca2+-activated K+ channel is degraded through PKCβ-stimulated 

NOX1 and NOX4 activation, inhibition of AKT and activation of the forkhead box protein 

O3a/F-box only degradation pathway.294

As with atherosclerotic lesion development, NOX-derived ROS play an important role in 

vascular homeostasis in diabetes and obesity. Inhibition of NOX activity attenuates diabetes-

induced impairment of endothelial-dependent relaxation,295 and aged NOX2−/y mice fed a 

high fat diet are protected from obesity, dyslipidemia, insulin resistance and endothelial 

dysfunction.296 Similar results have been observed in arteries from diabetic NOX1−/y mice,
297 and mice treated with siRNA targeting p22phox,298 as well as NOX2−/y mice with EC-

specific overexpression of a human dominant negative (DN) variant of the insulin receptor 

that causes EC-specific insulin resistance and reduced vascular relaxation.299 

Proinflammatory stimuli such as TNFα can induce NOX activity in diabetic mice resulting 

in impaired vasorelaxation,300 and NOX-derived ROS downregulate cGMP-dependent 

protein kinase I, which normally promotes vascular relaxation.301 Furthermore, high glucose 

induces NOX4 upregulation via a PKCζ and NF-κB-dependent pathway.302 Insulin like 

growth factor 1 (IGF-1) enhances high glucose-induced NOX4/p22phox complex formation 

and activation of VSMCs, and induces NOX4 Tyr491 phosphorylation leading to NOX4 

binding to the SH2 domain of growth factor receptor-bound protein 2 (Grb2). NOX4/Grb2 

association is needed for NOX4 localization to the SHPS-1 plasma membrane scaffold in 

VSMCs and STZ-injected mouse vasculature. Disruption of the NOX4/Grb2 association 

inhibits Src oxidation in vivo as well as VSMC proliferation.303

ROS produced by NOX also reduce vascular endothelial growth factor (VEGF) expression 

and post-ischemic neovascularization in diabetic mice. NOX2−/y mice show increased bone 

marrow mononuclear cell (BM-MNC) to EC differentiation and injection of BM-MNCs 

from NOX2−/y mice into diabetic mice enhances neovascularization.304 Furthermore, 

endothelial progenitor cells from diabetic patients show a reduced reendothelialization 

capacity that can be normalized through inhibition of p47phox.305 Together, these data 

suggest a major role for ROS-mediated signaling in both facilitating dysregulated vascular 

tone and impairment of angiogenesis/neovascularization in diabetic ischemic tissue.

One consequence of hyperglycemia is the generation of advanced glycation end products 

(AGEs), covalent adducts formed between glucose and plasma proteins. AGEs contribute to 

diabetic-related maladies including neuropathy, retinopathy and cardiomyopathy.306 Given 

its direct contact with blood, the endothelium is a prime target for AGE-mediated signaling. 

Importantly, aortic ECs express the receptor for AGEs (RAGE), which is increased in 

response to high glucose via mitoROS production,307 and incubation of ECs with diabetic 

red blood cells expressing AGEs increases VCAM-1 induction and tissue factor production 

through RAGE-induced NOX activation.308 AGE stimulation may also dysregulate eNOS 

activity via increased NOX and mitoROS within the coronary endothelium of diabetic 

patients.309 Silencing of NOX2 in macrophages prevents AGE-induced tissue factor 

expression as well.308 NOX silencing is also beneficial in reducing AGE-induced apoptosis 

and NF-κB signaling in VSMCs.308, 310 Further, high glucose-induced mitoROS production 

increases PKC activation, hexosamine pathway activation and AGE formation through DNA 
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strand break-mediated poly(ADP-ribose) polymerase activation and GAPDH poly(ADP-

ribosyl)ation.311

As mentioned, mitoROS play a significant role in modulating vascular function in diabetes 

and obesity through both AGE signaling and modulating vascular tone, and potentially 

through changes in mitochondrial morphology. Isolated coronary ECs from diabetic mice 

exhibit increased mitochondrial fission that can be attenuated with in vivo TEMPOL 

delivery.312 High glucose-induced mitochondrial fission induces mitoROS production,312,313 

which may be a result of increased pyruvate uptake following increased fission,314 as well as 

an instigating step in apoptosis.313 Silencing of Drp1 or Fis1 inhibits high glucose-induced 

mitoROS and restores eNOS activity and cGMP production, suggesting a role for 

mitochondrial fission-induced ROS in regulating vascular tone.315 Likewise, high glucose-

induced VSMC proliferation can be inhibited by attenuating mitochondrial fission-

dependent NOX activity.316 Low blood glucose also commonly occurs in diabetic patients 

who lack tight glycemic control, and low glucose enhances mitoROS production through 

Drp1-dependent mitochondrial fission. Suppression of mitochondrial fission in response to 

low glucose inhibits mitoROS production, increases NO bioavailability and restores 

endothelial-dependent vascular relaxation.317 Moreover, NOX-induced Drp1-driven 

mitochondrial fission contributes to inflammasome activation by palmitate and elevated free 

fatty acids, which are often observed in diabetes.318

Much evidence supports an ROS contribution to the regulation of vascular tone and 

inflammatory signaling in diabetes and obesity (Supplementary Table II). The interaction of 

ROS and the metabolic changes that occur in obesity and diabetes is less clear, and is a 

subject for further investigation.

III. Stroke

Ischemic stroke is a leading cause of death and long term disability in the United States,319 

and patients who exhibit metabolic risk factors including diabetes mellitus, obesity and 

dyslipidemia are at a greater risk of experiencing stroke-related events.320 Within minutes of 

hypoxia and glucose deprivation, a complex cascade of molecular events ensues, involving 

depolarization of neurons, increased Ca2+ influx, ATP depletion and release of the excitatory 

neurotransmitter glutamate.321 Activation of glutamate receptors leads to a further increase 

in intracellular Ca2+, activation of NOS and NOX signaling, mitochondrial dysfunction and 

neuronal death. Although hypoxia and glucose deprivation play a major role in the 

neurodegeneration induced by stroke, a role for ROS is clear. Indeed, several clinical studies 

have shown a correlation between elevated oxidative stress and brain ischemia,322,323 and 

decreasing oxidative stress may be protective against stroke-induced complications.324,325.

MitoROS are involved in the pathophysiology of cerebral ischemia as well as reperfusion 

injury.326 Importantly, depletion of SOD2 increases mortality, stroke volume, brain edema 

and cytochrome C-mediated neuronal apoptosis following transient and permanent middle 

cerebral artery occlusion (MCAO).327,328 In response to stroke, mitoROS arise from various 

sources including, complex I and IV, monoamine oxidase, p66shc, mitochondrial BKCa and 

mKATP channels, cytochrome b5 reductase and dihydroorotate dehydrogenase.329–333 In 

patients who experience acute ischemic stroke, p66shc gene expression is increased in 
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peripheral blood monocytes, and post-ischemic knockdown of p66shc in mice undergoing 

transient MCAO improves survival and functional outcomes and reduces stroke lesion 

volume.334 p66shc knockdown attenuates transient MCAO (tMCAO)-induced blood-brain 

barrier (BBB) permeability, which is associated with a reduction in NOX ROS-induced 

claudin-5 degradation.335 NOX signaling represents an important source of ROS in the 

pathophysiology of stroke. Several studies have correlated NOX2 and NOX4 depletion with 

decreased infarct volume, oxidative stress, BBB permeability and neutrophil infiltration after 

MCAO.324,336–339 Similar results have been reported with non-specific Nox2 inhibitors, 

apocynin and diphenylene iodonium,337,340 and injection of glutathione into rats subjected 

to tMCAO reduces infarct volume and increases cell survival signaling.341 Further, NOX2 

deletion prevents tMCAO-induced IL-1β, TNFα, and CC-chemokine ligand 2/3 

upregulation,342 as well as glutamate toxicity through suppression of complexin II/soluble 

N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) interaction.343 

However, a recent study hypothesizes that deletion of NOX2 only delays infarct progression 

while simultaneously increasing angiogenesis, but is unable to prevent neuronal loss.344 

Similarly, NOX2 deletion may have a protective effect only in models of transient occlusion, 

as NOX2 deletion has no effect on permanent MCAO-induced neurological dysfunction.345

A role for tissue-specific NOX4 signaling in cerebral ischemia has also recently been 

elucidated. Overexpression of NOX4 in pericytes increases BBB permeability following 

permanent MCAO in mice, which coincides with increased MMP-9 activity and 

phosphorylation of NFκB.346 Similarly, in response to tMCAO, EC NOX4−/− mice have 

increased BBB stability associated with less autophagy-related stress, but show no reduction 

in neuronal cell death. In contrast, neuronal NOX4−/− mice display reduced neuronal cell 

death but no change in BBB stability.339 Separate from NOX2 and NOX4, there have been 

conflicting reports regarding the role of NOX1 in stroke pathophysiology. NOX1 depletion 

decreases infarct volume, improves neurological outcome and reduces cerebral edema in 

mice subjected to tMCAO; however, these effects may be independent of NOX1-ROS 

signaling.347 Adenoviral-mediated knockdown of NOX1 in rats undergoing tMCAO 

promotes increased functional recovery, which is associated with reduced infarct size and 

neuronal cell death.348 However, two different groups have shown that NOX1 depletion does 

not affect infarct volume, brain edema or neurological score following tMCAO.324,349

As mentioned, diabetes is a risk factor for stroke,350 and elevated blood glucose at stroke 

onset predisposes individuals to more severe functional outcomes and increased mortality.
351 Mechanistically, glucose injection into mice at the time of reperfusion after tMCAO 

increases NOX-dependent ROS production and neuronal cell death compared to 

normoglycemic controls, and p47phox−/− mice are protected from this response.352 

Furthermore, systemic glucose is regulated by the ventromedial nucleus of the hypothalamus 

(VMH), and glucose sensing in the VMH is partly regulated by Drp1-dependent mitoROS 

signaling.353 Glucose load induces Drp1 activity through UCP2 in VMH, and UCP2-

mediated mitochondrial fission reduces ROS, a mechanism that seemingly argues against the 

hypothesis that mitochondrial fission induces ROS, although increased Drp1-dependent 

mitophagy in response to permanent brain ischemia may play a role in mitigating ROS 

production.354 Depletion of UCP2 increases infarct volume in mice after tMCAO355 and 

alters whole body glucose utilization and insulin sensitivity. Re-expression of UCP2 in the 
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VMH rectifies changes in glucose utilization and insulin sensitivity,356 and UCP2 

overexpression in mice subjected to tMCAO reduces brain damage and neurological 

dysfunction.357

Oxygen sensing and glucose metabolism are central to regulating brain homeostasis and 

contribute to ischemic pathophysiology. Prolyl hydroxylase domain proteins (PHDs) 

regulate hypoxic signaling, most notably through regulation of HIF1α activity. PHD1−/− 

mice are protected against the deleterious consequences of permanent brain ischemia.358 

PHD1 deficiency reduces neuronal glycolysis and glucose consumption while concomitantly 

increasing glutamine oxidation, thereby maintaining mitochondrial respiration and energy 

homeostasis. This is vital for protection against ischemic-related injury as glucose is 

diverted towards the PPP pathway, thus increasing oxidative PPP flux and reducing 

equivalents needed for ROS scavenging in response to an ischemic insult.358 A role for 

oxidant scavenging has also been noted in ischemic pathophysiology. Prdx2 overexpression 

reduces infarct size and neurological deficits in mice through attenuation of DNA damage 

and PARP1/p53 pro-death signaling.359 GPX3 deficiency promotes vascular dysfunction and 

platelet-dependent arterial thrombosis and increases cerebral infarct size in mice with 

permanent MCAO.360 Conversely, overexpression of GPX1 attenuates tMCAO-induced 

edema, microglial activation, neutrophil infiltration and neuronal cell death compared to WT 

mice.361 Similar results have been observed in SOD1 mice.362

Cumulatively, although evidence supports a major role for ROS signaling in stroke 

pathophysiology, few studies have delved into cell-type specific roles of ROS. Given the 

dynamic interplay between ECs, pericytes, VSMCs, astrocytes and immune cells in the 

development and progression of stroke, additional experiments are warranted. In particular, 

with the unique metabolic alteration that occurs during stroke, more emphasis should be 

placed on how ROS signaling affects nutrient shuttling and metabolism in the ischemic 

tissue.

3. Antioxidant Trials

Animal studies have unequivocally suggested that ROS are a viable target for therapeutic 

intervention in the treatment of cardiovascular disease. However, clinical trials have yielded 

less than favorable results,363,364 and although these results are negative, they have helped to 

identify why current approaches fail and how to target future interventions. Most antioxidant 

trials were conducted with various vitamins (A, C and E), and although vitamins have 

antioxidant properties, their effects may be too broad and concentrations may never reach 

the levels needed to attenuate ROS production, nor be as effective in ROS scavenging by 

tissue antioxidant defenses. Concerns have arisen regarding efficacy of synthetic compared 

to natural antioxidant formulations, as well as mode of delivery (e.g., pill vs diet). 

Furthermore, disease progression takes time, especially in the case of atherosclerosis and 

heart failure. To date, most studies have only looked at a small window of time (~5 years) 

during more advanced stages of disease, which may not be long enough to uncover positive 

effects. It has also become increasingly clear that ROS are vital to maintaining physiological 

function, and thus general scavenging of ROS may compromise cellular homeostasis and 

augment disease progression in some cases. This is especially important as we consider the 
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location and source of ROS, the specific roles of various types of ROS and how changes in 

concentration may affect cellular signaling. For instance, H2O2 has been found to induce 

both vasoconstriction and vasorelaxation in blood vessels treated with KCL and 

phenylephrine, respectively.365 Likewise, suppression of endothelial H2O2 in mice results in 

hypotension and prevents the upregulation of eNOS in response to exercise.366 On a similar 

note, O2
−, while largely known for its role in arterial vasoconstriction and mediating EC and 

VSMC dysfunction, has also been found to regulate both vasoconstriction and vasodilation 

in a concentration-dependent manner in the cerebral vasculature,367 and is critical to platelet 

activation and immune cell phagocytic function/recruitment.368,369 ROS signaling in the 

setting of hypoxia has also been speculated to both instigate and inhibit angiogenesis, which 

may be dependent upon the local tissue environment and disease setting.305,369 Finally, in 

many instances, antioxidants scavenge free radicals but do not affect H2O2, which as 

described throughout this review, is responsible for many of the pathophysiological effects 

on the vasculature.

While numerous studies highlight the physiological and pathophysiological differences in 

ROS signal transduction and their effect on cellular function, the takeaway remains the 

same. Instead of broad-spectrum ROS scavenging, it may be more effective to consider 

therapies that target specific sources of ROS, or limiting the production of specific ROS so 

as not to disrupt basic physiological function. We also need to consider how specific ROS 

influence different diseases. For example, in some cases, inhibition of O2
− may not be as 

effective as scavenging H2O2 and vice-versa. However, inhibiting a specific source of ROS 

such as NOX may be beneficial. To this end, GKT137831, a promising NOX1/4 inhibitor, is 

currently in phase II clinical trials for diabetic kidney disease.370 Human studies will be 

needed to test if new therapies targeted to specific sources of ROS, such as mito-tempol, will 

be beneficial in the treatment of cardiovascular disease.

4. Future Investigation/Concluding Remarks

One of the challenges in dissecting the role of ROS in cardiovascular pathology is that ROS 

are produced not only as natural by-products of metabolic reactions in various cellular 

compartments, but they also serve as signaling molecules that regulate specific biochemical 

pathways in normal cell function and survival. Dysregulation of ROS signaling, or excess 

non-specific production of ROS, can influence disease pathophysiology. As highlighted in 

this review, ROS are particularly important in cellular metabolism and inflammatory 

signaling. Thus, it is not surprising that ROS play a significant role in diseases associated 

with metabolic dysregulation and inflammation.

There are myriad areas where further investigation is warranted. Importantly, we have seen 

much emphasis on cytoplasmic and mitochondrial ROS signaling; however, there is a dearth 

of information regarding the contribution of peroxisomal and endoplasmic reticular ROS to 

cellular homeostasis. New organelle-targeted probes and antioxidants will help to tease out 

the contribution of organellular/compartmental-specific ROS and their influence on critical 

cellular processes including aerobic/anaerobic respiration, β-oxidation, fatty acid synthesis, 

protein translation and post-translational modifications. Such tools will also provide insight 

into how ROS-induced inflammatory signaling may affect and be affected by this regulation, 
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given the relationship between inflammatory and metabolic signaling. In addition, with the 

advent of cre-lox technology and the development of tissue-specific and inducible knockout 

mouse models, research should continue to delineate the tissue-specific role of ROS 

signaling in metabolic and cardiovascular diseases. Cardiovascular and metabolic disease 

etiology is complex, and understanding tissue-specific redox signaling will be important in 

our effort to develop new and novel therapies to treat disease. Metabolic dysregulation is a 

primary driver of cellular dysfunction and disease progression, and understanding the 

contribution and influence of ROS on metabolic processes poses an exciting area for 

scientific discovery.
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Abbreviation

ACOX
Acyl-CoA oxidase

ADAM17
A disintegrin and metalloproteinase domain-containing protein 17

AGE
Advanced glycation end product

AMPK
AMP-activated protein kinase

AP-1
Activator protein 1

ASC
Apoptosis-associated speck-like protein containing a CARD

ASK1
Apoptosis signal-regulating kinase 1

ATM
ataxia-telangiectasia mutated

BBB
Blood-brain barrier
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BH4
tetrahydrobiopterin

BM-MNC
Bone marrow mononuclear cell

BMP4
Bone morphogenic protein 4

CaMKKβ
Ca2+/calmodulin-dependent protein kinase kinase Beta

Cat
Catalase

CCCP
Carbonyl cyanide 3-chlorophenylhydrazone

CHOP
C/EBP homologous protein

CMA
Chaperone-mediated autophagy

CoQ
Coenzyme Q

CP
Core particle

CytoROS
Cytoplasmic ROS

DN
Dominant negative

Drp1
Dynamin-related protein 1

EC
Endothelial cell

eNOS
Endothelial nitric oxide synthase

ER
Endoplasmic Reticulum

ERO1
ER oxidoreductin 1
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ETC
Electron transport chain

G6PD
Glucose-6-phosphate dehydrogenase

GlUT1
Glucose transporter 1

GPX
Glutathione peroxidase

Grb2
Growth factor receptor-bound protein 2

GRP78
Glucose-regulate protien 78

Grx
glutaredoxin

GTPCH
Guanosine 5′-triphosphate cyclohydrolase I

HIF1α
Hypoxia inducible factor 1α

IGF-1
Insulin like growth factor 1

IKK
IκB kinase

IL-18
Interleukin 18

IL-1β
Interleukin 1 Beta

iNOS
Inducible NOS

IP3R
Inositol 1,4,5-trisphosphate receptor

IκBα
Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha

JNK
c-Jun N-terminal kinase
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KGDHC
α-ketoglutarate dehydrogenase

KO
Knockout

LAP
LC3-associated phagocytosis

LC3
Microtubule-associated protein 1A/1B-light chain 3

LKB1
Liver kinase B1

LMP
Low-molecular-mass protein

LOX-1
Lectin-type oxidized LDL receptor 1

LPP
Lipid peroxidation product

LPS
Lipopolysaccharide

MCU
Mitochondrial calcium uniporter

MerTK
Mer Tyrosine Kinase

MICU1
mitochondrial calcium uptake 1

Mitochondrial-associated ER membrane
MAM

MitoROS
Mitochondrial ROS

mTORC
Mammalian target of rapamycin complex

NAC
N-acetyl cysteine (CC

NF-κB
Nuclear factor kappa-light-chain-enhancer of activated B cells
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NIK
NF-κB inducing kinase

NLRP3
NLR family pyrin domain containing 3

nNOS
Neuronal NOS

NOX
NADPH oxidase

ONOO
Peroxynitrite

OPA1
Optic atrophy protein 1

OxPL
Oxidized Phospholipid

P66SHC
SHC-transforming protein 1 isoform p66

PDC
pyruvate dehydrogenase

PDHK
Pyruvate dehydrogenase kinase

PDI
Protein disulfide-isomerase

Pex
Peroxin

PHD
Prolyl hydroxylase domain protein

PINK1
(PTEN)-induced kinase 1

PON
Paraoxanase

PPP
Pentose phosphate pathway

Prdx
peroxiredoxin
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RAGE
Receptor for AGE

RET
Reverse electron transfer

ROMO1
ROS modulator 1

ROS
Reactive oxygen species

RP
Regulatory particle

RPT
Regulatory particle triphosphate

SNARE
Soluble N-ethylmaleimide-sensitive factor attachment protein

SOD
Superoxide dismutase

STZ
Streptozatocin

tMCAO
Transient middle cerebral artery occlusion

TNFα
Tumor necrosis factor alpha

TRAF
TNF Receptor associated factor

Trx
Thioredoxin

TrxR
Thioredoxin reductase

TSC
Tuberous sclerosis protein

TxNIP
Thioredoxin-interacting protein

UBC
Ubiquitin conjugating enzyme
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UCP2
Uncoupling protein 2

ULK1
uncoordinated 51-like kinase 1

UPP
Ubiquitin proteasome pathway

UPR
Unfolded protein response

USP14
Ubiquitin carboxyl-terminal hydrolase 14

VCAM-1
Vascular cell adhesion molecule 1

VDAC1
Voltage dependent anion channel 1

VEGF
Vascular endothelial growth factor

VMH
Ventromedial nucleus of the hypothalamus

VSMC
Vascular smooth muscle cell
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Figure 1. Cytosolic ROS production and regulation of cytosolic metabolic pathways
Cytosolic ROS are formed most notably through NOX activity and influence metabolic 

processes including glycolysis and downstream oxidative phosphorylation, pentose 

phosphate pathway activity and autophagy. Please refer to the abbreviation table for full 

names of listed proteins.
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Figure 2. Mitochondrial ROS production
MitoROS are produced as a normal byproduct of mitochondrial respiration and metabolic 

enzymatic activity. Under settings of increased ROS generation as a result of dysregulated 

enzymatic activity and cellular stress, mitoROS can influence metabolic pathways including 

the Krebs cycle, fatty acid synthesis, ATP generation, glycolysis and mitophagy. 

Cyto=cytoplasm, IMS=intermembrane space, LPP=lipid peroxidation product. Please refer 

to the abbreviation table for full names of listed proteins.
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Figure 3. Peroxisomal ROS and metabolism
PeroxROS are produced as byproducts of enzymatic reactions within β-oxidation, 

polyamine synthesis, D-amino acid deamination and hypoxanthine oxidation, and have been 

found to be key regulators of pexophagy. Full names of abbreviations are listed in the 

accompanying table.
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Figure 4. Endoplasmic reticulum and ROS
The ER is highly sensitive to redox status, and altered ROS signaling can influence protein 

folding, Ca2+ release and mitochondrial respiration. Please refer to the abbreviation table for 

full names of depicted proteins.
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Figure 5. Inflammation and ROS
Various inflammation-inducing stimuli including TNFα, LPS, thrombin and oscillatory 

shear stress influence ROS production through sources including NOX and the 

mitochondria. Elevated ROS production as a result of inflammatory signaling can mediate 

canonical NF-κB activation and downstream inflammatory gene induction, proteasome 

activity, antioxidant gene transcription, inflammasome activation and cytokine secretion. 

Full names for abbreviations are listed in the accompanying table.
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