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Activated Akt/protein kinase B transmits oncogenic signals leading to inhibition of apoptosis,
cellular proliferation, and tolerance to hypoxia. Presently, mutational inactivation of PTEN and acti-
vation of Ras are considered to be the major causes of Akt activation. Here we report differential
mechanisms of constitutive Akt activation in 4 human pancreatic cancer cell lines (KMP-3, KMP-4,
PCI-66, and PCI-68). These 4 cell lines displayed phosphorylation and functional activation of Akt
both in the presence and absence of serum, while three control cell lines (PCI-79, KMP-8, and
PSN-1) did so only in the presence of serum in culture. All the 7 cell lines harbored K-Ras acti-
vated by mutations at codon 12 resulting in MAP kinase kinase (MEK1/2) phosphorylation, and
all except one (KMP-8) had p53 mutations, indicating that these mutations are not sufficient for
constitutive Akt activation. KMP-3 and KMP-4 had lost PTEN function owing to loss of expression
or a mutation, but PCI-66 and PCI-68 retained wild-type PTEN. Phosphorylation of Akt was
inhibited by the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 and the tyrosine kinase
inhibitor genistein in KMP-3 and KMP-4 cells, indicating that upstream signals are required for
Akt activation in these two cell lines. In contrast, neither LY294002 nor genistein inhibited Akt
activation in PCI-66 and PCI-68 cells, indicating the involvement of another unknown mechanism
of Akt activation independent of PI3K-mediated signaling to Akt. Irrespective of the differential
mechanisms, the 4 cell lines showed similar mRNA expression patterns of 49 genes assessed by
cDNA array as compared to the 3 cell lines without Akt activation, suggesting that the mechanisms
have the same consequences on the downstream signaling of the constitutive Akt activation.
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Akt/protein kinase B regulates important cellular events
including apoptosis, cellular proliferation, and responses to
hypoxic stress. Activated Akt inhibits apoptosis through
phosphorylating Bad,1) IκB kinase (IKK),2) Forkhead tran-
scriptional factor,3) and caspase-9.4) Akt is implicated in
cell cycle progression.5, 6) Also, activated Akt enhances
expression of hypoxia-inducible factor (HIF)-1 and thereby
confers capacity to tolerate hypoxia on cells.7)

Activation of Akt depends on the level of phosphatidyl-
inositol-3,4,5-triphosphate (PIP-3), which is determined
by the balance between production of PIP-3 by phosphati-
dylinositol-3-kinase (PI3K) and dephosphorylation of
PIP-3 into PIP-2 by PTEN phosphatase.8) Activation of
PI3K occurs by binding of the regulatory p85 subunit
to tyrosine-phosphorylated protein (receptor tyrosine
kinase),9) and by binding of the p110 catalytic subunit to
activated Ras.10) Loss of PTEN function causes Akt activa-
tion through accumulation of PIP-3.8, 11)

Abnormal activation of Akt due to the imbalance in
favor of PIP-3 is thought to play an important role in
many human cancers including brain tumors,12, 13) endome-
trial cancers,14) malignant melanomas,15) thyroid cancers,16)

and pancreatic cancers.17) It remains unclear, however,
whether a single event among enhanced growth factor sig-
naling, Ras activation, and PTEN mutation/deletion is suf-
ficient or whether their combination is necessary for Akt
activation in each type of cancer. The situation is compli-
cated by the facts that 1) PI3K can act upstream of Ras,18)

2) small GTPases such as R-Ras, Cdc42, and Rac bind to
and activate PI3K,19, 20) and 3) another tumor suppressor
p53 acts upstream of Ras.21, 22)

Here, we present our study analyzing the mechanisms
of Akt activation in human pancreatic cancer cell lines.
While all 7 cell lines examined showed activated Akt in
the presence of serum, 4 of the 7 showed constitutively
activated Akt in the absence of serum. We demonstrate
that PTEN dysfunction together with tyrosine kinase-Akt
and Ras-Akt signaling through PIK3 resulted in Akt acti-
vation in two of the cell lines, whereas Akt activation in
two other cell lines was independent of tyrosine kinase,
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PI3K activity or PTEN loss, strongly suggesting the pres-
ence of an undefined pathway leading to Akt activation.
We also show that, in spite of the differential mechanisms
of constitutive Akt activation, a common consequent
mRNA expression profile was present in the 4 cell lines as
compared to the 3 cell lines without Akt activation.

MATERIALS AND METHODS

Cell lines  Human pancreatic cancer cell lines, PCI-66,
-68, and -79 were established and provided by Dr. H.
Ishikura (the First Department of Pathology, Hokkaido
University); KMP-3, -4, and -8 by Dr. Y. Shimada
(Department of Surgery and Surgical Basic Science, Kyoto
University); and PSN-1 by Dr. T. Yoshida (Genetics Divi-
sion, National Cancer Center, Japan). The cells were main-
tained in Dulbecco’s modified essential medium (DMEM,
Gibco-BRL, Tokyo) supplemented with 0.1 mM L-gluta-
mine, 0.1% NaHCO3, 100 U/ml penicillin-G, and 10%
fetal calf serum (FCS, Gibco-BRL) at 37°C in a humid-
ified 5% CO2 atmosphere.
Immunoblot analyses for constitutive MEK, Akt, and
EGFR phosphorylation  Confluent cells in 6-cm dishes
were serum-starved with DMEM with 0.5% FCS for 24 h
and DMEM without FCS for an additional 24 h. Protein
was extracted from the cells with Cell Lysis Buffer (New
England Biolabs, Beverly, MA), applied at 10 µg per lane
on 7.5–12.5% SDS-polyacrylamide gel, separated, and
electro-transferred to a poly-vinylidene difluoride mem-
brane (Millipore, Bedford, MA). The blots were probed
with anti-Akt, anti-phospho-Akt (Ser473), anti-MEK1/2
(MAP kinase kinase 1/2), and anti-phospho-MEK1/2
(Ser217/Ser221) antibodies from New England Biolabs,
and anti-EGFR (epidermal growth factor receptor) and
anti-phospho-EGFR (Tyr1173) antibodies from Upstate
Biotechnology (Lake Placid, NY). They were visualized
with the ECL kit (Amersham, Little Chalfont, UK). The
antibodies against Akt, phospho-Akt, MEK1/2, and phos-
pho-MEK1/2 cross-react to the corresponding human and
mouse molecules. For immunoblot analyses using these
antibodies, protein extracts from NIH3T3 cells with
or without PDGF stimulation (provided by the antibody
supplier) were used as negative and positive controls,
respectively.
Akt kinase assay  Protein extracted from cells serum-
starved as described above was incubated overnight with
Immobilized Akt1G1 monoclonal antibody (New England
Biolabs). After extensive washing, the kinase reaction was
performed in the presence of ATP and GSK-3 as the sub-
strate for Akt kinase. Phosphorylation of GSK-3 was
assayed by a western blot using anti-phospho-GSK-3α /β
(GSK-3α, Ser21; GSK-3β, Ser9) antibody (New England
Biolabs).
Sequence analysis of K-Ras and H-Ras genes  Exon 1

spanning codons 11 and 12 of the K-Ras gene, and exon 1
spanning codons 11 and 12, and exon 2 spanning codon 61
of the H-Ras gene were PCR-amplified from genomic
DNA of each cell line with the use of Pfu polymerase
(Stratagene, La Jolla, CA) on a Thermal Cycler Model
2400 (Perkin-Elmer, Chiba). The primers used were 5′-
CTG GTG GAG TAT TTG ATA GTG T-3′ and 5′-CTT
TAT CTG TAT CAA AGA ATG GT-3′ for K-Ras exon 1;
5′-CCC CTG AGG AGC GAT GAC G-3′ and 5′-TCC
TGG GGT GCT GAG ACG AG-3′ for H-Ras exon 1; and
5′-ATG GGG AGA CGT GCC TGT TG-3′ and 5′-CCT
CAC GGG GTT CAC CTG TA-3′ for H-Ras exon 2. The
fragments were cloned into pCR2.1 vector (Invitrogen,
Groningen, The Netherlands) and at least 6 clones each
were sequence-analyzed in an ABI 377 automated
sequencer (Applied Biosystems, Chiba).
Yeast p53 functional assay  Yeast p53 functional assay
and subsequent sequence analysis were performed to exam-
ine p53 status as described elsewhere.23, 24)

PTEN stop codon assay and sequence analysis  PTEN
stop codon assay was performed to screen PTEN muta-
tions as described elsewhere.13) For detection of missense
mutations, chain-terminating mutations of PTEN, and
ψPTEN (pseudogene) expression, plasmids recovered
from at least 4 independent clones each of the white, red,
and pink colonies were sequence-analyzed.
LY294002 and genistein treatments  Confluent cells
serum-starved for 48 h were treated with 40 µM
LY294002 or 100 µM genistein for 8 h. Protein was
extracted as described above and subjected to western blot
analyses for Akt and phosphorylated Akt.
Sequence analysis of Akt1 and Akt2  cDNA fragments
of Akt1 (codons 1–480), and Akt2 (codons 1–349, 345–
481) were PCR-amplified from genomic DNA of PCI-66
and PCI-68. The primers used were 5′-AGC CTG GGT
CAA AGA AGT CAA A-3′ and 5′-AAA TGC ACC CGA
GAA ATA AAA A-3′ for Akt1; 5′-CAT GTC CTG CTG
CCC TGA G-3′ and 5′-CTC GTG GTC CTG GTT GTA
GAA G-3′ for the upper portion of Akt2; and 5′-CCG CCT
GCC CTT CTA CAA C-3′ and 5′-AAA CCA CCC AGC
GGT GAT G-3′ for the lower portion of Akt2. The frag-
ments were cloned into PCR2.1 vector, and at least 6
clones each were sequence-analyzed.
cDNA array analysis  PolyA+ RNA was extracted from
the total RNA (ca. 50 µg) with the use of a MagExtractor
kit (Toyobo, Tokyo) according to the manufacturer’s
instructions. Contaminating DNA was removed with
DNase I (Toyobo) in the final step of polyA+ RNA extrac-
tion. The extracted polyA+ RNA (ca. 1 µg) was reverse-
transcribed for 50 min at 42°C in a 20 µl reaction mixture
containing 1× RT buffer, 0.25 mM each of dNTPs, 0.5 u/
µl RNase inhibitor (Toyobo), and 5 u/µl ReverTra Ace
reverse transcriptase (Toyobo). The cDNA was ethanol-
precipitated and subjected to polyC+ tailing for 10 min at
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37°C in a 10 µl reaction mixture containing 0.2 mM dCTP,
1× TdT buffer, and 1.25 u/µl terminal deoxynucleotidyl
transferase (Toyobo). The polyC+ cDNA (2.5 µl) was then
amplified by PCR for biotin-16-dUTP labeling with a
Biotin cDNA amplification system (Toyobo); the PCR
cycle consisted of 3 min at 98°C for initial denaturation,
and 25 cycles of 20 s at 98°C, 10 s at 55°C, and 6 min at
74°C. The labeled cDNA was ethanol-precipitated, dena-
tured at 68°C, and used as a hybridization probe in 10 ml
of PerfectHyb solution (Toyobo). Hybridization was done
overnight at 68°C on a GeneticLab (Sapporo) in-house
cDNA array of 1281 genes plus 11 house keeping genes.
The membrane was washed successively with 2×
SSC+0.1% SDS and 0.1× SSC+0.1% SDS, each three
times, at 68°C. Detection was performed by means of
a streptavidin-biotinylated alkaline phosphatase system
(Imaging High-Chemilumi-Gene Navigator, Toyobo) using
CDP-Star as a luminogen. Acquisition of the signals was
done with Fluoro-S MultiImager (BioRad Laboratories,
Hercules, CA).
Analysis of expression data  cDNA array data values of
each cell line were normalized with the mean expression
value of the 1281 genes in order to cancel out size shift
due to independent hybridization. Expression profile anal-
ysis and cluster analysis were done by using programs in
MATLAB 6.1 (MathWorks, Natick, MA).

RESULTS

Constitutive Akt activation in pancreatic cancer cell
lines  We first tested Akt status in 7 pancreatic cancer cell
lines: PCI-66, PCI-68, PCI-79, KMP-4, KMP-8, PSN-1,

and KMP-3. We evaluated levels of whole Akt expression
and phosphorylated Akt at Ser473 in serum-deprived cells
by immunoblot analyses, and assessed Akt kinase activity
towards GSK-3 by an Akt kinase assay. Although the Akt2
gene is known to be amplified in some pancreatic cancer
cell lines such as ASPC-1 and PANC-125) and in cancers,17)

no such overexpression of Akt was found in the present
cell lines. In the presence of serum (10%), all the cell lines
showed phosphorylation at Ser473 of Akt (data not
shown), whereas Akt phosphorylation was observed in 4
cell lines, PCI-66, PCI-68, KMP-4, and KMP-3, in the
absence of serum stimulation (Fig. 1). Akt kinase activity
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Fig. 1. Constitutive Akt activation in pancreatic cancer cells.
Cells were deprived of serum for 48 h. Levels of total Akt
(–Akt) and phosphorylated Akt at Ser437 (–phosphoAkt) were
determined by immunoblots using specific antibodies. Phosphor-
ylation of GSK-3α and -β (–phosphoGSK3) at Ser21 and Ser9,
respectively, by the Akt purified from the cells was measured as
described in “Materials and Methods.” 

Table I. Molecular Status of the Seven Pancreatic Cancer Cell Lines

Akt activation
K-Ras mutationb) H-Ras 

mutation p53 mutationb) PTEN mutationb) Akt1, Akt2
mutationConstitutive Dependence

to PI3K
Dependence

to TKa)

PCI-66 positive no no Gly 12 Asp
(GGT→GAT)

none Pro 250 Ser 
(CCC→TCC)

wild-type none

PCI-68 positive no no Gly 12 Asp
(GGT→GAT)

none His 179 Tyr
(CAT→TAT)

wild-type none

PCI-79 — Gly 12 Val
(GGT→GTT)

none Arg 248 Gln
(CGG→CAG)

wild-type none

KMP-4 positive yes yes Gly 12 Arg
(GGT→CGT)

none codons 212–215
inframe 12 b deletion

237 AAG→AAAG
(frameshift)

none

KMP-8 — Gly 12 Asp
(GGT→GAT)

none wild-type wild-type none

PSN-1 — Gly 12 Arg
(GGT→CGT)

none Lys 132 Gln
(AAG→CAG)

wild-type none

KMP-3 positive yes yes Gly 12 Val
(GGT→GTT)

none 212–215 12b (4 
codons) deletion

PTEN no expression
ψPTEN expression

none

a) TK, tyrosine kinases; b) numbers indicate mutant codons.
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was also observed in the same 4 cell lines in the absence
of serum (Fig. 1), while there was no apparent correlation
between the amounts of phosphorylated Akt and the
degrees of phosphorylation of GSK-3 in the 4 cell lines.
K-Ras, H-Ras, p53, and PTEN mutations in pancreatic
cancer cell lines  Since Ras activated by mutation is
known to activate the p110 catalytic subunit of PI3K,
resulting in Akt activation,10) we sequenced K-Ras and H-
Ras in the 7 cell lines. Three types of missense mutations
(Gly→Asp, Val, or Arg) were found at codon 12 of K-
Ras, showing no apparent correlation to constitutive Akt
activation (Table I). None of the cell lines contained H-
Ras mutations, however. As p53 is known to activate Ras
upstream,21, 26) we determined p53 status in the cell lines
by means of a yeast p53 functional assay.23, 24) All the
cell lines, except KMP-8 which retained wild-type p53,
showed complete loss of p53 function due to distinct
mutations (Table I). We then determined PTEN status by
means of PTEN stop codon assay followed by sequence
analyses. We identified a frameshift mutation (1 base
insertion at codon 237) in KMP-4 cells as 100% red colo-
nies (Fig. 2, b and e). KMP-3 showed loss of wild-type
PTEN expression (no white colonies), but expression of
the pseudogene ψPTEN was identified as pink colonies,

and this was confirmed by sequence analysis (Fig. 2, a,
c and d). Other cell lines showed white colonies,
and sequence analysis of the plasmids recovered from
white colonies ruled out the presence of PTEN missense
mutations.
Constitutive MEK1/2 phosphorylation in pancreatic
cancer cell lines  The major Ras-signaling other than
PI3K-Akt is activation of Raf1, which results in the acti-

Fig. 2. ψPTEN expression and PTEN mutation in KMP-3 and KMP-4. a. Pink colonies observed in the PTEN stop codon assay for
KMP-3. Note the color differences from red colonies of the assay background and white colonies in PCI-66 (right upper corner inset). b.
Red colonies observed in the PTEN stop codon assay for KMP-4. c. Sequence chromatogram of ψPTEN cDNA detected in KMP-3
cells, showing codons 99–102 corresponding to PTEN codons 133–136, where three base-replacements in ψPTEN from PTEN are
noted (bars): codon 133 PTEN GTA (Val)→99 ψPTEN ATA (Ile); codon 135 PTEN ATA (Ile)→101 ψPTEN ATT (Ile); codon 136
PTEN TGT (Cys)→102 ψPTEN TAT (Tyr). d. Codons 200–206 of ψPTEN cDNA in KMP-3, corresponding to PTEN codons 234–
240, depicting three base replacements (bars): codon 234 PTEN CGG (Arg)→codon 200 ψPTEN TGG (Trp); codon 235 PTEN GAA
(Glu)→codon 201 ψPTEN GAG (Glu); codon 240 PTEN TAC (Tyr)→codon 206 ψPTEN TAT (Tyr). e. One base insertion at codon
237 (AAG→AAAG, frameshift, bar) detected in KMP-4.
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Fig. 3. Constitutive activation of MEK in pancreatic cancer
cells. Cellular extracts from the cells deprived of serum for 48 h
were electrophoresed together with extracts from serum-deprived
NIH3T3 cells (negative control) and NIH3T3 cells cultured with
serum (–3T3+PDGF, positive control), which were provided by
the manufacturer (New England Biolabs), and probed with anti-
bodies to MEK1/MEK2 and phosphorylated MEK1/MEK2
(Ser217/Ser221).
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vation of extracellular signal-regulated kinase (ERK) and
mitogen-activated protein kinase/ERK kinase (MEK).27)

To confirm the augmented signaling consequent to Ras
activation, we then examined MEK phosphorylation at
Ser217 and Ser221 by an immunoblot analysis. All 7 cell
lines showed MEK phosphorylation in the absence of
serum stimulation (Fig. 3), confirming the equal effect of
Ras activation in all the cell lines.
Inhibition of Akt activation by PI3K inhibitor
LY294002  Since PCI-66 and PCI-68 cells showed consti-
tutive activation of Akt without loss of PTEN, we ques-
tioned whether excessive production of PIP-3 by activated
PI3K might be responsible for the Akt activation in these
cell lines. To confirm this, we treated PCI-66, PCI-68,
KMP-3, and KMP-4 with the specific PI3K inhibitor
LY29400228) and evaluated Akt phosphorylation status.
LY294002 inhibited Akt phosphorylation completely in
KMP-3 and partially in KMP-4, indicating that Akt activa-
tion was dependent on PI3K in KMP-3 and at least par-
tially so in KMP-4 cells. In PCI-66 or PCI-68, such inhibi-
tion was not observed, indicating that Akt activation in
PCI-66 and PCI-68 cells was independent of PIP-3
over-production (Fig. 4).
Participation of receptor tyrosine kinases  An autocrine
mechanism via coexpression of EGFR and transforming
growth factor (TGF)-α is known in pancreatic cancers,
and may also lead to activation of PI3K.29, 30) As a possible
cause of the PI3K activation bypassing Ras,9) we ques-
tioned whether there might be EGFR autophosphorylation

at Tyr1173 in the cells. An immunoblot analysis showed
the absence of autophosphorylation in all the cells
deprived of serum (Fig. 5a), whereas EGFR stimulation
induced phosphorylation of EGFR (Fig. 5b). We then
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Fig. 6. Tyrosine kinase-dependent and -independent constitu-
tive Akt activation. PCI-68, KMP-3, PCI-66, and KMP-4 cells
were deprived of serum for 48 h and treated with none
(–Control), 0.1% DMSO (solvent, –DMSO), or 100 µM
genistein (tyrosine kinase inhibitor) for an additional 8 h. Levels
of Akt and phosphorylated Akt were assessed by immunoblots
with specific antibodies.
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treated cells with genistein, a broad-spectrum tyrosine
kinase inhibitor,31) and evaluated Akt phosphorylation. As
seen in the case of LY294002 treatment, genistein failed to
inhibit Akt phosphorylation in PCI-66 and PCI-68 cells,
whereas it inhibited Akt phosphorylation in KMP-3 and
KMP-4 cells (Fig. 6).

Mutation of Akt1 and Akt2 in PCI-66 and PCI-68 cells
Because PIP-3 is the only direct effector so far identified
in Akt activation, we inferred that the cause of activation
of Akt in PCI-66 and PCI-68 cells lies in Akt itself—
possibly autonomous phosphorylation owing to some muta-
tion in Akt protein. Thus, we sequenced the entire open
reading frames of Akt1 and Akt2 in the cells. However,
we found no mutation in Akt1 or Akt2.
mRNA expression profiles in the pancreatic cancer cell
lines  To establish the influence of constitutive Akt activa-
tion on mRNA expression profiles in the pancreatic cancer
cell lines, we performed a cDNA array analysis. By com-
puter analysis, we identified a total of 49 genes which
were expressed at significantly higher (11 genes) or lower
(38 genes) levels (P<0.05) in KMP-3, KMP-4, PCI-66
and PCI-68 cells as compared to PCI-79, KMP-8, and
PSN-1 cells. A cluster analysis of the expression profiles
successfully classified the cell lines according to Akt sta-
tus (Fig. 7). Expression analysis, however, did not disclose
a notable difference in gene expression between PCI-66/
PCI-68 cells and KMP-3/KMP-4 cells.

DISCUSSION

In the present study, we demonstrated Akt phosphoryla-
tion at Ser473 and consequent Akt activation assessed by
GSK-3 in 4 pancreatic cancer cell lines (PCI-66, PCI-68,
KMP-3, KMP-4) in the absence of serum, while all 7
tested cell lines showed Akt phosphorylation in the pres-
ence of serum (data not shown). Hence, we call the Akt
activation in the 4 cell lines “constitutive,” in the sense
that it is independent of growth factor stimulation.
Although phospho-GSK-3 bands are positive exclusively
in the 4 cell lines, the band intensities did not apparently
correlate with the amounts of phosphorylated Akt. One
possible explanation for this is that there might be some
imbalance in phosphorylation between the two phosphory-
lation sites (Thr308 and Ser473) in Akt, and that both are
required for full activation of Akt, whereas Thr308 phos-
phorylation itself can partially activate Akt.32, 33) In the 3
cell lines that did not show constitutive Akt phosphoryla-
tion at Ser473, Akt activity was completely negative, sug-
gesting that Thr308 phosphorylation without Ser473 phos-
phorylation is unlikely to be the sole determinant of con-
stitutive Akt activation.

We demonstrated that at least two different mechanisms
were responsible for the constitutive Akt activation
observed in the 4 cell lines. One is what we have seen in
KMP-3 and KMP-4, which involved loss of PTEN func-
tion by loss of expression of PTEN and by a frameshift
mutation at codon 237, respectively. Since we demon-
strated the activating-K-Ras mutations and the consequent
MEK phosphorylation in all 7 cell lines, K-Ras activation
itself did not appear to be a sufficient cause of the consti-
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tutive activation of Akt. It has already been reported that
there was no direct correlation of K-Ras mutational status
and “constitutive” activation or the expression levels of
activated MEK in pancreatic cancer cell lines.34) However,
we recognized suppression of Akt phosphorylation in
KMP-3 and KMP-4 using LY294002, which inhibits PI3K
downstream of K-Ras28) and genistein, which inhibits tyro-
sine kinase upstream of K-Ras. This finding indicated that
the Ras-PI3K-mediated signal at least is required for Akt
activation in the absence of PTEN function in the two
cell lines. This may be mediated via MEK or an MEK-
independent pathway. These observations are consistent
with the previous findings of oncogenic roles of Ras and
Akt: 1) combined activation of Ras and Akt is necessary
and sufficient for tumor formation (glioblastoma) in
mice,35) and 2) transforming activity of oncogenic H-Ras
can be reverted by wild-type PTEN.36) This raises a ques-
tion about the mutational selection of K-Ras, especially at
codon 12, in pancreatic cancers rather than H-Ras, which
is known to be more potent in activating PI3K.37) None of
the cell lines used in this study harbored H-Ras mutations.
Specific selection of Ras isotypes is also observed in other
types of cancers. For example, K-Ras mutations occur in
50% of colon cancers, whereas N- and H-Ras mutations
are extremely uncommon.38) Conversely, H-Ras and N-Ras
mutations are found in 80% of bladder cancers, but K-Ras
mutations are a rare event.39) These mutational selections
of Ras necessarily suggest the importance of another Ras-
signaling pathway, as indicated by previous observations
that a balanced and parallel activation of MEK and Akt
pathways by Ras occurs in cellular transformation by
oncogenic tyrosine kinases.40, 41) The balance between the
Ras-Raf1-MEK pathway and the Ras-PI3K-Akt pathway
corresponding to a cancer cell type may be associated with
specific roles of oncogenic components (tyrosine kinases,
Ras, and PTEN). Although Akt is known to be able to
inhibit the Raf1-MEK pathway,42, 43) this is unlikely in pan-
creatic cancer cells, because no apparent reciprocity was
observed between the activities of MEK and Akt in the
present study.

Another mechanism of the constitutive Akt activation
which we consider to be implicated in PCI-66 and PCI-68
cells has not previously been reported. PTEN sequence
was wild-type in these cell lines. Both the PI3K inhibitor

LY294002 and the tyrosine kinase inhibitor genistein
failed to inhibit the Akt activation in these cells, showing
that the mechanism was completely independent of the
tyrosine kinase receptors/K-Ras/PI3K/PTEN pathway. Muta-
tional analysis of Akt1 and Akt2 in these cells disclosed
no mutation in the entire coding sequences. There might
be an unknown supplier of phosphatidylinositol-3,4,5-
triphosphate (PIP-3) that is resistant to LY294002, includ-
ing a possible mutation in PIK3. Alternatively, it is possible
that a mediator (PDK) or a coactivator of Akt phospho-
rylation is over-active even at low levels of PIP-3 in the
phosphorylation of Akt. For instance, it is plausible that a
change in an unknown serine kinase (putatively called
PDK2) that acts on Akt at Ser473, or in its upstream
regulators, is responsible for the constitutive Akt activation
in PCI-66 and PCI-68 cells. An example is a mutant
PDK1 (A280V) whose phosphorylation of Ser308 of Akt
is resistant to PI3K inhibitors.44)

Irrespective of the mechanisms of Akt activation, we
identified 49 common genes expressed in the 4 cell lines
at significantly different levels compared to the 3 control
cell lines without constitutive Akt activation. Among the
49 genes, many are known to be involved in Ras- or Akt-
signaling, i.e., PPARγ,45) Ephrin B6,46) Rheb,47) CBP,48) NT-
4/5,49) SOS2,50) and ERK227); some are known to be regu-
lated by Ras-signals, i.e., tissue plasminogen activator
(TPA),51) MMP-3,52) and MMP-9,53) ribonucleotide reduc-
tase54); and others are aberrantly expressed in pancreatic
cancer cells, i.e., CEA,55) Fhit,56) VEGF-c,57) ICAM-1,58)

and LIF.59) Low expressions of M-Ras60) and H-Ras in cells
with activated Akt is of note, because they suggest a possi-
ble direct or indirect negative feedback loop from Akt-
signaling. It remains unknown, however, whether these
49 genes are actually regulated negatively or positively
by Akt-signaling. Further analyses seem warranted to
uncover the regulatory mechanisms of these genes.
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