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Abstract
Objective: Several studies have suggested that cancer is associated with a reduced risk of the development of Alzheimer’s 
disease (AD). This study seeks to improve our understanding of the association between cancer and the development of AD 
by showing how mortality selection alters this relationship.
Method: A retrospective cohort study was carried out examining 92,425 individuals (47,873 women and 44,552 men) 
from the Utah Population Database with and without a history of any primary cancer identified by the Utah Cancer 
Registry. All individuals were aged 65–79 years and free of dementia in 1992 and followed for upwards of 18 years (1992–
2009) for AD ascertainment, which was identified using diagnostic information from Medicare claims data.
Results: We replicate previous results suggesting that cancer is associated with reduced risk of subsequent AD under spe-
cific statistical model specifications. However, these results should not be interpreted as evidence of an etiological associa-
tion. We conclude that higher rates of overall mortality among individuals with cancer relative to those without cancer 
induce the widely reported putative protective association with cancer.
Conclusion: Careful consideration of model specification and the profound effects of mortality selection in the older 
adult population is essential when investigating the relationship between aging-related diseases such as cancer and AD. We 
show that cancer does not provide protection from AD as previously described in the literature. Social scientists seeking to 
understand social disparities in disease outcomes among older adults may therefore want to strongly consider the role of 
mortality selection which, if uncorrected, may generate biased associations.
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Geriatric researchers studying age-related health and mor-
tality often confront the problem of competing risks. It is 
common for investigators to study diseases in an aging 
population by focusing on a single disease outcome while 
ignoring the complexity of comorbid conditions and the 
competing risk of death associated with aging. Broadening 
our focus to study the interrelationship between common 
complex diseases may provide important insights into the 

etiological processes of disease. Investigating how one dis-
ease relates to other diseases, as part of a biologic system 
or through shared social determinants, will contribute to 
our understanding of aging and longevity. Social scientists 
seeking greater understanding of the socioenvironmental 
mechanisms associated with disease risk among the older 
adult population have taken careful consideration of valid-
ity threats such as residual confounding and endogeneity 
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problems (Austin, Lee, & Fine, 2016; Berry, Ngo, Samelson, 
& Kiel, 2010; de Glas et al., 2016). We argue in this analysis 
the need to further emphasize the importance of competing 
risks for investigations focused on survival and duration-
related outcomes among older individuals.

A possible link between two such aging-related diseases, 
Alzheimer’s disease (AD) and cancer, has recently piqued the 
interest of the public, clinicians, and the research community 
(Demetrius & Simon, 2013; Driver, 2014; Plun-Favreau, 
Lewis, Hardy, Martins, & Wood, 2010; Tabares-Seisdedos 
& Rubenstein, 2013). Cancer and AD are both multifacto-
rial diseases that are found to be affected by fundamental 
psychosocial factors such as educational attainment, socio-
economic status, social networks, and health behaviors 
(Clegg et al., 2009; Fratiglioni, Paillard-Borg, & Winblad, 
2004; Fratiglioni, Wang, Ericsson, Maytan, & Winblad, 
2000; Reiche, Nunes, & Morimoto, 2004). These find-
ings would therefore lead investigators to conclude that 
these psychosocial risk factors lead to increased risk of 
both diseases. However, several epidemiological studies 
have examined the association between cancer and AD 
and have concluded that there may be an inverse associa-
tion between these two diseases—specifically, that a can-
cer diagnosis reduces the risk of subsequent AD (Driver 
et al., 2012; Frain et al., 2013; Musicco et al., 2013; Roe, 
Behrens, Xiong, Miller, & Morris, 2005; Roe et al., 2010; 
White, Lipton, Hall, & Steinerman, 2013). The authors of 
these studies and subsequent reviews have suggested a pos-
sible biological mechanism underpinning both diseases that 
leads to two opposite cellular functions—cellular prolifera-
tion (predisposing to cancer) or cellular apoptosis (pre-
disposing to AD) (Behrens, Lendon, & Roe, 2009; Driver, 
2014; Tabares-Seisdedos & Rubenstein, 2013).

However, any analysis of an association between two 
morbid medical conditions in an elderly population must 
introduce aggressive controls to assess the effects of com-
peting risks. In the case of cancer incidence altering the risk 
of dementia, it is plausible that dementia risks are low for 
those diagnosed with cancer because their mortality rates 
are higher than those of unaffected controls and hence 
have less opportunity to develop dementia. This article will 
examine this problem specifically through the use of com-
peting risks with dependent and independent hazards and 
cumulative incidence curves.

The epidemiologic literature to support an inverse asso-
ciation is not as straightforward as it may seem (Bennett 
& Leurgans, 2010). These studies are limited by relatively 
short follow-up periods (Frain et al., 2013; Musicco et al., 
2013; Roe et  al., 2005, 2010; White et  al., 2013), small 
sample sizes (Driver et al., 2012; Roe et al., 2005, 2010; 
White et  al., 2013), reliance primarily upon prescription 
data for AD diagnoses (Musicco et al., 2013), and in one 
case a predominantly (98%) male patient population (Frain 
et al., 2013). Figure 1 displays the hazard rate ratios (HRs) 
and 95% confidence intervals (CIs) for the five published 
studies examining this association. In addition, choice of 

statistical model and study design issues raise questions 
about the validity of the results. For example, in the article 
published by Driver and colleagues (2012), cancer diag-
nosis is treated as a time-independent covariate (i.e., ever/
never), with all individuals with a cancer diagnosis at any 
time counted in the exposure category for the entire period 
of follow-up (Driver et al., 2012). When cancer is measured 
this way, it is unclear which diagnosis occurred first, the 
cancer or the AD. Individuals with cancer diagnosed after a 
dementia diagnosis will be incorrectly counted as exposed 
to cancer, even though the dementia diagnosis preceded the 
cancer diagnosis (i.e., the event sequence is reversed). The 
time-varying nature of cancer diagnosis can be corrected 
through the sample selection process (i.e., individuals with 
dementia prior to cancer diagnosis are excluded from the 
sample) or by ignoring cancer diagnoses that occur after 
baseline (Roe et al., 2005, 2010), although this latter strat-
egy will bias the sample.

Musicco and colleagues (2013) use a population-based 
sample from Italy to assess the relationship between cancer 
and AD. AD diagnosis was inferred by prescriptions. They 
stratify the sample in several ways in an attempt to account 
for bias. They find a strong protective effect of cancer on 
subsequent AD diagnosis (HR  =  0.65; 95% CI  =  0.56–
0.76), and this rate does not significantly differ between 
survivors and nonsurvivors. However, they are only able to 
follow the cohort for a 5-year period, which may decrease 
the probability of having multiple disease state transi-
tions—particularly because AD diagnoses after cancer may 
be regarded as treatment-related dementia and remain 
undiagnosed for a longer period of time. In addition, they 
find no difference in AD risk between breast, lung, bladder, 
and prostate cancer patients and the general population, 
which suggests that the underlying link between the two 
diseases may not be biological. Diagnosis of age-related 
diseases, such as AD, is dependent upon an individual sur-
viving to an age where the onset of disease can occur. The 
average age of onset for AD is 72.8 years (Li et al., 2002). 
If we select a cancer site with a particularly dismal survival 
rate, such as pancreatic cancer, we see large differences in 
dementia rates between cancer survivors and cancer-free 
individuals (Figure  2). Pancreatic cancer deaths are the 

Figure 1. Summary of previous findings showing a protective relation-
ship between cancer and Alzheimer’s disease.
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highest among people aged 75–84 years, with the median 
age at death being 73 years and a 5-year survival rate of 
7.2% (“SEER Stat Fact Sheets: Pancreas Cancer,” 2015). 
This strongly suggests that pancreatic cancer patients do 
not live long enough for a subsequent incidence case of AD 
to occur. Under this formulation, the observed association 
between cancer and dementia would be due to mortal-
ity selection, but not etiologic. Failing to account for the 
increased rates of mortality in cancer survivors (i.e., mor-
tality selection) as a significant contributor to the protective 
effect of cancer on incidence dementia can lead to incorrect 
conclusions about the nature of this relationship.

In addition to modeling choice mortality selection, infor-
mation on health behaviors and sociodemographic variables 
related to cancer and AD should be considered. Cancer and 
AD are both complex diseases, linked by underlying social 
determinants of health that arguably increased the risk for 
both diseases as well as mortality. Smoking and obesity are 
risk factors for both cancer and AD (Anstey, von Sanden, 
Salim, & O’Kearney, 2007; De Pergola & Silvestris, 2013; 
Ott et al., 1998; Rusanen, Kivipelto, Quesenberry, Zhou, 
& Whitmer, 2011; US Department of Health and Human 
Services, 2014). Active affiliation with the Church of Jesus 
Christ of Latter-day Saints (LDS or Mormon) church is 
associated with increased life expectancy (Enstrom & 
Breslow, 2008), decreased cancer risk (Lyon, Gardner, & 
Gress, 1994; Merrill & Lyon, 2005), and decreased risk of 
dementia (Norton et al., 2012). Individuals actively affili-
ated with the LDS church are more likely to abstain from 
alcohol and tobacco use, fast once a month, and partici-
pate in church-related social activities (Mineau, Smith, & 
Bean, 2002). Parity is associated with cancer risk and risk 
for dementia (Beeri et al., 2009; Key, Verkasalo, & Banks, 
2001), particularly for women. Socioeconomic status is 
also associated with cancer and dementia risk (Evans et al., 
1997; Ward et al., 2004). Understanding the role of social 
determinants in the interplay between cancer and AD is 
essential to understanding health inequalities and identify-
ing subpopulations that are at increased risk for disease.

A fundamental question remains: Is there a causal asso-
ciation between the two diseases (etiological) or is the 
observed effect related to the excess risk of mortality in 
individuals with cancer (mortality selection) (Koller, Raatz, 

Steyerberg, & Wolbers, 2012)? This study seeks to improve 
our understanding of the association between cancer and 
the development of AD by showing how model specifica-
tions affect the interpretation of results.

Method
The Utah Population Database (UPDB) is a premiere and 
unparalleled database mandated to support biomedical 
research. It provides in-depth demographic and genealogi-
cal information on the majority of the historical and cur-
rent population of Utah (for more details see http://www.
hci.utah.edu/groups/ppr). Due to longstanding and ongo-
ing efforts to add new sources of data and update records 
as they become available, the full UPDB contains data on 
more than 8 million individuals (e.g., including all state-wide 
death certificate records [1904 to the present], all Medicare 
claims [1992–2009], and the Utah Cancer Registry, an NCI 
Surveillance, Epidemiology, and End Results [SEER] Program 
member). The infrastructure developed by the UPDB enables 
the linkage of distinct records for a specific person, which 
creates a portrayal of the life history of an individual based 
on these (and other) medical and administrative data.

The sample inclusion criteria for this study is outlined in 
Supplementary Figure 1. First, Medicare-eligible individu-
als not enrolled in a managed care organization (MCO) 
and linked to the UPDB were eligible for sample selection 
(N = 217,476). Those in an MCO will not have medical 
care episodes visible in the Medicare data; their exclusion 
accounts for 29%.

Incidence dates per se are not available in the Medicare 
claims data. To identify highly probable incident cases, we 
imposed a 2-year blackout period after 1992 (i.e., baseline) to 
exclude prevalent AD diagnoses. During this blackout period, 
individuals with an AD diagnosis during the first 2  years 
(1992 or 1993) were excluded from the sample because we 
considered them to be a prevalent case and any AD diagno-
sis after that time was assumed to be an incident case. All 
individuals with a dementia diagnosis (see Supplementary 
Table 1 for a list of ICD-9 codes) or death within 2 years of 
enrollment were excluded from the analyses (n = 18,403). For 
the purposes of these analyses, we also excluded individuals 
older than 80 years at baseline and individuals aging into the 
program or enrolling after 1992 (n = 106,648). These restric-
tions provided us with a final sample of 92,425 Medicare 
enrollees aged 65–79 years in 1992.

This study was approved by the Institutional Review 
Boards of the University of Utah and by the Utah Resource 
for Genetic and Epidemiologic Research (www.research.
utah.edu/rge/), an administrative board that oversees access 
to the UPDB (IRB_00043524).

Identification of Cancer Cases

The Utah Cancer Registry (UCR) is a population-based reg-
istry and an original member of the SEER program that has 
collected all incident primary cancer diagnoses in the state 

Figure 2. Dementia incidence rates by history of pancreatic cancer in 
Utah. Source: Utah Population Database.
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of Utah since 1966. Incident cases of cancer were identi-
fied among Utah residents based on systematic and routine 
review of medical records, pathology reports, radiation 
therapy records, hospital discharge lists, and vital records. 
Primary cancer cases were coded using the World Health 
Organization international classification of disease (ICD-O). 
Non-malignant neoplasms and nonmelanoma skin cancers 
are not included in this analysis. UCR data are linked to the 
UPDB, which holds the Medicare data from 1992 to 2009.

Identification of AD

Two sources of data linked to the UPDB allow for the 
identification of individuals with AD. Medicare records 
from 1992 to 2009 were used to identify incident AD 
cases. Cause of death information from Utah Death 
Certificates was also used as a source of AD ascertain-
ment. International Classification of Disease Codes (ICD-
9) code 331.0 was used to identify AD cases. To minimize 
the rate of false positives, two or more AD diagnosis 
codes during the follow-up period or a single diagnosis 
during the year of death were required to classify an indi-
vidual as having AD. Time to AD onset was defined as 
the month during which an individual first received their 
diagnosis.

Covariates

Personal information on smoking history, obesity, religious 
status, and parity were collected at baseline. Previous stud-
ies have shown that ICD-9 tobacco use codes (305.1 and 
V15.82) can be used effectively to identify smoking status 
(Wiley, Shah, Xu, & Bush, 2013), and any smoking-related 
ICD-9 code during the blackout period was coded as hav-
ing smoked at baseline. Similarly, individuals with ICD-9 
code 278.0 during the blackout period were coded as being 
obese at baseline. The UPDB contains information on bap-
tism and endowment dates from family history records, and 
these were used to classify individuals as active followers, 
inactive, or nonmembers of the LDS religion. Individuals 
with an endowment date have pledged to live their lives 
following the doctrine of the LDS church and were con-
sidered active church followers if endowed before age 40. 
Individuals with a baptism date but no endowment date 
were considered inactive, and individuals with no baptism 
or endowment date were considered nonmembers of the 
LDS church (reference category). Parity was derived from a 
combination of sources collected from genealogical records 
obtained from the Genealogical Society of Utah and linked 
birth certificate records, including birth certificate data 
from 1915 to 1921 and 1936 to the present. All eligible 
women in the sample completed their fertility by definition 
because they were required to survive to at least age 65 to 
be visible in the Medicare data.

Dual-eligible Medicare beneficiaries are also covered 
by Medicaid services. These individuals must meet certain 

income and resource requirements to become eligible for 
dual enrollment, and eligibility is subject to change every 
year. We used dual-eligibility status during the previous 
year as a proxy for later life socioeconomic circumstances 
and treated it as a time-varying covariate.

Area-level demographics were also included in all models 
to control for additional indicators of socioeconomic status 
(SES) and access to care (Evans et al., 1997). Information 
about an individual’s county of residence in 1992, based 
on Centers for Medicare and Medicaid Services residential 
data, was derived from the 1990 U.S. Census. Total popu-
lation and median family income at the county level were 
included as covariates in the final models.

Statistical Analyses

Cox regression methods were used to assess the relation-
ship between cancer diagnosis and dementia or AD onset. 
Individuals were followed up to 18 years from baseline to the 
development of dementia or death. Because we excluded indi-
viduals enrolled in a managed care plan during any period of 
a given year, our only sources of censorship were death and 
the end of the follow-up period, 2009. Given the cohort dif-
ferences in mortality and quickly changing morbidity risks 
by age and sex, we conducted all analyses by sex and three 
5-year age categories (65–69, 70–74, and 75–79 years). Age 
was measured in 1992, the first year in which UPDB has been 
linked to Medicare data. Separating samples by age categories 
effectively held 5-year cohort effects constant and allowed us 
to analyze the trends by birth cohort for an 18-year period. 
In addition, we aggressively controlled for birth year within 
age groups by stratifying analyses by birth year. Stratification 
by birth year within the Cox model allowed the unspecified 
hazard function to vary by birth year.

We carried out several analyses to show that the rela-
tionship between cancer and AD was sensitive to model 
choice and was affected by the competing risk of mortality. 
Supplementary Figure 2 shows a diagram of statistical mod-
els considered for the analyses. Models 1–3 are cause-specific 
models that censor individuals experiencing the competing 
event, death, at the point of occurrence, the classic approach 
that assumes independence of death and AD risk. Model 1 
treats cancer as a time-independent covariate, with all indi-
viduals with a cancer diagnosis pre- or post-1992 contribut-
ing person years to the cancer group only. In Model 2, an 
extension of the Cox proportional hazards (PH) model was 
used to model cancer diagnosis as a time-varying covari-
ate where individuals with a prevalent cancer diagnosis 
(in 1992) contributed to person years in the cancer group. 
Individuals with no cancer diagnosis at baseline contributed 
person years to the noncancer group until diagnosis of an 
incident cancer, after which they contributed person years 
to the cancer group. Model 3 is nested within Model 2 and 
further considers the effect of time since diagnosis on the 
risk of AD. In this model, separate indicator variables were 
added to the model for prevalent cancer diagnoses 0–4 years 
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prior to baseline, 5–9 years prior to baseline, and 10 or more 
years prior to baseline. Cancer diagnosis after baseline was 
continued to be treated as a time-varying covariate.

The standard Cox PH model assumes that censoring is 
uninformative (i.e., the censoring event death is unrelated to 
the event in question, incident AD), an assumption widely 
adopted but infrequently examined; however, death is an 
important competing event for this population that may 
preclude observing future diagnoses of AD. Competing risk 
models can be used to adjust the hazard ratios for the com-
peting risk of mortality and rely on a standard modification 
to the PH model. Two formulations of competing risk mod-
els were used to further elucidate the mortality selection ver-
sus etiological nature of the association between cancer and 
AD: Fine and Gray (FG) and Kalbfleisch and Prentice (KP).

The FG regression approach (Model 4) is used to esti-
mate the effect of cancer diagnosis on the subdistribution 
hazard of specific causes of failure (Jason & Gray, 1999), a 
common method for competing risk analyses. This model 
calculates the absolute risk of AD by allowing individu-
als experiencing the competing risk of death to contribute 
person years after the time of death. With the FG method, 
absolute risk simply means that the calculation of hazard 
rates for a given exposure group relies on a denominator 
fixed in size at the start of the follow-up period that never 
changes despite depletions due to death. This is differ-
ent from the standard cause-specific relative hazard from 
Models 1–3, where individuals who have experienced the 
competing event are removed from the risk set. The results 
from the FG method should not be interpreted necessarily 
as etiological in nature, but rather as a function of the abso-
lute risk of AD in cancer patients.

We consider the event of interest (AD) and the compet-
ing risk of death. In this model, the cumulative incidence 
function is defined as the joint probability that an indi-
vidual is diagnosed with AD given that the individual has 
survived to time t without an event or has died prior to time 
t. The subdistribution hazard can be defined as follows:
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where λ0j is the unspecified baseline subdistribution hazard, 
φj is the corresponding regression coefficient, and exp(φj) 

is the relative change in the subdistribution hazard for a 
1-unit increase in the corresponding covariate.

The relationship between the cause-specific relative 
hazard (csHRj  =  1) and the subdistribution relative hazard 
(sdHRj  =  1) is a function of the cause-specific relative haz-
ard of death (csHRj = 2; the competing event), the unspeci-
fied baseline cause-specific hazard for AD and death (h01(t) 
and h02(t)), and time (refer to the appendix in Lau, Cole, 
& Gange (2009) and Beyersmann & Schumacher (2008)):
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where F t12
* ( )  is the subdistribution cumulative incidence of 

death for individuals with cancer and F t02
* ( )  is the sub-

distribution cumulative incidence of death in individuals 
without cancer.

Therefore, when the cause-specific relative hazard of 
death (the competing event) between those with cancer 
and those without cancer is not equal to 1, the risk sets for 
AD are modified differentially. Therefore, the proportion 
of individuals with AD will be different by cancer status 
if mortality differs between groups even if the rates are the 
same. This is a crucial point to consider when interpreting 
the results from this model because if individuals in the can-
cer or noncancer group have higher mortality than those in 
the other group (mortality varies by exposure group), the 
risk set will be artificially inflated in this group with higher 
mortality and the subdistribution hazard will be lower by 
definition.

One alternate method for accounting for the compet-
ing risk of mortality while still investigating the etiological 
association between cancer and AD is the KP method (2002; 
chapter 8.2.5) presented in Model 5. This method uses inter-
nal time-varying covariates that are strong indicators of the 
competing event (death), which can be measured regularly 
throughout the follow-up period. We used a modified version 
of the Charlson Comorbidity Index (CCI) (Charlson, Pompei, 
Ales, & MacKenzie, 1987; Klabunde, Potosky, Legler, & 
Warren, 2000), where higher scores are associated with an 
increased risk of death. Because both cancer and dementia 
are normally included in the CCI calculation, a variant of 
the CCI (based on the SEER-Medicare comorbidity SAS 
(Klabunde et al., 2000; Klabunde, Warren, & Legler, 2002) 
macros) was created with cancer and dementia removed from 
the score. A  list of conditions included in the CCI can be 
found in Supplementary Table 2. CCI scores were calculated 
on an annual basis, lagged by a single year, and included in 
Model 5 as a time-varying covariate. A significant association 
between the CCI score and the outcome of AD will provide 
evidence consistent with nonindependence between the two 
competing events. This method relies on wisely selecting the 
measure that can serve as a proxy for the competing event; 
we consider CCI to be an excellent candidate.
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Model 6 is an extension of Model 5 and tests for site-
specific associations between cancer and later life AD risk. 
This model is used to illustrate the mortality selection effect 
between cancer and AD in a cancer with a late age at onset, 
prostate (men only) cancer. We also compare the effects of 
localized and regional/metastatic stage at diagnosis, which 
have lower 5-year survival rates relative to localized. These 
models include a lagged time-dependent measure of CCI, 
familial excess longevity (FEL), Medicare–Medicaid dual 
eligibility, smoking history at baseline, obesity at baseline, 
neighborhood measures for population and income, LDS 
status, and parity.

In addition to including a time-varying measure of the 
propensity of death, we used a time-independent meas-
ure of genetic proclivity for longevity. FEL was developed 
using the in-depth genealogical data in the UPDB (Kerber, 
O’Brien, Smith, & Cawthon, 2001) to represent familial 
predisposition. We have used this measure in multiple stud-
ies and have previously demonstrated its robustness as a 
predictor of increased life span (O’Brien et al., 2007; Smith, 
Hanson, Norton, Hollingshaus, & Mineau, 2014; Smith, 
Mineau, Garibotti, & Kerber, 2009). A more complete 
description can be found in the Supplementary Appendix. 
We also controlled for Medicare–Medicaid dual eligibility, 
smoking history at baseline, obesity, neighborhood meas-
ures for population and income, LDS status, and parity.

Results
The age- and sex-specific means of all key variables are dis-
played in Supplementary Table  3. Most cancer incidence 
cases occur after the time of enrollment for the individuals 
aged 65–69 years, with 69% being women and 77% being 
men. There is a similar pattern for individuals aged 70–74 
and 75–79 years, however as expected, due to the age dis-
tribution of cancer diagnoses, the proportion of cancers 
diagnosed after baseline decreases with each age group. 
For example, 64% of the cancer diagnoses for women 
aged 70–74  years occur after baseline, and this number 

decreases to 57% for women aged 75–79 years. The most 
common sites for women and men are breast and prostate, 
respectively. Our sample is predominately non-Hispanic 
white and LDS, with younger cohorts being slightly more 
heterogeneous, which is consistent with the demography 
of Utah. Younger men had the highest percentage of ever 
smokers, and we observed the expected decline in percent-
age of ever smokers with older cohorts and lower rates in 
women with respect to men. Women were nearly twice as 
likely as men to be obese at baseline, and the proportion of 
obese individuals in the sample decreases with age. Dual 
Medicaid–Medicare enrollment and CCI scores increase 
over time and with age. A measure of FEL was available for 
more than half of our sample, and area-level census data 
were available for more than 99% of individuals.

The absolute risk of cancer by sex and age group is dis-
played in Table 1. Absolute risk is calculated using two dif-
ferent ways to compute the denominator. First, denominators 
were calculated by classifying individuals as cancer survivor 
or cancer free and then counting the total number of person 
years. In the second version, the time-varying nature of the 
denominator was accounted for by forcing the individual to 
change risk set after a cancer diagnosis. AD rates are higher 
for the noncancer group when cancer status is treated as time 
invariant but are lower when it is allowed to vary over time.

Figure  3 shows the relationship between cancer and 
later life AD when cancer is modeled as a time-invariant 
predictor (Figure  3A; Model 1)  and time-varying predic-
tor (Figure 3B; Model 2). Sex-specific models are estimated 
and stratified by birth year. As reported in other published 
studies, we find a significant protective effect of cancer on 
the risk of incident AD for men and women of all ages in 
Model 1. However, we show that when cancer is modeled 
as a time-varying covariate (Model 2), there is no signifi-
cant protective association between cancer and AD with the 
exception of men aged 70–79 years at baseline (HR = 0.82; 
95% CI = 0.73–0.92). The change in the magnitude and the 
precision of the estimate is related to the manner in which 
individuals at risk of AD are counted. In the time-invariant 

Table 1. Absolute Risk of Alzheimer’s Disease (AD) by Sex and Age Group

AD diagnosis

Ever/never had a  
cancer diagnosis

Time-varying classification  
of cancer status

Person years Rate per 1,000 Person years Rate per 1,000

Cancer diagnosis

Female No Yes No Yes No Yes No Yes No Yes
 Age 65–69 1,512 334 161,702 50,849 9.4 6.6 182,488 30,063 8.3 11.1
 Age 70–74 2,581 569 171,332 53,410 15.1 10.7 194,056 33,957 13.3 16.8
 Age 75–79 2,234 445 121,245 34,570 18.4 12.9 134,332 21,483 16.6 20.7
Male
 Age 65–69 1,077 349 136,019 59,968 7.9 5.8 162,030 33,957 6.6 10.3
 Age 70–74 1,627 510 134,400 60,589 12.1 8.4 160,651 34,338 10.1 14.9
 Age 75–79 1,457 423 82,011 36,768 17.8 11.5 95,315 23,464 15.3 18.0
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model, individuals with a cancer diagnosis after baseline are 
incorrectly included in the denominator of those diagnosed 
with cancer for the entire period of observation. Therefore, 
cancer survivors have lower rates of AD by definition in 
Model 1. Allowing the effect of cancer to vary over time 
if it is diagnosed after baseline corrects this bias because 
individuals are not counted in the cancer category until the 
incident cancer diagnosis occurs. Note that in the latter, 
there is a pattern of a stronger inverse association between 
cancer and AD with age, when the forces of mortality are 
stronger, although these age differences are not statisti-
cally significant. In summary, failure to properly specify the 
model can lead to an inverse association between cancer 
and AD that is an artifact and not related to the etiology of 
cancer or AD.

Figure 4 shows the relationship between cancer and AD 
when further separated into prevalent cancer and incident 
cancer at baseline (Model 3). The results show little asso-
ciation between cancer diagnosis and AD risk, particularly 
for prevalent cancer cases. As with the previous set of mod-
els, we see the inverse association between cancer and AD 
strengthening with age. Men and women aged 75–79 years 
at baseline with a cancer diagnosis after baseline have a 
decreased risk of AD (HR  =  0.82; 95% CI  =  0.69–0.96 
and HR = 0.86; 95% CI = 0.74–0.99, respectively). Again, 
these findings are consistent with the influences of mortal-
ity selection because these individuals will generally not live 
long enough to be diagnosed with AD.

The FG models are used to further test the role of mortal-
ity as a competing event. Figure 5A displays the results from 
the FG competing risk models (Model 4). When accounting 
for the competing risk of death using FG models, individu-
als with prevalent and incident cancer have decreased rates 
of AD, and the magnitude of the effect increases with age. 

This is a crucial point to consider when interpreting the 
results from this model, because if individuals in the cancer 
group have higher mortality than the noncancer group, the 
set of persons deemed to be at risk will be artificially inflated 
in the group with higher mortality and the (subdistribution) 
hazard for AD will be lower by definition.

Finally, we applied the KP approach to investigate the 
etiological relationship between cancer and AD while 
controlling for the competing risk of death using a lagged 
internal time-varying covariate (CCI) that is predictive of 
the competing event, death (Model 5). In this approach, we 
also use FEL as a proxy for an individual’s risk of mortal-
ity based on family history. Models also include statistical 
controls for Medicare–Medicaid dual-enrollment eligibility 
(a measure of SES), smoking history, obesity, LDS status, 
neighborhood population and average income, and num-
ber of children ever born. The results are not displayed in 
the interest of space but available upon request. We find a 
significant and positive association between CCI and AD 
for men and women of all ages, and the magnitude of the 
effect is attenuated as age increases. The effect of FEL is less 
clear, with effects that vary across age group and sex, and 
does not reach significance in all models. Smoking history 
and obesity at baseline are both inversely associated with 

Figure 3. Modeling cancer as a time-varying predictor eliminates the 
inverse relationship between cancer and Alzheimer’s disease (AD). 
Hazard rate ratios for the effect of cancer diagnosis on AD estimated 
using Cox regression. Panels A and B are run separately by sex and 
stratified by birth year. No additional covariates are included in the mod-
els. Panel (A) treats cancer as time-independent predictor and Panel (B) 
treats cancer diagnosis as time-varying predictor. TVEM = time-varying 
effect model (Models 1 and 2 in Figure  4). Source: Utah Population 
Database, Utah Cancer Registry, Centers for Medicare and Medicaid 
Services.

Figure  4. Considering the time since diagnosis when evaluating the 
relationship between cancer and Alzheimer’s disease (AD). Hazard rate 
ratios for the effect of cancer diagnosis on AD estimated using Cox regres-
sion. Models displayed are run separately by sex and stratified by birth 
year. No other covariates are included in the models. Results displayed 
have separate variables for prebaseline (prevalent) and postbaseline 
(incident) cancer diagnosis (Model 3 in Figure 4). dx 10+years = can-
cer diagnosis 10 or more years prior to baseline; dx 5–9 years = cancer 
diagnosis 5–9 years prior to baseline; dx 0–4 years = cancer diagnosis 
0–4 years prior to baseline; TVEM = time-varying effect for cancer diag-
nosed after baseline. Source: Utah Population Database, Utah Cancer 
Registry, Centers for Medicare and Medicaid Services.
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AD with HRs ranging from 0.63 to 0.90 when significant. 
Smoking has a larger protective effect than obesity. The 
effects of the Medicaid–Medicare enrollment, neighbor-
hood measures of population and average family income, 
LDS status, and parity are not displayed, but as mentioned 
earlier, these are available upon request. We find that dual 
eligibility is positively associated with AD with HRs rang-
ing from 1.6 to 2.2. Neighborhood population and median 
family income are both positively associated with AD risk 
in the 70–79 age groups, and there is no effect for the area-
level measures in the 65–69 age group. There is no signifi-
cant relationship between the number of children ever born 
and later life AD risk.

Figure  5B displays the exposure (cancer/no cancer) 
results from the KP approach. We find that once controlling 
for confounders, the precision of the estimates declines, as 
expected. There is little change in the largely null associa-
tion between cancer and AD when the additional covari-
ates are added to the model (Figure  5A compared with 
Figure 3). Again, this finding supports the conclusion that 
cancer is not associated with a decreased risk in AD.

Figure 6 displays the prostate cancer results from the KP 
approach. We find that men with localized prostate can-
cer have an increased risk of AD at all ages of diagnosis 
(HR  =  1.3–1.4), compared with men with no history of 

prostate cancer. As predicted due to higher mortality rates, 
men with regional/metastatic stage prostate cancer have 
lower rates of AD than men without a history of cancer, 
however, the differences are not significant.

Discussion
We conclude that cancer is not protective against AD when 
appropriate model specifications that control for mortality 

Figure 5. (A) The Fine and Gray method to control for the competing risk of death: a misspecified model with useful information. Hazard rate ratios 
for the effect of cancer diagnosis on Alzheimer’s disease (AD) estimated using the Fine and Gray method for competing risks. Models are run sepa-
rately by sex and stratified by birth year. No other covariates are included in the models. (B) The Kalbfleisch and Prentice approach: a useful method 
for correcting for mortality selection. Hazard rate ratios for the effect of cancer diagnosis on AD estimated using Cox regression. Models are run sepa-
rately by sex and stratified by birth year. Models are controlling for a lagged Charlson Comorbidity Index score, familial excess longevity, religious 
status, obesity, smoking history, and neighborhood measures of population and median family income. Results are nested within models displayed 
in Figure 6 with the addition of the aforementioned covariates. dx 10+years = cancer diagnosis 10 or more years prior to baseline; dx 5–9 years = can-
cer diagnosis 5–9 years prior to baseline; dx 0–4 years = cancer diagnosis 0–4 years prior to baseline; TVEM = time-varying effect for cancer diagnosed 
after baseline (Model 5 in Figure 4). Source: Utah Population Database, Utah Cancer Registry, Centers for Medicare and Medicaid Services.

Figure 6. The Kalbfleisch and Prentice approach: prostate cancer risk 
by stage at diagnosis. Hazard rate ratios for the effect of prostate can-
cer diagnosis on Alzheimer’s disease estimated using Cox regression. 
Models are controlling for a lagged Charlson Comorbidity Index score, 
familial excess longevity, religious status, obesity, smoking history, and 
neighborhood measures of population and median family income and 
stratified by birth year. Cancer diagnosis is treated as a time-varying 
effect.
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selection are utilized. We show that under certain model 
specifications, we can replicate the inverse association 
between cancer and AD reported in the literature. The 
effects of differential mortality in the cancer and noncan-
cer groups play an important role in the observed associa-
tion between these two aging-related diseases. Our results 
demonstrate a dependence between AD diagnosis and 
mortality. Careful consideration of model specifications 
and interpretation of results is imperative when investigat-
ing the relationship between aging-related diseases where 
elevated mortality is omnipresent.

A recent meta-analysis reported the existence of an 
inverse association between cancer and AD (Ma et  al., 
2014). We offer several cautions about this analysis. The 
findings are heavily weighted by a single study (Musicco 
et al., 2013), and therefore, their conclusions largely reflect 
this one study’s findings. In addition, the meta-analysis does 
not correct for model misspecification or ignoring potential 
confounders, and the time-varying nature of cancer diagno-
sis relative to an AD diagnosis.

Consideration of mortality selection is important for 
several reasons. We show that the pattern of decreased risk 
of AD due to cancer increases with age, a finding consistent 
with the effects of mortality selection. This conclusion is 
clearly illustrated with the prostate cancer findings, where 
it is shown that men with less lethal forms of prostate can-
cer have higher rates of AD. Older individuals who have 
a cancer diagnosis must live long enough to be diagnosed 
with AD but generally do not, because their mortality 
rates are higher. Our findings suggest that the association 
between cancer and AD is attributable to mortality selec-
tion, or due to increased mortality in individuals with 
cancer, rather than for biological reasons. Future research 
should further investigate these findings by comparing site-
specific cancers with differential survival rates with respect 
to AD risk. If mortality selection underlies this association, 
a stronger inverse association should be observed for more 
lethal cancers.

There are also clear age and sex patterns in the effects 
of cancer on AD risk. Individuals in the youngest age group 
generally have higher risks of AD relative to the older age 
group, and women have higher risks than men. In those 
instances when cancer is protective, it is less protective 
for younger individuals and women. Again, this pattern 
supports our conclusion that the competing risk of mor-
tality plays an important role in the observed association 
between cancer and AD. Five-year cancer survival is highest 
in the youngest age groups and decreases with age. Women 
also have higher 5-year survival rates than men (National 
Cancer Institute, 2014). Both of these age and sex patterns 
of cancer survival strengthen the case for mortality selec-
tion as a fundamental mechanism.

Indeed, the strategy implemented in this study speaks 
to the general problem of linking social factors to disease 
risk in elderly individuals, because mortality selection 
creates the underlying population architecture of health 

at more advanced ages, and all estimated associations are 
constrained by the strength of this selection. Increasing 
the amount of time spent without major morbid condi-
tions is a significant public health goal, and further elu-
cidation of interplay between morbid conditions is key 
to understanding the aging process. Any analysis of an 
association between two morbid medical conditions in 
the older adult population should introduce robust sta-
tistical controls to address competing risks. As other 
authors have pointed out, the FG model is not a pana-
cea for addressing competing risk problems (Beyersmann 
& Schumacher, 2008; Latouche, Porcher, & Chevret, 
2005; Lau et  al., 2009). Differential rates of the com-
peting event between the exposed and unexposed group 
result in a misspecified model with misleading results; it 
is noteworthy that this information is very useful when 
combined with the results from cause-specific hazard 
models. Examining both the cause-specific and subdis-
tribution (FG) hazard models and understanding the 
relationship between the estimates lead us to conclude 
that an observed inverse association between cancer and 
AD is likely due to mortality selection. Further research 
to investigate other related associations, such as cancer 
and Parkinson’s disease, is warranted. In addition, future 
research should quantify how ignoring competing risks 
of disease affects interpretation of findings across a range 
of age-related diseases with different ages of onset.

Two types of future investigations of the relationship 
between cancer and AD are justified. First, there is keen 
interest in better understanding the increased risk of acute 
dementia during cancer treatment (e.g., “Chemo brain”), 
a topic that parallels the present study but deserves fur-
ther examination. Second, the analysis here relies on the 
Cox PH model. Other models, such as parametric mixture 
models (Lau, Cole, & Gange, 2009) and multistate models 
(Cortese & Andersen, 2010), have been used to account 
for mortality selection but were not implemented in this 
study. More insight may be gained into the dependence of 
these disease-related processes by exploring these and other 
alternative methods.

There are two noteworthy limitations to this study. 
First, the use of administrative claims data to identify 
AD diagnoses is not without error. Previous studies have 
shown that the agreement between clinical diagnoses and 
administrative records diagnoses is imperfect. Fallible 
phenotyping of AD may contribute to a null finding for 
association between cancer and AD. We attempted to 
increase the sensitivity of our measure by requiring two or 
more instances of an AD-related code for an AD diagnosis. 
The ability to replicate previous findings suggests that AD 
measurement error is not responsible for the observed null 
association between cancer and AD. Second, and relatedly, 
the diagnosis of AD would have to differ systematically 
between cancer patients and individuals without a cancer 
diagnosis for this to influence the findings, which is an 
unlikely scenario.
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This population-based study advances our knowledge 
about the association between AD and cancer based upon 
its use of a range of models and its use of a large, high qual-
ity population database. The ability to study site- and stage-
specific results is important because it allow us to observe 
a robust association across alternative types of models. 
Replications of this research are now needed using other 
national-based samples, such as the SEER-Medicare files.
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Sciences online.

Funding
This work was supported by the National Institutes of Health 
– National Institute of Aging (1R21AG036938-01 and 2R01 
AG022095) and Department of Health and Human Services, 
National Institutes of Health, Eunice Kennedy Shriver National 
Institute of Child Health & Human Development (1K12HD085852-
01). Partial support for all data sets within the UPDB was provided 
by the HCI Cancer Center Support Grant (P30 CA42014) from 
National Cancer Institute.

Acknowledgments
The authors thank the Huntsman Cancer Foundation for database 
support provided to the Pedigree and Population Resource of the 
HCI, University of Utah. They also thank Alison Fraser, Site Li, 
Diana Lane Reed, and Jennifer West for valuable assistance in man-
aging the data and Jennifer Majersik and Richard Kryscio for valu-
able comments during the preparation of the manuscript. All authors 
listed have contributed sufficiently to the project to be included as 
authors, have approved the manuscript, and agree with its submis-
sion to The Journals of Gerontology, Series B: Psychological Sciences 
and Social Sciences. H. A. Hanson designed the statistical analysis 
plan, cleaned and analyzed the data, and drafted and revised the 
paper. She is guarantor. K.  P. Horn, K.  M. Rasmussen, and J.  M. 
Hoffman revised the paper. . K. R. Smith commented on the statisti-
cal analysis plan and drafted and revised the paper.
To the best of our knowledge, no conflict of interest, financial or 
other, exists. The lead author affirms that this manuscript is an hon-
est, accurate, and transparent account of the study being reported; 
that no important aspects of the study have been omitted; and that 
any discrepancies from the study as planned (and, if relevant, regis-
tered) have been explained.

References
Anstey, K. J., von Sanden, C., Salim, A., & O’Kearney, R. (2007). 

Smoking as a risk factor for dementia and cognitive decline: 
A  meta-analysis of prospective studies. American Journal of 
Epidemiology, 166, 367–378. doi:10.1093/aje/kwm116

Austin, P. C., Lee, D. S., & Fine, J. P. (2016). Introduction to the analysis 
of survival data in the presence of competing risks. Circulation, 
133, 601–609. doi:10.1161/CIRCULATIONAHA.115.017719

Beeri, M. S., Rapp, M., Schmeidler, J., Reichenberg, A., Purohit, D. 
P., Perl, D. P., … Silverman, J. M. (2009). Number of children 
is associated with neuropathology of Alzheimer’s disease in 
women. Neurobiology of Aging, 30, 1184–1191. doi:10.1016/j.
neurobiolaging.2007.11.011

Behrens, M. I., Lendon, C., & Roe, C. M. (2009). A common bio-
logical mechanism in cancer and Alzheimer’s disease? Current 
Alzheimer Research, 6, 196–204.

Bennett, D. A., & Leurgans, S. (2010). Is there a link between cancer 
and Alzheimer disease? Neurology, 74, 100–101. doi:10.1212/
WNL.0b013e3181cbb89a

Berry, S. D., Ngo, L., Samelson, E. J., & Kiel, D. P. (2010). Competing 
risk of death: An important consideration in studies of older 
adults. Journal of the American Geriatrics Society, 58, 783–787. 
doi:10.1111/j.1532-5415.2010.02767.x

Beyersmann, J., & Schumacher, M. (2008). Time-dependent covariates 
in the proportional subdistribution hazards model for competing 
risks. Biostatistics, 9, 765–776. doi:10.1093/biostatistics/kxn009

Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987). 
A new method of classifying prognostic comorbidity in longitu-
dinal studies: Development and validation. Journal of Chronic 
Diseases, 40, 373–383. doi:10.1016/0021-9681(87)90171-8

Clegg, L. X., Reichman, M. E., Miller, B. A., Hankey, B. F., Singh, 
G. K., Lin, Y. D., … Edwards, B. K. (2009). Impact of socio-
economic status on cancer incidence and stage at diagnosis: 
Selected findings from the surveillance, epidemiology, and end 
results: National Longitudinal Mortality Study. Cancer Causes 
& Control, 20, 417–435. doi:10.1007/s10552-008-9256-0

Cortese, G., & Andersen, P. K. (2010). Competing risks and time-
dependent covariates. Biomedical Journal, 52, 138–158. 
doi:10.1002/bimj.200900076

de Glas, N. A., Kiderlen, M., Vandenbroucke, J. P., de Craen, A. J. M., 
Portielje, J. E. A., van de Velde, C. J. H., … Le Cessie, S. (2016). 
Performing survival analyses in the presence of competing risks: 
A clinical example in older breast cancer patients. Journal of the 
National Cancer Institute, 108, djv366. doi:10.1093/jnci/djv366

De Pergola, G., & Silvestris, F. (2013). Obesity as a major 
risk factor for cancer. Journal of Obesity, 2013, 291546. 
doi:10.1155/2013/291546

Demetrius, L. A., & Simon, D. K. (2013). The inverse association of can-
cer and Alzheimer’s: A bioenergetic mechanism. Journal of the Royal 
Society Interface, 10, 20130006. doi:10.1098/rsif.2013.0006

Driver, J. A. (2014). Inverse association between cancer and neu-
rodegenerative disease: Review of the epidemiologic and bio-
logical evidence. Biogerontology, 15, 547–557. doi:10.1007/
s10522-014-9523-2

Driver, J. A., Beiser, A., Au, R., Kreger, B. E., Splansky, G. L., Kurth, 
T., … Wolf, P. A. (2012). Inverse association between cancer and 
Alzheimer’s disease: Results from the Framingham Heart Study. 
The British Medical Journal, 344, e1442.

Enstrom, J. E., & Breslow, L. (2008). Lifestyle and reduced mortal-
ity among active California Mormons, 1980–2004. Preventive 
Medicine, 46, 133–136. doi:10.1016/j.ypmed.2007.07.030

Evans, D. A., Hebert, L. E., Beckett, L. A., Scherr, P. A., Albert, M. S., 
Chown, M. J., … Taylor, J. O. (1997). Education and other meas-
ures of socioeconomic status and risk of incident Alzheimer disease 
in a defined population of older persons. Archives of Neurology, 
54, 1399–1405. doi:10.1001/archneur.1997.00550230066019

1041Journals of Gerontology: SOCIAL SCIENCES, 2017, Vol. 72, No. 6



Frain, L., Swanson, D., Betensky, R., Cho, K., Gagnon, D., Kowall, 
N., … Driver, J. (2013). A reduced risk of Alzheimer’s disease 
is associated with the majority of cancers in a national cohort 
of veterans. Alzheimer’s & Dementia, 9, P617. doi:10.1016/j.
jalz.2013.05.1247

Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active 
and socially integrated lifestyle in late life might protect against 
dementia. The Lancet Neurology, 3, 343–353. doi:10.1016/
S1474-4422(04)00767-7

Fratiglioni, L., Wang, H. X., Ericsson, K., Maytan, M., & Winblad, 
B. (2000). Influence of social network on occurrence of demen-
tia: A community-based longitudinal study. Lancet, 355, 1315–
1319. doi:10.1016/s0140-6736(00)02113-9

Jason, P. F., & Gray, R. J. (1999). A proportional hazards model for 
the subdistribution of a competing risk. Journal of the American 
Statistical Association, 94, 496–509. doi:10.2307/2670170

Kerber, R. A., O’Brien, E., Smith, K. R., & Cawthon, R. M. (2001). 
Familial excess longevity in Utah genealogies. The Journals 
of Gerontology, Series B: Psychological Sciences and Social 
Sciences, 56, 130–139.

Key, T. J., Verkasalo, P. K., & Banks, E. (2001). Epidemiology of 
breast cancer. The Lancet Oncology, 2, 133–140. doi:10.1016/
S1470-2045(00)00254-0

Klabunde, C. N., Potosky, A. L., Legler, J. M., & Warren, J. L. 
(2000). Development of a comorbidity index using physician 
claims data. Journal of Clinical Epidemiology, 53, 1258–1267. 
doi:10.1016/S0895-4356(00)00256-0

Klabunde, C. N., Warren, J. L., & Legler, J. M. (2002). Assessing 
comorbidity using claims data: An overview. Medical Care, 40, 
IV-26–IV-35.

Koller, M. T., Raatz, H., Steyerberg, E. W., & Wolbers, M. (2012). 
Competing risks and the clinical community: Irrelevance or 
ignorance? Statistics in Medicine, 31, 1089–1097. doi: 10.1002/
sim.4384

Latouche, A., Porcher, R., & Chevret, S. (2005). A note on includ-
ing time-dependent covariate in regression model for compet-
ing risks data. Biometrical Journal, 47, 807–814. doi:10.1002/
bimj.200410152

Lau, B., Cole, S. R., & Gange, S. J. (2009). Competing risk regres-
sion models for epidemiologic data. American Journal of 
Epidemiology, 170, 244–256. doi:10.1093/aje/kwp107

Li, Y.-J., Scott, W. K., Hedges, D. J., Zhang, F., Gaskell, P. C., Nance, 
M. A., … Pericak-Vance, M. A. (2002). Age at onset in two 
common neurodegenerative diseases is genetically controlled. 
The American Journal of Human Genetics, 70, 985–993. 
doi:10.1086/339815

Lyon, J., Gardner, K., & Gress, R. (1994). Cancer incidence 
among Mormons and non-Mormons in Utah (United States) 
1971–85. Cancer Causes & Control, 5, 149–156. doi:10.1007/
bf01830261

Ma, L. L., Yu, J. T., Wang, H. F., Meng, X. F., Tan, C. C., Wang, C., & 
Tan, L. (2014). Association between cancer and Alzheimer’s dis-
ease: Systematic review and meta-analysis. Journal of Alzheimer’s 
Disease, 42, 565–573. doi:10.3233/JAD-140168

Merrill, R. M., & Lyon, J. L. (2005). Cancer incidence among 
Mormons and non-Mormons in Utah (United States) 1995–
1999. Preventive Medicine, 40, 535–541. doi:10.1016/j.
ypmed.2004.10.011

Mineau, G. P., Smith, K. R., & Bean, L. L. (2002). Historical trends 
of survival among widows and widowers. Social Science & 
Medicine, 54, 245–254. doi:10.1016/S0277-9536(01)00024-7

Musicco, M., Adorni, F., Di Santo, S., Prinelli, F., Pettenati, C., 
Caltagirone, C., … Russo, A. (2013). Inverse occurrence of can-
cer and Alzheimer disease: A population-based incidence study. 
Neurology, 81, 322–328. doi:10.1212/WNL.0b013e31829c5ec1

National Cancer Institute. (2014). Table  2.8 5-year relative and 
period survival: All cancer sites (invasive). Retrieved from http://
seer.cancer.gov/csr/1975_2012/browse_csr.php?sectionSEL=2&
pageSEL=sect_02_table.08.html

Norton, M. C., Dew, J., Smith, H., Fauth, E., Piercy, K. W., Breitner, 
J. C. S., … for the Cache County Investigators. (2012). Lifestyle 
behavior pattern is associated with different levels of risk for 
incident dementia and Alzheimer’s disease: The Cache County 
Study. Journal of the American Geriatrics Society, 60, 405–412. 
doi:10.1111/j.1532-5415.2011.03860.x

O’Brien, E., Kerber, R., Smith, K., Mineau, G., Boucher, K., & Reed, 
D. L. (2007). Familial mortality in the Utah population data-
base: Characterizing a human aging phenotype. The Journals of 
Gerontology, Series A: Biological Sciences and Medical Sciences, 
62, 803–812. doi:10.1093/gerona/62.8.803

Ott, A., Slooter, A. J. C., Hofman, A., van Harskamp, F., Witteman, 
J. C.  M., Van Broeckhoven, C., … Breteler, M. M.  B. (1998). 
Smoking and risk of dementia and Alzheimer’s disease in a pop-
ulation-based cohort study: The Rotterdam Study. The Lancet, 
351, 1840–1843. doi:10.1016/S0140-6736(97)07541-7

Plun-Favreau, H., Lewis, P. A., Hardy, J., Martins, L. M., & Wood, 
N. W. (2010). Cancer and neurodegeneration: Between the devil 
and the deep blue sea. PLoS Genetics, 6, e1001257. doi:10.1371/
journal.pgen.1001257

Reiche, E. M.  V., Nunes, S. O.  V., & Morimoto, H. K. (2004). 
Stress, depression, the immune system, and cancer. The Lancet 
Oncology, 5, 617–625. doi:10.1016/S1470-2045(04)01597-9

Roe, C. M., Behrens, M. I., Xiong, C., Miller, J. P., & Morris, J. C. 
(2005). Alzheimer disease and cancer. Neurology, 64, 895–898. 
doi:10.1212/01.WNL.0000152889.94785.51

Roe, C. M., Fitzpatrick, A. L., Xiong, C., Sieh, W., Kuller, L., Miller, 
J. P., … Morris, J. C. (2010). Cancer linked to Alzheimer dis-
ease but not vascular dementia. Neurology, 74, 106–112. 
doi:10.1212/WNL.0b013e3181c91873

Rusanen, M., Kivipelto, M., Quesenberry, C. P. Jr, Zhou, J., & Whitmer, 
R. A. (2011). Heavy smoking in midlife and long-term risk of 
Alzheimer disease and vascular dementia. Archives of Internal 
Medicine, 171, 333–339. doi:10.1001/archinternmed.2010.393

SEER Stat Fact Sheets: Pancreas Cancer. (2015) Retrieved February 
24, 2015, from http://seer.cancer.gov/statfacts/html/pancreas.html

Smith, K. R., Hanson, H. A., Norton, M. C., Hollingshaus, M. S., & 
Mineau, G. P. (2014). Survival of offspring who experience early paren-
tal death: Early life conditions and later-life mortality. Social Science 
& Medicine, 119, 180–190. doi:10.1016/j.socscimed.2013.11.054

Smith, K. R., Mineau, G. P., Garibotti, G., & Kerber, R. (2009). 
Effects of childhood and middle-adulthood family conditions 
on later-life mortality: Evidence from the Utah Population 
Database, 1850–2002. Social Science & Medicine, 68, 1649–
1658. doi:10.1016/j.socscimed.2009.02.010

Tabares-Seisdedos, R., & Rubenstein, J. L. (2013). Inverse cancer 
comorbidity: A  serendipitous opportunity to gain insight into 

1042 Journals of Gerontology: SOCIAL SCIENCES, 2017, Vol. 72, No. 6

http://seer.cancer.gov/csr/1975_2012/browse_csr.php?sectionSEL=2&pageSEL=sect_02_table.08.html
http://seer.cancer.gov/csr/1975_2012/browse_csr.php?sectionSEL=2&pageSEL=sect_02_table.08.html
http://seer.cancer.gov/csr/1975_2012/browse_csr.php?sectionSEL=2&pageSEL=sect_02_table.08.html
http://seer.cancer.gov/statfacts/html/pancreas.html


CNS disorders. Nature Reviews Neuroscience, 14, 293–304. 
doi:10.1038/nrn3464

US Department of Health and Human Services. (2014). The health con-
sequences of smoking—50 years of progress: A report of the Surgeon 
General (Vol. 17). Atlanta, GA: US Department of Health and Human 
Services, Centers for Disease Control and Prevention, National Center for 
Chronic Disease Prevention and Health Promotion, Office on Smoking  
and Health.

Ward, E., Jemal, A., Cokkinides, V., Singh, G. K., Cardinez, C., 
Ghafoor, A., & Thun, M. (2004). Cancer disparities by race/

ethnicity and socioeconomic status. CA: A Cancer Journal for 
Clinicians, 54, 78–93.

White, R. S., Lipton, R. B., Hall, C. B., & Steinerman, J. R. (2013). 
Nonmelanoma skin cancer is associated with reduced Alzheimer 
disease risk. Neurology, 80, 1966–1972. doi:10.1212/
WNL.0b013e3182941990

Wiley, L. K., Shah, A., Xu, H., & Bush, W. S. (2013). ICD-9 tobacco 
use codes are effective identifiers of smoking status. Journal of 
the American Medical Informatics Association, 20, 652–658. 

doi:10.1136/amiajnl-2012-001557

6

1043Journals of Gerontology: SOCIAL SCIENCES, 2017, Vol. 72, No. 6


