Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2002 Jul;93(7):789–797. doi: 10.1111/j.1349-7006.2002.tb01321.x

Regional Expression of CXCL12/CXCR4 in Liver and Hepatocellular Carcinoma and Cell‐cycle Variation during in vitro Differentiation

Kenji Shibuta 1, Masaki Mori 1, Katsuhiro Shimoda 3, Hiroshi Inoue 1, Prasenjit Mitra 2, Graham F Barnard 2,
PMCID: PMC5927066  PMID: 12149145

Abstract

The CXCL12/CXCR4 system may be important in carcinoma. Expression of the a‐chemokine SDF‐lα (stromal cell derived factor‐lα)/CXCL12 mRNA is reduced in many carcinomas, yet its tissue protein expression may guide metastasis. Here we first compare the mRNA and protein expression of CXCL12 and its receptor CXCR4 in human liver, hepatocellular carcinoma, and malignant cell lines, and then assess cell cycle variation in CXCR4 expression. CXCR4 mRNA was present in most normal human tissues and malignant cell lines; it was only marginally reduced in hepatomas, while CXCL12 was markedly reduced, P<0.0001. Immuno‐histochemical staining of adjacent non‐malignant liver showed regional CXCR4 cytoplasmic and cell‐surface staining, limited to those hepatocytes around the central vein, a distribution resembling that of CXCL12. CXCL12 protein was not present in hepatocellular carcinoma cells in vivo, nor was cytoplasmic CXCR4 staining; nuclear CXCR4 protein expression in some malignant hepatocytes and CXCR4 staining of capillary endothelial cells around tumor cells were noted. In some malignant cell lines that had no CXCL12 on northern blots CXCL12 was weakly detectable by RT‐PCR or protein staining in the cytoplasm of a few cells. With a view to future manipulation of CXCL12/CXCR4 expression and growth we noted that in HT‐29 cells CXCR4 protein expression was less on confluent than on non‐confluent cells and varied during the cell cycle. Higher expression was associated most closely with the percentage of cells in the S‐phase and inversely with the percentage of cells in the G1‐phase. Treatment of HT‐29 cells with butyrate reduced CXCR4 cell surface expression and reduced the percentage of cells in S‐phase. In summary, CXCL12 protein expression parallels its mRNA, being markedly reduced in malignant cell lines and hepatomas; in liver, the regional distributions of CXCL12 and cytoplasmic CXCR4 are similar; finally, in HT‐29, CXCR4 expression correlates with the S‐phase of the cell cycle and is reduced during butyrate‐induced differentiation.

Keywords: CXCR4, SDF‐lα, hIRH, CXCL12, Hepatocellular carcinoma

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

REFERENCES

  • 1. ) Bleul , C. C. , Farzan , M. , Choe , H. , Parolin , C. , Clark‐Lewis , I. , Sodroski , J. and Springer , T. A.The lymphocyte chemoattractant SDF‐1 is a ligand for LESTR/fusin and blocks HIV‐1 entry . Nature , 382 , 829 – 833 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Oberlin , E. , Amara , A. , Bachelerie , F. , Bessia , C. , Virelizier , J.‐L. , Arenzana‐Seisdedos , F. , Schwartz , O. , Heard , J.‐M. , Clark‐Lewis , I. , Legler , D. F. , Loetscher , M. , Baggiolini , M. and Moser , B.The CXC chemokine SDF‐1 is the ligand for LESTR/fusin and prevents infection by T‐cell‐line‐adapted HIV‐1 . Nature , 382 , 833 – 835 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Begum , N. A. , Mori , M. , Matsumata , T. , Takenaka , K. , Sugimachi , K. and Barnard , G. F.Differential display and integrin alpha six overexpression in hepatocellular carcinoma . Hepatology , 22 , 1447 – 1455 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Begum , N. A. , Coker , A. , Shibuta , K. , Swanson , R. S. , Chen , L. B. , Mori , M. and Barnard , G. F.Loss of gIRH mRNA expression from premalignant adenomas and malignant cell lines . Biochem. Biophys. Res. Commun. , 229 , 864 – 868 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Shibuta , K. , Begum , N. A. , Mori , M. , Shimoda , K. , Akiyoshi , T. and Barnard , G. F.Reduced expression of hIRH/SDF1a/PBSF in gastrointestinal tract cancers . Int. J. Cancer , 73 , 656 – 662 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Shirozu , M. , Nakano , T. , Inazawa , J. , Tashiro , K. , Tada , H. , Shinohara , T. and Honjo , T.Structure and chromosomal localization of the human stromal cell‐derived factor 1 (SDF1) gene . Genomics , 28 , 495 – 500 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Nagasawa , T. , Nakajima , T. , Tachibana , K. , lizasa , H. , Bleul , C. C. , Yoshie , O. , Matsushima , K. , Yoshida , N. , Springer , T. A. and Kishimoto , T.Molecular cloning and characterization of a murine PBSF/SDF1 receptor, a murine homolog of the human HIV‐1 entry coreceptor fusin . Proc. Nad. Acad. Sci. USA , 93 , 14726 – 14729 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. ) Zlotnik , A. and Yoshie , O.Chemokines: a new classification system and their role in immunity . Immunity , 12 , 121 – 127 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Muller , A. , Homey , B. , Soto , H. , Ge , N. , Catron , D. , Buchanan , M. E. , McClanahan , T. , Murphy , E. , Yuan , W. , Wagner , S. N. , Barrera , J. L. , Mohar , A. , Verastegui , E. and Zlotnik , A.Involvement of chemokine receptors in breast cancer metastasis . Nature , 410 , 50 – 56 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Sehgal , A. , Keener , C. , Boynton , A. L. , Warrick , J. and Murphy , G. P.CXCR‐4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells . J. Surg. OncoL , 69 , 99 – 104 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Koshiba , T. , Hosotani , R. , Miyamoto , Y. , Ida , J. , Tsuji , S. , Nakajima , S. , Kawaguchi , M. , Kobayashi , H. , Doi , R. , Hori , T. , Fujii , N. and Imamura , M.Expression of SDF and CCR4 in pancreatic cancer: a possible role for tumor progression . Clin. Cancer Res. , 6 , 3530 – 3535 ( 2000. ). [PubMed] [Google Scholar]
  • 12. ) Scotton , C. J. , Wilson , J. L. , Milliken , D. , Stamp , G. and Balkwill , F. R.Epithelial cancer cell migration: a role for chemokine receptors ? Cancer Res. , 61 , 4961 – 4965 ( 2001. ). [PubMed] [Google Scholar]
  • 13. ) Crazzolara , R. , Kreczy , A. , Mann , G. , Heitger , A. , Eibl , G. , Fink , F. M. , Mohle , R. and Meister , B.High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukemia . Br. J. HaematoL , 115 , 545 – 553 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Aiuti , A. , Turchetto , L. , Cota , M. , Cipponi , A. , Brambilla , A. , Arcelloni , C. , Paroni , R. , Vicenzi , E. , Bordignon , C. and Poli , G.Human CD34(+) cells express CXCR4 and its ligand stromal cell‐derived factor‐1. Implications for infection by T‐cell tropic human immunodeficiency virus . Blood , 94 , 62 – 73 ( 1999. ). [PubMed] [Google Scholar]
  • 15. ) Yang , O. O. , Swanberg , S. L. , Lu , Z. J. , Dziejman , M. , McCoy , J. , Luster , A. D. , Walker , B. D. and Herrmann , S. H.Enhanced inhibition of human immunodeficiency virus type 1 by Met‐Stromal‐Derived Factor 1 beta correlates with down‐modulation of CXCR4 . J. Virol. , 73 , 4582 – 4589 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. ) Nomura , T. , Hasegawa , H. , Kohno , M. , Sasaki , M. and Fujita , S.Enhancement of anti‐tumor immunity by tumor cells transfected with the secondary lymphoid tissue chemokine EBI‐1 and stromal cell derived factor 1 alpha genes . Int. J. Cancer , 91 , 597 – 606 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 17. ) Begum , N. A. , Shibuta , K. , Mori , M. and Barnard , G. F.Reduced expression of the CXCR4 receptor mRNA in hepatocellular carcinoma and lack of inducibility of its ligand α‐chemokine hIRH/SDFla/PBSF in vitro . Int. J. OncoL , 14 , 927 – 934 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Mitra , P. , Shibuta , K. , Mathai , J. , Shimoda , K. , Banner , B. F. , Mori , M. and Barnard , G. F.CXCR4 mRNA expression in colon, esophageal and gastric cancers and hepatitis C infected liver . Int. J. OncoL , 14 , 917 – 925 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Edmondson , H. A. and Steiner , P. E.Primary carcinoma of the liver: a study of 100 cases among 48, 900 necropsies . Cancer , 7 , 462 – 503 ( 1954. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Wang , J. , Huang , M. , Lee , P. , Komanduri , K. , Sharma , S. , Chen , G. and Dubinett , S. M.Interleukin‐8 inhibits non‐small cell lung cancer proliferation: a possible role for regulation of tumor growth by autocrine and paracrine pathways . J. Interferon Cytokine Res. , 16 , 53 – 60 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Schadendorf , D. , Moller , A. , Algermissen , B. , Worm , M. , Sticherling , M. and Czarnetzki , B.IL‐8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor . J. Immunol. , 151 , 2667 – 2675 ( 1993. ). [PubMed] [Google Scholar]
  • 22. ) Singh , R. K. , Gutman , M. , Radinsky , R. , Bucana , C. D. and Fidler , I. J.Expression of IL‐8 correlates with the metastatic potential of human melanoma cells in nude mice . Cancer Res. , 54 , 3242 – 3247 ( 1994. ). [PubMed] [Google Scholar]
  • 23. ) Loetscher , M. , Geiser , T. , O'Reilly , T. , Zwahlen , R. , Baggiolini , M. and Moser , B.Cloning of the seven‐transmembrane domain receptor, LESTR, that is highly expressed in leukocytes . J. Biol. Chem. , 269 , 232 – 237 ( 1994. ). [PubMed] [Google Scholar]
  • 24. ) Sehgal , A. , Ricks , S. , Boynton , A. L. , Warrick , J. and Murphy , G. P.Molecular characterization of CXCR‐4: a potential brain tumor‐associated gene . J. Surg. Oncol. , 69 , 239 – 248 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Moriuchi , M. , Moriuchi , H. , Turner , W. and Fauci , A. S.Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV‐1 entry . J. Immunol. , 159 , 4322 – 4329 ( 1997. ). [PubMed] [Google Scholar]
  • 26. ) Shirota , Y. , Kaneko , S. , Honda , M. , Kawai , H. F. and Kobayashi , K.Identification of differentially expressed genes in hepatocellular carcinoma with cDNA microar‐rays . Hepatology , 33 , 832 – 840 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 27. ) Rempel , S. A. , Dudas , S. , Ge , S. and Gutierrez , J. A.Identification and localization of the cytokine SDF1 and its receptor CXCR4 to regions of necrosis and angiogenesis in human glioblastoma . Clin. Cancer Res. , 6 , 102 – 111 ( 2000. ). [PubMed] [Google Scholar]
  • 28. ) Steffan , A. M. , Lafon , M. E. , Gendrault , J. L. , Schweitzer , C. , Royer , C. , Jaeck , D. , Amaud , J. P. , Schmitt , M. P. , Aubetin , A. M. and Kim , A.Primary cultures of endothelial cells from the human liver sinusoid are permissive for human HIV virus type 1 . Proc. Natl. Acad. Sci. USA , 89 , 1582 – 1586 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. ) Banerjee , R. , Sperber , K. , Pizzella , T. and Mayer , L.Inhibition of HIV‐1 productive infection in hepatoblastoma HepG2 cells by recombinant TNF‐alpha . AIDS , 6 , 1127 – 1131 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 30. ) Mitra , P. , De , D. , Ethier , M. F. , Mimori , K. , Kodys , K. , Shibuta , K. , Mori , M. , Madison , J. M. , Miller‐Graziano , C. and Barnard , G. F.Loss of chemokine SDF‐1 mediated CXCR4 signalling and receptor internalization in human hepatoma cell line HepG2 . Cell. Signal. , 13 , 311 – 319 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 31. ) Federsppiel , B. , Melhado , I. G. , Duncan , A. M. , Delaney , A. , Schappert , K. , Clark‐Lewis , I. and Jirik , F. R.Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven‐transmembrane segment (7‐TMS) receptor isolated from human spleen . Genomics , 16 , 707 – 712 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 32. ) McGrath , K. E. , Koniski , A. D. , Maltby , K. M. , McGann , J. K. and Palis , J.Embryonic expression and function of the chemokine SDF‐1 and its receptor, CXCR4 . Dev. Biol. , 213 , 442 – 456 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 33. ) Coulomb‐L'Hermine , A. , Amara , A. , Schiff , C. , Durand‐Gasselin , I. , Foussat , A. , Delaunay , T. , Chaouat , G. , Capron , F. , Ledee , N. , Galanaud , P. , Arenza‐Seisdedos , F. and Emilie , D.Stromal cell‐derived factor 1 (SDF‐1) and antenatal human B cell lymphopoiesis: expression of SDF‐1 by mesothelial cells and biliary ductal plate epithelial cells . Proc. Natl. Acad. Sci. USA , 96 , 8585 – 8590 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. ) Jiang , W. , Zhou , P. , Kahn , S. M. , Tomita , N. , Johnson , M. D. and Weinstein , I. B.Molecular cloning of TPAR1, a gene whose expression is repressed by the tumor promoter TPA . Exp. Cell Res. , 215 , 284 – 293 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 35. ) Karakurum , M. , Shreeniwas , R. , Chen , J. , Pinsky , D. , Yan , S. D. , Anderson , M. , Sunouchi , K. , Major , J. , Hamilton , T. , Kuwabara , K. , Rot , A. , Nowygord , R. and Stern , D.Hypoxic induction of IL‐8 expression in human endothelial cells . J. Clin. Invest. , 93 , 1564 – 1670 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. ) Feil , C. and Augustin , H. G.Endothelial cells differentially express functional CXCR4 under the control of autocrine activity and exogenous cytokines . Biochem. Biophys. Res. Commun. , 247 , 38 – 45 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 37. ) Volin , M. V. , Joseph , L. , Shockley , M. S. and Davies , P. F.Chemokine receptor CXCR4 expression in endothelium . Biochem. Biophys. Res. Commun. , 242 , 46 – 53 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 38. ) Tachibana , K. , Hirota , S. , lizasa , H. , Yoshida , H. , Kawabata , K. , Kataoka , Y. , Kitamura , Y. , Matsushima , K. , Yoshida , N. , Nishikawa , S.‐L , Kishimoto , T. and Nagasawa , T.The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract . Nature , 393 , 591 – 594 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 39. ) Jordan , N. J. , Kolios , G. , Abbot , S. E. , Sinai , M. A. , Thompson , D. A. , Petraki , K. and Westwick , J.Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells . J. Clin. Invest. , 104 , 1061 – 1069 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. ) Cashman , J. , Clark‐Lewis , L , Eaves , A. and Eaves , C.SDF inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice . Blood , 99 , 792 – 799 ( 2002. ). [DOI] [PubMed] [Google Scholar]
  • 41. ) Lataillade , J. J. , Clay , D. , Bourin , P. , Herodin , F. , Dupuy , C. , Jasmin , C. and Bousse‐Kerdiles , M. C.SDF regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism . Blood , 99 , 1117 – 1129 ( 2002. ). [DOI] [PubMed] [Google Scholar]
  • 42. ) Agace , W. , Amara , A. , Roberts , A. L , Pablos , J. L. , Thelen , S. , Uguccioni , M. , Li , X. Y. , Marshal , J. , Arenzana‐Seisdedos , F. , Delaunay , T. , Ebert , E. C. , Moser , B. and Parker , C. M.Constitutive expression of SDF‐1 by mucosal epithelia and its role in HIV transmission/propagation . Curr. Biol. , 10 , 325 – 328 ( 2000. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES