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Purpose: Computed tomography (CT) is one of the most used imaging modalities for imaging both
symptomatic and asymptomatic patients. However, because of the high demand for lower radiation
dose during CT scans, the reconstructed image can suffer from noise and artifacts due to the trade-off
between the image quality and the radiation dose. The purpose of this paper is to improve the image
quality of quarter dose images and to select the best hyperparameters using the regular dose image as
ground truth.
Methods: We first generated the axially stacked two-dimensional sinograms from the multislice raw
projections with flying focal spots using a single slice rebinning method, which is an axially approxi-
mate method to provide simple implementation and efficient memory usage. To improve the image
quality, a cost function containing the Poisson log-likelihood and spatially encoded nonlocal penalty
is proposed. Specifically, an ordered subsets separable quadratic surrogates (OS-SQS) method for the
log-likelihood is exploited and the patch-based similarity constraint with a spatially variant factor is
developed to reduce the noise significantly while preserving features. Furthermore, we applied the
Nesterov’s momentum method for acceleration and the diminishing number of subsets strategy for
noise consistency. Fast nonlocal weight calculation is also utilized to reduce the computational cost.
Results: Datasets given by the Low Dose CT Grand Challenge were used for the validation, exploit-
ing the training datasets with the regular and quarter dose data. The most important step in this paper
was to fine-tune the hyperparameters to provide the best image for diagnosis. Using the regular dose
filtered back-projection (FBP) image as ground truth, we could carefully select the hyperparameters
by conducting a bias and standard deviation study, and we obtained the best images in a fixed number
of iterations. We demonstrated that the proposed method with well selected hyperparameters
improved the image quality using quarter dose data. The quarter dose proposed method was com-
pared with the regular dose FBP, quarter dose FBP, and quarter dose l1-based 3-D TV method. We
confirmed that the quarter dose proposed image was comparable to the regular dose FBP image and
was better than images using other quarter dose methods. The reconstructed test images of the
accreditation (ACR) CT phantom and 20 patients data were evaluated by radiologists at the Mayo
clinic, and this method was awarded first place in the Low Dose CT Grand Challenge.
Conclusion: We proposed the iterative CT reconstruction method using a spatially encoded nonlo-
cal penalty and ordered subsets separable quadratic surrogates with the Nesterov’s momentum and
diminishing number of subsets. The results demonstrated that the proposed method with fine-tuned
hyperparameters can significantly improve the image quality and provide accurate diagnostic fea-
tures at quarter dose. The performance of the proposed method should be further improved for
small lesions, and a more thorough evaluation using additional clinical data is required in the
future. © 2017 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12523]
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1. INTRODUCTION

Computed tomography (CT) is a routinely used imaging
modality with an important role in screening asymptomatic
patients and in imaging symptomatic patients for a wide
range of clinical applications. Due to the trade-off between
radiation dose and image quality, it is a challenge to design
reconstruction algorithms that could reduce the radiation
dose while achieving high image quality. The most used
analytical method, filtered back-projection (FBP), can
excessively boost the noise and produce severe streaking
patterns during the ramp filtering process under low-dose

conditions.1 To improve image quality at low dose, model-
based iterative reconstruction (MBIR) algorithms containing
data fidelity and penalty terms have been developed,2 such
as adaptive statistical iterative reconstruction.3 optimization
algorithms, such as expectation maximization (EM),4,5 alge-
braic reconstruction technique (ART),6,7 and separable
quadratic surrogates (SQS),8 have been developed to solve
the data fidelity problem in model based iterative recon-
struction. In addition, image-based denoising methods using
the Gaussian function,9 edge-preserving functions,10 total
variation (TV),11 nonlocal means,12 and wavelet,13 can be
incorporated as a penalty function to improve the image
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quality in CT. Currently, the total variation methods with
many extended versions14–16 have been widely used in iter-
ative CT reconstructions because of following advantages:
(a) the noise can be efficiently removed while preserving
edges and (b) the computational cost is relatively lower
than costs of other transform-based penalties. However,
human organs in CT images are not piece-wise constants,
resulting in over-smoothing of image features and stair
artifacts.

In this paper, we are interested in feature-preserving
denoising methods to improve quarter dose CT images.
Recently, patch-based methods have been developed in
denoising problems, which is robust to noise while preserv-
ing features by utilizing the similarity of small patches
although the computational cost is relatively higher than
costs of pixel-based penalties, such as TV. One of the most
popular methods is a nonlocal means algorithm,12 which
computes the intensity-based patch similarity weighted
average. The block matching with three-dimensional col-
laborative filtering (BM3D)17 algorithm has been applied
to remove uncorrelated noise components from groups of
similar patches. Patch-based low rank minimization18 has
been used in the spectral CT reconstruction. Because a sin-
gle small patch has only few number of materials, a group
of patches along spectral direction is low rank. Recently,
Wang et al.19 employed a nonlocal penalty for the PET
reconstruction, and Yang et al.20 proposed a unified nonlo-
cal penalty using a majorization and minimization opti-
mization framework.

Furthermore, we are also interested in spatially encoded
approaches for image quality improvement. Nuyts et al.21

developed a quadratic-based spatially variant penalty that
exploited the absolute difference value of neighbor pixels
for preserving edges. Similarly, spatially variant hyperpa-
rameter approaches have been developed using a local
impulse response function based on photon statistics.22,23

In this paper, we developed a three-dimensional spatially
encoded nonlocal penalty, which computes the spatially
variant nonlocal weight using similar patches and then
calculates the weighted average to reduce noise while pre-
serving structural features. The spatially encoded factor
based on the local voxel intensity is incorporated into the
nonlocal similarity weight to prevent over-smoothing of
high intensity structures. In the optimization, we use a
separable quadratic surrogate algorithm (SQS) for the
Poisson loglikelihood function and the Newton’s gradient
method for image update.8 We mainly focus on how to
fine-tune the hyperparameters, which is an essential step
for clinical translation. With the availability of regular and
quarter dose data from the Low-Dose CT Grand Chal-
lenge24 (AAPM and Mayo clinic), the regular dose data
are used as ground truth to select the best hyperparame-
ters.

For additional improvements, the diminishing number of
subsets and the Nesterov’s momentum25 are used in our
iterative reconstruction to accelerate the speed while

controlling the noise consistency. The proposed method,
containing forward and backward projectors, and the spa-
tially encoded nonlocal penalty, is implemented using par-
allel computing techniques with a graphics processing unit
(GPU) and the compute unified device architecture
(CUDA), which can significantly accelerate computation.
Because the patch-based and transform-based penalties are
still not practical due to the high computational cost, we
adopted the fast nonlocal weight calculation developed by
Darbon et al.,26 which can reduce redundant computations
of patch differences using accumulative summation of
image-based differences. For sinogram generation, single
slice rebinning27 was used in the preprocessing step to take
into account the flying focal spot used in the multislice CT
measurements28 as it is memory efficient and has lower
computational costs. The hyperparameters of the proposed
method were evaluated by bias and standard deviation
study using training sets with regular and quarter dose data
in which the regular dose FBP image was used as ground
truth. The quarter dose proposed method was compared
with regular dose FBP, quarter dose FBP, quarter dose l1-
based 3-D TV method. We demonstrate that the recon-
structed image of quarter dose proposed method is compa-
rable to the regular dose FBP image and was better than
images using other quarter dose methods. The processed
quarter dose images using the proposed method with
accreditation (ACR) CT phantom and 20 patients data were
evaluated by radiologists at the Mayo clinic. Our submitted
result was awarded first place in the Low-Dose CT Grand
Challenge.

This paper is organized as follows. In Section 2, the prob-
lem formulation for the transmission measurement and the
spatially encoded nonlocal penalty is given and Section 3
derives the optimization framework using the separable quad-
ratic surrogates (SQS) with the Nesterov’s momentum and
the diminishing number of subsets. The implementations of
single slice rebinning, fast nonlocal weight calculation and
the GPU-based proposed method are explained in Section 4.
In Section 5, we evaluate the selection of hyperparameters
using regular dose FBP image as ground truth, and the quar-
ter dose proposed method was compared with regular dose
FBP, quarter dose FBP, quarter dose l1-based 3-D TV
method. Section 4 discusses technical issues and limitations,
and we conclude in Section 7.

2. PROBLEM FORMULATION

2.A. Measurement

Let a non-negative image x ¼ ðx1; . . .; xNvÞ 2 RNvþ be the
vector of attenuation coefficients, and transmission data
y ¼ ðy1; . . .; yNmÞ 2 RNmþ be the photon count at the detector.
Although the measurement follows the mixture of Poisson
and Gaussian statistics due to noise properties, we simplify
that the transmission data follows the Poisson statistical
model as follows:
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yi � Poissonfbie�½Ax�i þ rig; i ¼ 1; . . .;Nm (1)

where Nv and Nm denote the number of image voxels and mea-
surements, respectively. bi denotes the blank scan for detector
i, and ri is the mean value of background noise such as scatter
and electrical noise at ith detector. ½Ax�i ¼

PNv
j¼1 aijxj repre-

sents the i-th line integral, and [A] is the Nm � Nv system
matrix that accounts for the system geometry.

To estimate attenuation coefficients, the negative log-like-
lihood function L(x;y) of Poisson statistics is used:

LðxÞ ¼
XNm

i¼1

hið½Ax�iÞ; (2)

where hi(k) = bie
�k+ri�yi log (bie

�k+ri).

2.B. Spatially encoded nonlocal penalty

Patch-based denoising methods have been developed for
robust denoising while preserving structural features and
been used in many different ways, such as intensity-based
weighted average,12 block matching collaborative filtering29

and low-rank minimization.18 Among various methods, the
nonlocal means method is one of the most used methods due
to its lower computational costs compared to other transform-
based methods. Nonlocal penalty calculates the similarity
weight by intensity differences between patches, and then the
weighted average is obtained as shown in Fig. 1. Specifically,
the similar patches along the edge directions, as shown in
Fig. 1, have much higher similarity weights, which can pre-
serve edge features during the denoising process. In this

(a) (b)

FIG. 1. (a) A noisy image and (b) a denoised image using a spatially encoded nonlocal penalty. Here, a small three-dimensional patch is used in our implementa-
tion. The weighted average of similar patches in a neighbor can reduce noise significantly while preserving features.

FIG. 2. (a) Flying focal spots (6 red spots) at the anode plate and the shifts of (b) h, (c) z and q directions by flying focal spot. (d) The determination of fanbeam
line by the intersection of conebeam line and iso-center, which is orthogonal to the z-axis. Geometrically, Dz and Dq move together.
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paper, we are interested in reducing the blurring effect for
high intensity regions during the nonlocal weight calculation
because high intensity regions, such as bone, calcification,
and contrast agents, account for a small portion of the human
body and can be easily blurred due to fewer similar patches
in the neighbor regions. To address this issue, a spatially
encoded factor is proposed, which is based on the local voxel
intensity incorporated into the nonlocal similarity weight to
prevent over-smoothing at high intensity structures. We uti-
lize the generalized nonlocal penalty,30,31 and incorporate the
spatially encoded factor. The spatially encoded nonlocal pen-
alty Uðx; �xÞ is defined as:

Uðx; �xÞ ¼
XNv

j¼1

1
m

X
k2Xj

wjkð�xjÞðxj � xkÞ2
0
@

1
A

m=2

; (3)

wjkð�xjÞ ¼ exp �ð�xj=sÞj kf jð�xÞ � fkð�xÞkh
r2

� �
; (4)

and

kf jð�xÞ � fkð�xÞkh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNp

l¼1

hlð�xjl � �xklÞ2
vuut ; (5)

where �x is an estimate of x for the similarity weight computa-
tion. r is a filtering parameter and Ωj is the neighbor bound-
ary at the center pixel j in a three-dimensional geometry. Np

is the number of voxels in a three-dimensional patch, hl is the
normalized inverse distance between pixel jl and kl in whichPNp

l¼1 hl ¼ 1. (xj/s)
j is the spatially encoded factor for jth

voxel, which has two hyperparameters s and j. The role of
the spatially encoded factor is to reduce the weighted averag-
ing effect at high intensity regions to maintain contrast. More
specifically, the intensity range of attenuation coefficients xj
is less than 1 (� 0.02 mm�1 for tissue). s is the normaliza-
tion factor to make the xj/s larger than 1 and j(≥2) is the scal-
ing factor to make smaller weights for higher intensities,
which can reduce the blurring effect at high intensity regions.
m is the convexity factor, which can control the convex

(m ≥ 2) and nonconvex (m < 2) properties. We used m = 2,
thus, the spatially encoded nonlocal penalty becomes a quad-
ratic function and differentiable with respect to x at fixed �x.
The hyperparameters are highly dependent on the dataset,
particularly on noise properties. Thus, the selection of hyper-
parameters is crucial for optimizing image quality in the pro-
posed method. Because the datasets provided by Low Dose
CT Grand Challenge had similar noise levels, all hyperpa-
rameters are fixed throughout our experiments. Details of
hyperparameter selection will be presented in Section 5.B.

3. OPTIMIZATION

Accordingly, we define the cost function of the proposed
method as follows:

min
x

LðxÞ þ bUðxÞ; (6)

where L(x) is the Poisson log-likelihood, U(x) is the spatially
encoded nonlocal penalty and b is a hyperparameter. Because
L(x) is difficult to minimize directly, the separable quadratic
surrogates (SQS) algorithm is adopted.8

3.A. Separable quadratic surrogates

For the log-likelihood function L(x), a separable quadratic
surrogate function is used.8 A quadratic surrogate of L(x) can
be expressed as follows:

LðxÞ�QLðx; xðnÞÞ ¼
XNm

i¼1

pðnÞð½Ax�i�Þ; (7)

where

pðnÞðkiÞ ¼ pðki; kðnÞi Þ , hiðkðnÞi Þ þ _hiðkðnÞi Þðki � kðnÞi Þ

þ viðkðnÞi Þ
2

ðki � kðnÞi Þ2:
(8)

Here, n denotes the iteration, kðnÞi ¼ ½AxðnÞ�i, and viðkðnÞi Þ
is the optimal curvature of pðki; kðnÞi Þ. We use the precom-
puted curvature as follows:8

FIG. 3. Fast nonlocal weight calculation in a two-dimensional image. (a) Calculation of image difference with a distance of (Dx,Dy), (b) accumulative summation
of the difference image, and (c) calculation of patch difference using 4-points.
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viðyi;�riÞ ¼
ðyi��riÞ2

yi
yi [�ri ,

0 yi ��ri ,

�
(9)

where �ri denote the estimated background noise at ith detec-
tor pixel.

Next, a separable surrogate of quadratic function is
applied as follows:

½Ax�i ¼
XNv

j¼1

aijxj ¼
XNv

j¼1

gij
aij
gij

ðxj� xðnÞj Þþ ½AxðnÞ�i
� �

; (10)

where gij ¼ aijPNv

j0¼1
aij0

is a non-negative real value (gij = 0 only

if aij = 0 for all i,j), and
PNv

j¼1 gij ¼ 1. Then, using the con-

vexity of pðnÞi , the convex inequality can be expressed as:

pðnÞi ð½Ax�iÞ�
XNv

j¼1

gijp
ðnÞ
i

aij
gij

ðxj � xðnÞj Þ þ ½AxðnÞ�i
� �

: (11)

Finally, we use the following separable quadratic surrogate
function /ðnÞ

L ðxÞ instead of the negative log-likelihood term
L(x):

LðxÞ�QðnÞ
L ðxÞ�/ðnÞ

L ðxÞ,
XNv

j¼1

/ðnÞ
L; jðxjÞ; (12)

/ðnÞ
L; jðxjÞ,

XNm

i¼1

gijp
ðnÞ
i

aij
gij

ðxj � xðnÞj Þ þ ½AxðnÞ�i
� �

: (13)

3.B. Solution

Now, using the /L(x) in Eq. (13), the majorizer of the cost
function is:

min
x

/LðxÞ þ bUðxÞ; (14)

where /L(x) and U(x) are both differentiable, therefore, the
image can be updated iteratively using the Newton’s gradient
method as follows:8

xðnþ1Þ
j ¼ xðnÞj �

_/LðxðnÞj Þ þ b _Uðxj; �xjÞ
€/LðxjÞ þ b€Uðxj; �xðnÞj Þ

8j; (15)

where

_/LðxðnÞj Þ ¼
XNm

i¼1

aij
yi

�yðnÞi þ �ri
� 1

 !
�yðnÞi

( )
; (16)

€/LðxjÞ ¼
XNm

i¼1

aijvi
XNv

j0¼1

aij0

 !
; (17)

_Uðxj; �xjÞ ¼
X
k2Xj

wjkð�xjÞðxj � xkÞ; (18)

€Uðxj; �xjÞ ¼
X
k2Xj

wjkð�xjÞ: (19)

Here, �yðnÞi ¼ expð�bi
PNv

j¼1 aijx
ðnÞ
j Þ and

PNv
j0¼1 aij0 is the pro-

jection of image filled with ones. Because vi is the optimal
curvature in Eq. (9), €/LðxjÞ is precalculated. To guarantee the
convergence, �x should be fixed in the cost function. However,
it is difficult to compute �x in practice. Therefore, we consid-
ered two alternatives in this paper. One is to use a low-dose
FBP image to approximate �x and another one is to replace it
by the image estimated at previous iteration. If we use a low-
dose FBP image as �x, the reconstructed image can suffer from
noisy patterns in the low-dose FBP image. If we replace �x by
the estimated image at previous iteration, the cost function
will change at each iteration. However, in our empirical
observations, the reconstructed image will be less affected by
noise. In this paper, we chose the second alternative method
to empirically replace �x by x(n�1), as presented in algorithm
2, which can cause the convergence issue. This issue will be
further discussed in Section 6.

FIG. 4. Bias and standard deviation plot for TV, the conventional nonlocal
penalty, and the proposed method. The hyperparameters of (i) and (ii) were
used for TV and the proposed method for the image comparison throughout
our experiments.

TABLE I. Hyperparameter selection study for (a) TV and (b) proposed meth-
ods. STD denotes the standard deviation. The bias and standard deviation
using the regular dose FBP image as ground truth and the processed quarter
dose image were computed by various b, a and r. Here, a is the soft-thresh-
olding value as used in the literature.16 The bold hyperparameters in (i) and
(ii) were used for image quality comparison throughout our experiments, as
shown in Fig. 4. Unit of bias and standard deviation is 10�4 mm�1.

(a) b a Bias STD

(i) 0.02 0.0017 3.55 6.32

0.02 0.002 3.55 6.13

0.03 0.0014 3.58 5.91

(b) b r Bias STD

(ii) 0.01 0.037 3.47 6.22

0.02 0.037 3.52 6.12

0.03 0.031 3.55 6.10

0.04 0.031 3.57 6.00
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(a) (b) (c) (d)

(i) (ii)

(iii) (iiii)

(i) (ii)

(iii) (iiii)

(i) (ii)

(iii) (iiii)

(i) (ii)

(iii) (iiii)

FIG. 5. The reconstructed images of the ACR phantom using (a) regular dose FBP, (b) quarter dose FBP, (c) TV and (d) the proposed method. High-contrast res-
olution patterns from (i) to (iiii) in the same square (1.5 mm2) were compared. Window level was [-1000, 1300] HU and standard deviations in red circle were (a)
6.5, (b) 8.1, (c) 5.9, and (d) 6.1 HU.

(a) (b)

(c) (d)

FIG. 6. Patient of L096 with metastatic lesions. The reconstructed images using (a) regular dose FBP, (b) quarter dose FBP, (c) quarter dose TV, and (d) quarter
dose proposed method were compared. Intensity range is 40 � 200 HU. Metastatic lesions are pointed by red arrows.
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Algorithm 1 The proposed method

1: Initialize x(0) as a filtered back-projection image, z(0) = x(0), c = 0.5
and M0 = 8.

2: Precalculate D ¼ €/LðxÞ in Eq. (17).

3: for n = 0,1,. . . do

4: M = max(M0/2
n,1)

5: Reorganize subsets: [y0,. . .,ym,. . .,yM�1]

6: for m = 0,. . .,M�1 do

7: k = n9M+m

8: Calculate _Uðx; xkÞ and €Uðx; xkÞ
9: Calculate _/Lðxk ; ymÞ.
10: xðkþ1Þ ¼ ½zðkÞ � M _/LðxkÞþb _Uðx;xkÞ

Dþb€Uðx;xkÞ �þ
11: z(k+1) = [x(k+1)+c(x(k+1)�x(k))]+
12: end for

13: end for

3.C. Nesterov’s momentum and diminishing
ordered subsets

For additional acceleration, we applied the Nesterov’s
momentum25 that exploits the previous descent directions. A
momentum term can be z(n+1) = x(n+1)+c(x(n+1)�x(n)), where

c is the relaxation factor with a positive value less than 1.
Also, subset strategy5 has been widely used in image recon-
struction for acceleration; M subsets is considered to acceler-
ate the runtime M times approximately. By combining with
the momentum method and the ordered subset (OS) method,
the convergence speed of the proposed method O(1/(nM)2)
can be significantly accelerated compared to the convergence
speed of conventional SQS O(1/n).32

A small number of scanning views in a subset propagates
more noise to the image voxels due to less noise averaging,
and each subset has a slightly different noise level. To deal
with this issue, a diminishing number of subsets during itera-
tions is suggested. For early iterations, we use multiple sub-
sets and the details affected by noise are not severely
degraded with updates of typically low frequency compo-
nents. After several iterations, we gradually reduce the num-
ber of subsets and the optimization becomes a regular
algorithm with one subset to maintain the noise consistency.
To utilize the diminishing ordered subsets, the reorganized
number of subsets with equally spaced angular bins from the
measurement is required in each outer iteration. However, the
computational cost is almost zero because the physical mem-
ory of measurements does not change. The diminishing num-
ber of subsets can be defined in each iteration as M(n) = max

(a) (b)

(c) (d)

FIG. 7. Patient of L291 with metastatic lesions. The reconstructed images using (a) regular dose FBP, (b) quarter dose FBP, (c) quarter dose TV and (d) quarter
dose proposed method were compared. Intensity range is 40 � 200 HU. Metastatic lesions are pointed by red arrows.
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(M0/2
(n),1), where the M0 is the initial number of subsets.

More specifically, the proposed method can be summarized
in algorithm 1.

4. IMPLEMENTATION

4.A. Single Slice rebinning with flying focal spot

Iterative image reconstruction from spiral cone-beam pro-
jections with flying focal spot (FFS) is a challenging prob-
lem. In the iterative process, the efficient way to proceed is to
store the whole image and projections, because it is hard to
split the data in the spiral geometry. However, it is almost
impossible to store all temporary variables of the SQS and
penalty function in GPU memory. If we split the data into
several images, the redundant projections should be over-
lapped in the spiral geometry, which is also inefficient. Due
to the flying focal spot, additional memory is required for
geometrical factors for all projections, and forward and back-
ward projectors need to consider varying FFS, which is inef-
ficient for the GPU calculation.18,33 Therefore, we decided to
use the single slice rebinning based on the Noo et al.
method.27 The number of detector rows is very important for
the performance of single slice rebinning. Although the

single slice rebinning has a great advantage with respect to
the computational speed, the rebinning from cone-beam to
fan-beam is a major approximation that is typically not suit-
able for scans employing less than 16 detector rows or a small
slice thickness. Thus, the measurement using 64 detector
rows in this paper is acceptable for the single slice rebinning.
However, severe spiral artifacts caused by higher spiral
pitches (>1) can still remain after single slice rebinning. Flohr
et al.28 have demonstrated that use of the z-flying focal spot
can significantly reduce spiral artifacts up to pitches over 1.
Thus, the single slice rebinning with flying focal spot was
applied expecting less quality degradation.

The number of detector rows is very important for the per-
formance of single slice rebinning. Although the single slice
rebinning has a great advantage with respect to the computa-
tional speed, the rebinning from cone-beam to fan-beam is a
major approximation that is typically not suitable for scans
employing less than 16 detector rows or a small slice thick-
ness. In this paper, the measurement using 64 detector rows
is relatively acceptable for single slice rebinning. However,
severe spiral artifacts caused by higher spiral pitches (>1)
could remain after single slice rebinning. Flohr et al.28 have
demonstrated that the use of z-flying focal spot can signifi-
cantly reduce spiral artifacts up to pitches over 1. Thus, by

(a) (b)

(c) (d)

FIG. 8. Patient of L506 with metastatic lesions. The reconstructed images using (a) regular dose FBP, (b) quarter dose FBP, (c) quarter dose TV, and (d) quarter
dose proposed method were compared. Intensity range is 40 � 200 HU. Metastatic lesions are pointed by red arrows.
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applying the flying focal spot, the image quality after single
slice rebinning will have much less spiral artifacts.

As shown in Fig. 2, the anode plate has six flying focal
spots, which makes three shifts of h, z and q directions.
Because of the anode geometry, Dz and Dq move together. Dz
is one of crucial factors for the image improvement. Dq
changes the distances between source to isocenter (do) and
source to detector (dd). However, the effect of Dq is very small
due to Dq�do,dd. The slice fanbeam line, z

0
in Fig. 2(d), is

determined by the intersection of the conebeam line and

isocenter, which is orthogonal to the z-axis. Because the z
0
is

not an integer value, the linear interpolation along z-direction
is used for upper and lower z-slices of z

0
. The rebinned angular

range is [0, 2p) and the z position is measured by source posi-
tion or table position. If the spiral pitch is smaller than 1, one
slice has angular overlaps from different rows of the detector
during gantry rotations. Thus, the z-interpolation weight of
each slice is multiplied with an off-center factor
wv ¼ 1=ð1þ jv=ddjÞ2 to minimize the off-center artifact in
spiral geometry. If the spiral pitch is larger than 1, slices have

(a)

(b)

(c)

FIG. 9. Comparison of reconstructed images of patient (L143) using (a) regular dose FBP, (b) quarter dose TV, and (c) quarter dose proposed method. Axial,
coronal, and saggital views were compared. Intensity range is 40 � 200 HU. Yellow circle indicates the metastatic lesion.
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different missing angular regions. In this case, the missing
regions can be filled by z-directional linear interpolation. Note
that the pitch of datasets in this paper were less than 1.

4.B. Fast nonlocal weight calculation

In this paper, we developed the spatially encoded nonlocal
penalty whose implementation is almost the same as the con-
ventional nonlocal means. Note that the conventional nonlo-
cal penalty is the same as the proposed method without the
spatially encoded factor. One drawback of the proposed
method is the high computational cost of patch difference for
all patches. Based on the Darbon’s method,26 we reduced the
computational cost significantly using the accumulative sum-
mation approach, as shown in Fig. 3. For example, let’s select
two patches with center pixels of xi and xj within a neighbor
window. The patch difference is the summation of individual

pixel differences of two patches. Because two pixels of xi and
xj are included in Np patch groups at the center and bound-
aries, the value of (xi�xj)

2 should be calculated Np times if
the difference value is computed patch-by-patch, which is the
most time consuming process, particularly with large patch
size Np. To calculate the difference between patches with a
distance of (Dx,Dy) in Fig. 3(a), we first compute the differ-
ence of two images of Id(x,y) = (I(x,y)�I(x+Dx,y+Dy))2.
Then, we calculate the accumulative summation image,
Icðx; yÞ ¼ Pi¼x;j¼y

i¼1;j¼1 Idði; jÞ, as shown in Fig. 3(b). The differ-
ence between the two patches can be computed using
4-points, as shown in Fig. 3(c). Regardless of the patch size,
we can calculate the difference using only 4-points, and cal-
culate the difference for all patches simultaneously. To extend
to three-dimension, the three-dimensional accumulative sum-
mation and an 8-point calculation are used.

Algorithm 2 Spatially encoded nonlocal penalty

1: Bind a 3D image to the texture memory.

2: Assign a specific voxel coordinate for each thread.

3: for Dðx;y;zÞ 2 X do

4: Calculate the difference image Id = (I�I(D(x,y,z))
2.

5: Calculate the accumulative summation image.

6: Calculate the weight using 8-point execution.

7: Multiply the spatially encoded factor.

8: Calculate the weighted average value.

9: end for

10: Update the image

Algorithm 3 Forward and Backward Projectors

Ray-driven Projector

1: Bind a 3D image to the texture memory.

2: Assign a specific sinogram coordinate for each thread.

3: for each thread do

4: Calculate the coordinates of fan-beam rays.

5: Add the interpolated voxel values along the ray.

FIG. 10. Mean square errors of the reconstructed images using the proposed
method (i) without diminishing subsets and momentum, (ii) with diminishing
subsets and without momentum, and (iii) with diminishing subsets and
momentum.

(a) (b)

FIG. 11. Comparison of reconstructed images using (a) fixed �x as quarter dose FBP image and using (b) �x as x(n�1). n denotes the iteration number.
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Continued

Algorithm 3 Forward and Backward Projectors

6: Store the sum value.

7: end for

Voxel-driven Backprojector

1: Bind the sinogram to the texture memory.

2: State Assign a specific voxel coordinate for each thread.

3: for each thread do

4: Calculate all angular sinogram positions.

5: Add sinogram values and store the sum value.

6: end for

4.C. Reconstruction

Recently, significant acceleration has been demonstrated
for tomographic reconstruction using graphics processing units
(GPUs).33–37 By extending previous works, we implemented
the proposed method using GPU and CUDA. To efficiently
use memory and threads in a GPU kernel, three main functions
are separately parallelized: (a) spatially encoded nonlocal pen-
alty, (b) forward projector, and (c) back-projector.

In the implementation of spatially encoded nonlocal pen-
alty, a GPU thread corresponds to a single voxel, and the tex-
ture memory binding with the image is used for the fast
access, as described in algorithm 2. Because adjacent patches
do not have a memory conflict or overlap, this implementa-
tion is efficient and feasible.18

In the iterative reconstruction, the most time consuming
process is the image update, which contains forward projec-
tion and back-projection operators. In our implementation, a
ray-driven projector and a voxel-driven back-projector are
used in which a GPU thread corresponds to a ray and a voxel
for forward projection and back-projection, respectively. This
kind of unmatched projectors have been widely used in the
GPU-based iterative reconstruction.33,36,37 Detailed steps of
the ray-driven projector and the voxel-driven backprojector
are summarized in algorithm 3.

5. RESULTS

5.A. Dataset

For the validation of the proposed method, we used datasets
supported by Low Dose CT Grand Challenge.24 In 10 training
datasets, the regular dose projection data was acquired in Sie-
mens Definition Flash scanner, and the quarter dose projection
data was thoroughly synthesized. Datasets were acquired by
raw projection measurements into Dicom format and the scat-
ter counts were precorrected. In the geometry of scanner, the
distance between source to isocenter is 595 mm and source to
detector is 1085.6 mm. Dh moves [�0.38∘,0.19∘,0.38∘], Dq
moves [0,5.45] mm and Dz moves [0,�0.66] mm, performing
periodic motions on the anode plate. The detector size is
736 9 64 with a pixel resolution 1.2858 9 1.0947 mm. The
ray from the central position hits the detector channel with
1.125 pixel shift from the center. All geometrical parameters

were acquired from Dicom header using a special dictionary
file. Single slice rebinning produced the 2-D sinogram with
size 736 9 2304 with 1 mm interval z-slices. In most of the
cases, spiral pitches were between 0.6 and 0.8. In the iterative
reconstruction, an axial image interval of 1 mm was used.
After reconstruction, we averaged the resulting image along
z-direction to create 3 mm wide images with 2 mm interval to
satisfy Low Dose CT Grand Challenge submission criteria.
The regular dose FBP image was used as ground-truth. By
comparing the regular dose FBP and the quarter dose data pro-
cessed with the proposed method, the hyperparameters were
estimated. Also, we compared the proposed method with
l1-based 3-D total variation (TV) penalty 38 and the conven-
tional nonlocal penalty.

5.B. Hyperparameter selection

The hyperparameter selection is one of the most crucial
factors for the image quality attainable with the proposed
method. With the use of the regular dose image as ground
truth, a bias and standard deviation study was conducted to
find the best hyperparameters. For the bias and standard devi-
ation study, we selected one dataset (L291) because the L291
dataset had more lesions. We first fixed the initial image, as a
quarter dose FBP image using only the ramp filter, and 15
iterations (4 outer iterations starting with 8 subsets); because
the FBP initial image is already close to solution, the small
number of iterations was sufficient. Then, we could obtain
the reconstructed image with a fixed number of iterations. In
this paper, we empirically fixed s = 0.01, j = 3, Ωj = 9 9

9 9 9 and Np ¼ 5 � 5 � 5 to reduce the number of hyper-
parameters. Because the b and r were the most sensitive
parameters to the image quality, the b and r were estimated
by comparing the bias and standard deviation between the
regular dose FBP images and the processed quarter dose
images. In Fig. 4, we compared the proposed method with l1-
based total variation (TV) and the conventional nonlocal
penalties. In our observation, the TV showed lower bias and
the conventional nonlocal penalty showed lower standard
deviation. However, we observed that both the bias and stan-
dard deviation of the proposed method showed better perfor-
mance. Because the overall performance of TV was better
than that of the conventional nonlocal method, we compared
images with TV and the proposed method throughout the
paper, and the best hyperparameters of Fig. 4(i) and (ii) were
used for TV and proposed methods, respectively. The detailed
bias and standard deviation values are listed in Table I. All
methods showed that the performance significantly varied by
hyperparameters; therefore, the hyperparameter selection is
the most important step in practice.

5.C. Comparison of image quality

We first compared the reconstructed images using the
accreditation (ACR) CT phantom as shown in Fig. 5. The
reconstructed images using regular dose FBP, quarter dose
FBP, TV, and the proposed method were compared. Because
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the noise level of ACR phantom data was much smaller than
the noise level of patient datasets, the quarter dose FBP
image still showed reliable quality. Using the hyperparameters
of Fig. 4(i) and (ii), we also compared the reconstructed
image using TV and the proposed method. Different high-
contrast resolution patterns from (i) to (iiii) in the same
square (1.5 mm2) were compared. Window level was
[�1000, 1300] HU and standard deviations in red circle were
(a) 6.5, (b) 8.1, (c) 5.9 and (d) 6.1 HU in Fig. 5. With similar
background noise levels, the contrast of the proposed method
is visually clearer than the contrast of TV. We confirmed that
the proposed method can reduce the noise while preserving
the high-contrast regions.

We compared the reconstructed images of three patients
with metastatic lesions in Figs. 6–8. The reconstructed
images using regular dose FBP, quarter dose FBP, quarter
dose TV, and quarter dose proposed method were compared.
Here, the ramp filter was applied in the quarter dose FBP to
show the degradation of image quality. Intensity range was
40 � 200 HU and metastatic lesions are pointed by arrows
as shown in Figs. 6–8. The reconstructed images using TV
contained both blurred and still noisy regions compared to
the images using the proposed method. The results demon-
strated that the proposed method significantly reduced noise
while preserving contrast and diagnostic features.

In addition, the reconstructed images of TV and proposed
methods using patient data (L143) were compared with the
axial, coronal and saggital views as shown in Fig. 9, and the
same hyperparameters of Fig. 4(i) and (ii) were used. Inten-
sity range was 40 � 200 HU and yellow circle indicated a
metastatic lesion. Metastatic lesions of TV and the proposed

method in axial views were both recognizable with slightly
different contrasts. However, in coronal views, some parts of
the reconstructed images using TV were still noisier than the
image using the proposed method (see arrows in Fig. 9). In
the Low Dose CT Grand Challenge, we submitted recon-
structed images for test datasets of 20 patients using the same
hyperparameters, and the image quality was evaluated by
radiologists at the Mayo clinic.

We applied the Nesterov’s momentum and the diminishing
number of subsets for further improvement. For the valida-
tion, we calculated the mean square errors of the recon-
structed images using the proposed method (a) without
diminishing subsets and momentum, (b) with diminishing
subsets and without momentum, and (c) with diminishing
subsets and momentum as shown in Fig. 10. The effect of the
diminishing number of subsets was small, however, the pro-
posed method using the momentum method converged faster,
which can be useful when we fix the small number of itera-
tions, as was done in this paper. Note that our results were
not converged image due to the fixed number of iterations
and the momentum. Thus, to obtain best images, the pro-
posed method can have many solutions affected by not only
hyperparameters but also initial settings such as initial image
and the numbers of subsets and iterations.

5.D. Execution time

We used Nvidia’s Titan GPU and CUDA in Matlab. Main
functions, such as forward, backward projectors, and the spa-
tially encoded nonlocal penalty, were implemented in Mex
function of Matlab with CUDA. In geometry of the sinogram

(a) (b)

(c) (d)

(i) (ii)

(i) (ii) (i) (ii)

(i) (ii)

FIG. 12. Unclear lesions of (a) metastasis (L096), (b) focal fat/ focal fatty sparing (L291), (c) perfusion defect (L096), and (d) metastasis (L506). The recon-
structed images using (i) regular dose FBP and (ii) quarter dose proposed method were compared. Yellow circles in (i) showed the lesions. Intensity range is
40 � 200 HU.
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with 736 9 2203 9 128 (radial, azimuthal, and axial) and
the image 512 9 512 9 128 (x,y,z), the projection, back-pro-
jection, and penalty functions took less than 5, 3, and 11 s,
respectively, which are more than 100 times faster than CPU-
based implementations. Execution time is proportional to the
number of slices and the number of iterations. As we men-
tioned before, slice rebinning with 1 mm was used for recon-
struction, and the axial 3 mm average with 2 mm interval
was applied for the submission. In test datasets, the number

of average slices rebinning with 1 mm were 210 and 15 itera-
tions were used, which took about total 8 min.

6. DISCUSSION

Theoretically, a true �x in Uðx; �xÞ is crucial to guarantee the
convergence. Practically, we replaced �x by x(n�1) in iteration,
which leads to a varying cost function and a nonguaranteed
convergence. Intuitively, if the sequence of x(n�1) can

(a)

(b)

(c)

FIG. 13. Comparison of reconstructed images of patient data (L096) using (a) regular dose FBP, (b) quarter dose FBP, and (c) quarter dose proposed method.
The circle in axial view indicates metastasis lesions and arrows indicate the metallic object (pacemaker). Intensity range is 40 � 200 HU.
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converge to �x in iteration under certain conditions, then the
optimization can eventually converge. However, there is no
guarantee that the converging point is independent of the ini-
tial condition. Thus, in our algorithm, an initial image close
to the optimal solution is important. In this paper, we set the
initial image as quarter dose FBP image. In addition, we com-
pared the image quality of two alternatives of �x discussed in
Section 3.B, as demonstrated in Fig. 11. The reconstructed
image using quarter dose FBP image as fixed �x in Fig. 11(a)
was noisy, which could potentially lead to misdiagnosis. We
confirmed that the reconstructed image using the x(n�1) as �x
in Fig. 11(b) was considerably less noisy.

Although we have reduced the noise significantly, we still
need to improve the image quality for diagnosis. In Fig. 12,
we showed several unclear lesions of metastasis, such as focal
fat/ focal fatty sparing and perfusion defect. We observed
lesions very carefully with changing hyperparameters, how-
ever, we could not clearly identify some lesions using the pro-
posed method. Also, the number of datasets in this paper was
limited, thus, further evaluation is required with sufficient
number of datasets.

In Fig. 13, we introduce one patient (L096) who has a
pacemaker in the heart region. We observed the streaking
artifacts due to the metal object containing the main device
and wires. We compared FBP images of regular dose and
quarter dose, and the reconstructed image using the pro-
posed method. Although the proposed method can remove
noise significantly, streaking artifacts were not removed in
our iterative reconstruction. In our future works, it is
required to develop a new method not only providing
clearer lesion features but also correcting beam-hardening
and metal artifacts for further image improvement using
clinical lower dose data.

7. CONCLUSION

In this paper, we proposed an empirical iterative CT
reconstruction method using spatially encoded nonlocal
penalty and ordered subsets separable quadratic surrogates
(OS-SQS) with Nesterov’s momentum and diminishing
number of subsets. We selected the best hyperparameters
by conducting a bias and standard deviation study using
regular dose image as ground truth. We compared the
reconstructed images using regular dose FBP, quarter
dose FBP, quarter dose 3-D TV, and quarter dose pro-
posed method. The results of ACR CT phantom and
patient datasets demonstrated that the proposed method
with fine-tuned hyperparameters significantly improved
the image quality at quarter dose. Furthermore, the single
slice rebinning using 64 multislice detector with flying
focal spot was used for the computational efficiency and
GPU implementation significantly reduced execution time,
which make the proposed method clinically practical. The
performance of the proposed method should be further
improved for small lesions, and more thorough evaluation
using sufficient clinical data is required in the future
work.
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