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Abstract

With the first direct detection of gravitational waves, the advanced laser interferometer 

gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an 

alternative means of sensing the universe. The extreme sensitivity required to make such 

detections is achieved through exquisite isolation of all sensitive components of LIGO from non-

gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental 

and environmental sources of noise that contaminate the data. Of particular concern are noise 

features known as glitches, which are transient and non-Gaussian in their nature, and occur at a 

high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. 

Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies 

appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, 

a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave 

detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for 

members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper 
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we describe an innovative project that combines crowdsourcing with machine learning to aid in the 

challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the 

Zooniverse platform, we engage and recruit volunteers from the public to categorize images of 

time-frequency representations of glitches into pre-identified morphological classes and to 

discover new classes that appear as the detectors evolve. In addition, machine learning algorithms 

are used to categorize images after being trained on human-classified examples of the 

morphological classes. Leveraging the strengths of both classification methods, we create a 

combined method with the aim of improving the efficiency and accuracy of each individual 

classifier. The resulting classification and characterization should help LIGO scientists to identify 

causes of glitches and subsequently eliminate them from the data or the detector entirely, thereby 

improving the rate and accuracy of gravitational-wave observations. We demonstrate these 

methods using a small subset of data from LIGO’s first observing run.
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1. Introduction

Following a major upgrade, advanced LIGO completed its first observing run (O1), which 

spanned from September 12, 2015 through January 19, 2016 [1]. During this run, the LIGO 

detectors made the first direct detection of gravitational waves and the first observations of 

binary black hole coalescences [2–4]. With these detections, LIGO has initiated a new field 

of astronomy by providing an alternative means of sensing the universe. Over the coming 

years, the increased sensitivity of the LIGO detectors and additional interferometers joining 

the network of gravitational-wave observatories [5–7] will further increase sensitivity to the 

gravitational universe.

In order to detect gravitational waves, LIGO requires sensitivity to length fluctuations a 

thousandth the diameter of a proton in the 4 km detector arms. In future observing runs this 

sensitivity will further increase; at design sensitivity LIGO aims to have the ability of 

detecting neutron star–neutron star mergers up to a distance of 200 Mpc [8]. This high 

sensitivity is achieved through exquisite isolation of the lasers, mirrors, and all sensitive 

components of LIGO from non-gravitational-wave disturbances [9, 10]. However, LIGO 

detectors are still susceptible to non-cosmic disturbances that cause noticeable signals in the 

detectors. The effort to identify, characterize, and separate sources of noise from cosmic 

signals is paramount in achieving LIGO sensitivity goals [11].

Of particular concern are transient, non-Gaussian noise features known as glitches. Glitches 

are instrumental or environmental in nature (caused by e.g. small ground motions, ringing of 

the test-mass suspension system at resonant frequencies, or fluctuations in the laser) and 

come in a wide variety of time-frequency-amplitude morphologies. These artifacts can 

produce false-positive results in gravitational-wave searches, reduce the significance of 

candidate gravitational-wave signals, corrupt data, bias astrophysical parameter estimation, 

and reduce the amount of analyzable data. The sensitivity of searches for unmodeled 
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gravitational waves are especially limited by the high rate of glitches in LIGO [11, 12]. In 

the 51.5 d of O1 alone, approximately 106 glitches over a minimum signal-to-noise ratio 

(SNR) threshold of 6 were recorded. To maximize the gravitational-wave detection rate, the 

causes of glitches must be identified and fixed within the detectors (in the best case) or 

glitches must be removed from the data set. Identifying how many different glitches have a 

similar morphology is an important first step to this, allowing prioritizing by number and 

characteristics. Therefore, it is necessary to develop robust methods to identify and 

characterize glitches.

Teaching computers to identify and morphologically classify glitches in detector data is a 

challenge. Only a small number of glitch classes have been understood to the level where 

they could be removed from the data with confidence. Attempts to use machine learning 

algorithms have shown promise in glitch classification endeavors [13–17], however these 

techniques do not yet capture the full range of glitch morphologies present in LIGO data. 

Though human ability to recognize patterns is a proven tool for such diverse classification 

endeavors, though the high volume of data that LIGO streams would easily overwhelm any 

small group of scientists.

To address this challenge, we have developed Gravity Spy—an interdisciplinary project that 

will leverage the strengths of both humans and computers to create a superior classifier of 

glitches in LIGO data. Gravity Spy addresses this task through the convergence of four 

science areas: gravitational physics, human-centered computing, machine learning, and 

citizen science. Specifically, the goal of the project is to leverage the advantages of citizen 

science along with those of machine- and human-learning techniques to design a socio-

computational system with which to analyze and characterize LIGO glitches and improve 

the effectiveness of gravitational-wave searches. Gravity Spy also complements current 

glitch classification techniques, as it scales with an increasing number of unique glitch 

classes and continually bolsters labeled sets of pre-existing classes. Furthermore, the human 

classification aspect of the project acts to readily identify new categories of glitches that 

arise as the detectors evolve.

The Gravity Spy project couples human classification with machine learning models in a 

symbiotic relationship: volunteers provide large, labeled sets of known glitches to train 

machine learning algorithms and identify new glitch categories, while machine learning 

algorithms ‘learn’ from the volunteer classifications, rapidly classify the entire dataset of 

glitches, and guides how information is provided back to participants. The Gravity Spy 

project includes research on the human-centered computing aspects of this socio-

computational system, as empirical testing of the human-computer interface leads to better 

project design and an enhanced performance of citizen science volunteers. Gravity Spy is 

implemented through Zooniverse.org, the leading online platform for citizen science, which 

has fielded a workable crowdsourcing model. Currently, over 1.5 million ‘citizen scientists’ 

work to provide analyses of scientific data on more than 40 projects [18]. A beta version of 

Gravity Spy has already resulted in the identification of new glitch morphological classes, 

and shows promise for helping to improve LIGO data quality during upcoming observing 

runs.
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In this paper, we summarize the impact of glitches on LIGO data analysis and current efforts 

to mitigate their effects (section 2). We then discuss the Gravity Spy project in full (section 

3), highlighting in particular data preparation for the project (3.1), the citizen science 

interface (3.2), machine learning algorithms used for image classification and crowdsourcing 

classifiers (3.3), and social science experiments for the socio-computational system (3.4). 

Next we discuss preliminary results of the project using data from the first LIGO observing 

run (section 4). Lastly, we comment on future prospects for the Gravity Spy project and its 

role in LIGO detector characterization (section 5).

2. Characterization of transient noise in LIGO

2.1. Impact of glitches on gravitational-wave data analysis

Searches for transient gravitational-wave signals, especially those that are short duration, in 

LIGO’s sensitive frequency band, and/or poorly modeled [11], are highly susceptible to 

glitches in the data. One method for mitigating the impact of glitches is the requirement of 

coincidence between the LIGO observatories, which are located in Hanford, Washington and 

Livingston, Louisiana. Gravitational waves would appear in both detectors separated in time 

by less than or equal to the light travel time between the observatories. If a signal appears in 

only one observatory during this time window, it is rejected. Furthermore, most searches for 

generic transient events require some kind of signal consistency (e.g. coherence) to limit the 

impact of glitches on search pipelines. Despite these requirements, glitches occur at a high 

enough rate and with common enough morphology that accidental coincidence and 

coherence between the two detectors is non-negligible.

Glitches impact LIGO data analysis efforts in three critical ways. First, they increase the 

loudness of the background in gravitational-wave searches, which reduces the significance 

of candidate events. Even searches that utilize signal models to create discriminating signal 

statistics (e.g. compact binary coalescence searches [19, 20]) are afflicted by glitch 

occurrences. Second, glitches impact the recovery of astrophysical parameters from a 

gravitational wave source [4, 21, 22], since glitches that occur near the same time as a 

gravitational-wave signal reduce the SNR of the event and lead to broader uncertainties in 

parameter estimation. Finally, glitches reduce the amount of usable data. While data ‘vetoes’ 

can be constructed for times when glitches are known to occur, they eliminate the data 

available to be searched for astrophysical signals. Therefore, identifying the cause of 

glitches and eliminating the source of the glitch is much preferred to constructing such 

vetoes. The negative effects of glitches on data analysis make the identification and 

mitigation of glitches an essential part of the LIGO science effort.

2.2. Identifying glitches

Several categories of glitches have been identified by the LIGO Scientific Collaboration 

(LSC), grouped by common origin and/or similar morphological characteristics [15–17]. 

Some of these categories have known causes, while others have causes yet to be identified. 

For example, two common morphological classes of glitches are shown in figure 1. Blip 

glitches figure 1(a) are caused by unknown processes, whereas whistle glitches figure 1(b) 
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are caused by radio signals at megahertz frequencies that beat with voltage controlled 

oscillators in the interferometer control system [23].

Techniques have been developed to identify and categorize some categories of glitches 

automatically. Identification algorithms search for excess power in the time-frequency space 

of LIGO strain data and in hundreds of auxiliary channels, which are insensitive to 

gravitational waves and monitor the many instrumental and environmental factors potentially 

affecting the detectors. In addition to identifying a glitch, these algorithms parameterize 

glitches according to their time, frequency, SNR, and duration, among other parameters [24, 

25]. Current approaches also search for statistical correlation between glitches in the 

gravitational-wave strain data channel and triggers in auxiliary channels [26–29]. However, 

due to the sheer volume of data, the LSC has not yet been able to filter through the millions 

of glitches to create a comprehensive categorization.

2.3. Mitigating glitches

Having identified a glitch, the goal is to eliminate it from the detector. If the root cause of a 

glitch cannot be determined or its source cannot be fixed, information from glitch 

identification algorithms can be used to create data vetoes. Such vetoes improve 

gravitational-wave searches by removing times strongly affected by noise transients.

Even these efforts, however, suffer from problems stemming from the very large number of 

glitches and their variety of morphologies. First, automated glitch classification algorithms 

have been unable to capture the varied morphological characteristics of all unique classes of 

glitches. In addition, certain types of glitches come and go over the course of an observing 

run, making their discovery challenging even for members of the LIGO science team. 

Finally, the software which implements data quality vetoes would benefit from being fed 

information from specific categories of glitches instead of entire batches of glitches. This 

specificity would improve the ability to identify potential auxiliary channels that correlate 

with certain glitch morphologies, which in turn would contribute to identifying their source.

3. Gravity Spy project

The data challenges faced by LIGO are not unique. The increasingly large datasets that 

permeate every realm of modern science require new and innovative techniques for analysis 

[30]. In astronomy, individual researchers have traditionally analyzed images of 

astronomical objects themselves; however, the digital surveys of today image hundreds of 

millions of objects, making the previous paradigm impractical. The acceleration in data 

acquisition has not been matched by an increase in human capacity to turn data into 

knowledge.

Crowdsourcing data to volunteer citizen scientists offers one solution to this problem. Early 

efforts, such as NASA’s Clickworkers, demonstrated the utility of crowdsourcing data to 

volunteers and the innate desire that the public has to contribute to scientific research [31]. 

Another early astronomical project, StardustHome [32], led to the development of a general 

set of tools for citizen science projects known as BOSSA (now pyBOSSA10). The highly 

successful Galaxy Zoo (e.g. [33, 34]) and Zooniverse projects (e.g. [35–38]) have 
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demonstrated that it is possible to recruit hundreds of thousands of volunteers to make an 

authentic contribution to data analysis. To date, Zooniverse users have contributed to more 

than 100 peer-reviewed publications across a broad range of scientific disciplines.

Glitch classification and characterization in LIGO currently utilizes human inspection, and 

therefore fits naturally into a citizen science framework. However, as scientific endeavors 

such as LIGO and future astronomical sky surveys become more data intensive, new 

methodologies must be explored for utilizing citizen scientists in data analysis. The large 

synoptic survey telescope (LSST), for example, will image tens of billions of galaxies [39], 

which is orders of magnitude more data than even the most successful citizen science 

projects can analyze. Supervised machine learning has proven to be a useful tool in projects 

which require a systematic analysis of substantial datasets such as these. However, these 

algorithms require a large, labeled dataset for training and struggle to identify new 

morphological categories as they appear.

The data challenges faced in astronomy and other sciences today require a new generation of 

intelligent citizen science projects that are smarter about allocating tasks and more 

sophisticated in combining human and machine classification. This provides a two-way path 

to developing better machine learning algorithms and, for the first time with Gravity Spy, 

better human classifiers as well. Gravity Spy facilitates a symbiotic relationship between 

humans and computers, leveraging human pattern recognition skills as a tool for image 

recognition and machine learning as a tool for systematic analysis of large datasets. Citizen 

scientists analyze glitches from the LIGO data stream via human classification interfaces 

known as workflows, providing labeled morphological classes as training data for machine 

learning algorithms. Trained machine learning algorithms classify the LIGO glitches data in 

full, determining confidence scores in each classification and feeding the most questionable 

glitches back to the citizen scientists for further analysis.

A further innovation is that machine-analyzed glitches will guide training of new volunteers. 

As part of the Gravity Spy system, images whose morphology is agreed upon by experts, 

known as ‘gold standard’ images, are integrated into the user workflows. Individual user 

performance is analyzed by comparing that user’s classifications with such gold standard 

images. This form of user analysis expedites the retirement of glitches and the growth of 

machine learning training sets (see section 3.3.2 for more details). Figure 2 shows the 

interconnected components of the Gravity Spy project, and the movement of glitches 

through the project.

Developing the next generation of citizen science projects requires significant advances in 

our understanding of human-centered computing. Studies of such projects have begun to 

answer important human-centered computing design questions [40], such as what kinds of 

tasks can non-experts perform reliably? What factors motivate participants? How do 

participants learn to perform the task or learn about the underlying science? Gravity Spy 

provides a platform to explore these questions more systematically, asking participants not 

only to apply existing scientific knowledge, but also to generate new knowledge (in this 

10www.pybossa.com
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case, new categories of glitches). This setting allows the exploration of additional questions, 

such as how to support not just individual citizen scientists but teams working together, and 

what organizational structures are most appropriate?

Finally, Gravity Spy addresses the pressing need to understand the development of socio-

computational systems that merge the distinctive strengths of computers (i.e. the ability to 

process large amounts of data systematically) and the humans (i.e. the ability to see patterns 

and spot discrepancies) [41–44]. Knowledge of how to use human-coded data to improve 

machine learning (e.g. by applying an active learning approach) is fairly well developed, 

though there are still opportunities to study the human-interface aspects of the process. In 

contrast, we still know little about how to use machine-analyzed data to improve human 

performance and thus how we best leverage human learning and machine learning in a joint 

effort.

3.1. Data preparation

Data preparation for the Gravity Spy project (i.e. the link from LIGO to the rest of the 

project in figure 2) presented three critical challenges:

1. Given that during O1 alone there were more than 106 glitch triggers identified by 

the Omicron transient search algorithm [24, 25], it is crucial to determine which 

glitches were best fit for volunteer classification and most useful for LIGO 

detector characterization and data analysis

2. Deciding the proper presentation of the morphologically-diverse zoo of glitches 

to both volunteers and machine learning algorithms

3. Since there is no complete catalog of glitch categories that appeared during O1, 

the preparation of a training set needed to develop organically from various 

sources associated with the project

3.1.1. Data selection—In order to tackle the first challenge, we only use glitches that 

satisfied the following criteria. First, the glitch occurs while the detector is in lock and in 

observing mode, meaning the state of the detector was adequate enough to be searching for 

gravitational waves and ready for data analysis. For O1 glitches, we also neglected times that 

were flagged for poor data quality, though depending on the latency at which such flags are 

raised in future observing runs this cut may not be applied when feeding data into the 

system. The data quality flags implemented remove data that should not be analyzed due to a 

critical issue with a key detector component not operating in its nominal configuration 

(category 1) and times when a noise source with known physical coupling to the main 

gravitational-wave channel is occurring (category 2) [11]. Second, we neglect glitches where 

the SNR reported by the Omicron search pipeline is below 7.5, as glitches below this 

threshold prove to be exceedingly difficult to classify by eye. Third, the peak frequency of 

the glitch falls between 10 Hz and 2048 Hz. These choices are motivated by our goal to 

analyze and understand glitches that have the largest impact on the gravitational-wave 

searches: low-SNR glitches are less detrimental to searches, and this frequency range aligns 

well with LIGO’s most sensitive frequency band and the frequency range expected for 

compact binary coalescence gravitational-wave events. In addition, as the Gravity Spy 
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pipeline was first run after the conclusion of O1, we had the benefit of being able to apply 

the same data quality vetoes [11, 26] to the data as were applied during astrophysical 

searches. Again, this was in order to analyze the glitches that have the largest impact on 

gravitational-wave searches.

The gravitational-wave events GW150914 [2] and GW151226 [3] and gravitational-wave 

trigger LVT151012 [4] are not included in the Gravity Spy dataset. Hardware injections [45] 

are included, and constitute most of the subjects in the ‘Chirp’ glitch class. However, in 

future observing runs potential gravitational-wave signals will not necessarily be redacted, 

as new images will be added to the project before the results of gravitational-wave searches 

are available. To ensure astrophysical claims cannot be made by non-LSC users, GPS times 

are replaced by a random, unique ID for each image in the Gravity Spy system. Therefore, 

potential astrophysical signals will be indistinguishable from hardware injections in the 

detectors, and users will have no knowledge of when a particular trigger was recorded.

3.1.2. Omega scans—We met the second challenge by representing these glitches with 

Omega Scans [46]. Omega scans originated as a pipeline for the detection of gravitational 

wave transients, and are similar to spectrograms in that they represent glitches in time-

frequency-energy space. They are also excellent at visualizing glitches that may cause 

problems in gravitational-wave searches. Omega scans represent a generic signal as a 

combination of sine-Gaussians. The main utility of Omega Scans is an unmodeled SNR 

calculation with the template for a signal defined by its ‘Q’ value, where Q is the quality 

factor of a sine-Gaussian waveform. In practice, this template signal consists of a time-

frequency tiling. Like all template searches, an omega scan searches over a range of Q 
templates (i.e. time-frequency tilings) and identifies the template that gives the loudest SNR 

value. After identifying the Q template that provides the loudest value, the most significant 

tile for that Q template is identified and a spectrogram is generated. The color scale of the 

image is the normalized energy, which is directly related to the SNR of a tile and defined as 

the square of a given tile’s Q transform magnitude divided by the mean squared magnitude 

in the presence of stationary white noise:

Z = |X|2

〈|X|2〉
(1)

where Z is the normalized energy and |X| is the Q transform magnitude of a tile [46].

As shown in figure 1, each image has the glitch fixed at the center of the omega scan, and 

each glitch is visualized using four different time windows (±0.25, 0.5, 1.0, and 2.0 s) to 

accommodate the varied durations that different glitch morphologies persist. Human 

volunteers and machine learning algorithms are presented all four time durations of each 

glitch for classification purposes.

3.1.3. Training set—The final challenge was the construction of a large and accurately-

labeled set of LIGO glitches. The generation of such training sets is one of the most difficult 

components of supervised machine learning, and necessary to properly train classification 
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algorithms. The past attempts to compile glitches into morphological classes using computer 

algorithms (e.g. [13–17]) often rely solely on raw data or metadata from search pipelines 

rather than by-eye classification. In addition, new glitch morphologies that appeared during 

the first observing run of LIGO were not analyzed nor categorized to the level of pre-

existing glitches.

A training set of glitches from O1 was generated for the Gravity Spy project by observing 

large quantities of Omega Scans and categorizing the images by morphology, with the aid of 

simple machine learning algorithms. First, consultation with LIGO detector characterization 

experts helped identify a few prominent and documented classes of glitches. Omega scans of 

all LIGO Omicron triggers within the frequency and SNR cuts specified above were 

generated, which reduced the dataset to about 105 glitches for the entirety of O1. We 

proceeded by classifying glitches from this set into preexisting categories based on the 

morphology of the glitch in its omega scan, and new categories of glitches were identified 

and accumulated in the process. Due to the similar morphological characteristics of many 

glitch classes, this process took multiple iterations to assure reliability in the class 

differentiation. Nonetheless, this tactic only accumulated ~100 glitches per class.

This small set of human-identified glitches was used to train preliminary machine learning 

algorithms to classify the remainder of the glitch dataset. Though such algorithms only 

achieved classification accuracy of ~80% – 90%, they were useful in differentiating the 

unlabeled dataset into morphologically-similar classes, thus fostering an easier by-eye 

classification process. As will be described in section 4.2, during the beta-testing of the 

project, two new classes were also identified and characterized by Gravity Spy volunteers. 

Additional training data for these new classes was identified using the same methods 

described above.

In total, a labeled training set of 7718 glitches was built from both the Livingston and 

Hanford detectors for the preliminary machine learning analyses presented in this paper. 

These glitches are grouped into 20 classes, with exact proportions shown in Table 1. Given 

that each glitch is imaged at a maximum duration of 4 s, this amounts to 8.58 h (0.7%) of O1 

data [4].

3.2. Citizen science

Once the Omega Scans of glitches are in the system, they are classified by Gravity Spy 

volunteers, who populate the human-classification unit of the system.

3.2.1. User interface—The user interface for Gravity Spy was created using the 

Zooniverse DIY project builder11, which enables anyone to build their own Zooniverse 

citizen science project for free through a set of easy-to-use, browser-based tools. The 

Gravity Spy classification interface containing the currently-known 20 glitch classes as 

options is shown in figure 3. Example images of each glitch morphology can be found on 

the Gravity Spy website12. Through this interface, volunteers are shown individual Omega 

11www.Zooniverse.org/lab
12www.gravityspy.org
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Scans of glitches to classify into one of the categories. Volunteers have the ability to cycle 

through multiple renderings of a given glitch over differing time durations, enabling a 

volunteer to visualize both long-duration and short-duration glitches. After classifying a 

glitch, the volunteer has the option of moving on to further classifications, or posting the 

glitch to ‘Talk’, which is the Zooniverse discussion forum that provides a basis for 

interaction between Zooniverse volunteers and Gravity Spy project scientists.

Clicking on any glitch morphology option provides basic written information about that 

class to the volunteer along with multiple example images belonging to that glitch class. In 

addition, this dialog contains images of glitch morphologies that are often confused with that 

class, providing a simple means of changing classification choice to similar glitches if the 

volunteer misidentified the image initially. Alternatively, users can narrow down glitch 

options by filtering based on how long the glitch persists (duration), the characteristic 

frequency of the glitch (frequency), and whether the glitch is evolving in time (evolving). 

Further information regarding each glitch class can be found in the field guide (visible on 

the right side of figure 3).

If a glitch does not fit into any of the predefined categories, a user can classify it as ‘None of 

the Above’. In doing so, a volunteer is asked follow-up questions describing the morphology 

of the glitch (i.e. information about its duration, frequency, and time evolution). By this 

process and through user activity on Talk, new classes of glitches can be identified and 

integrated into the Gravity Spy project. This allows the Gravity Spy glitches classes to 

evolve and follow changes in the glitch types that occur in the LIGO detectors.

3.2.2. Volunteer training—A key question in citizen science is how reliably volunteers 

perform the classification task, known as results quality. Zooniverse approach to citizen 

science directly addresses this question and has led to an established track record of 

producing quality data for use by the wider scientific community and publications across the 

disciplines. By embedding training within the interface and creating consensus results based 

on numerous classifications for each image, Zooniverse projects help to make a disparate 

crowd of volunteers produce reliable results [18].

As with other Zooniverse projects, Gravity Spy begins with a brief tutorial, explaining the 

project’s goals, how to interpret the spectograms, and how to use the classification interface. 

The field guide and additional content pages describe properties of each glitch class and the 

LIGO project in more detail.

Research on learning suggests that an effective way to train humans to perform image 

classification tasks is to provide them with exemplary images from which to learn [47, 48]. 

Accordingly, as in other citizen science projects, the Gravity Spy classification interface 

shows the volunteers example images of all the glitch classes to guide the choice.

An advance over the current state of the art citizen science project is that Gravity Spy uses 

machine learning results to train the human volunteers more systematically. Specifically, the 

system moves new volunteers through a sequence of levels in which they are presented with 

an increasing number glitches classes and sophistication of features within the classification 
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interface, intended to improve their ability to classify glitches [49]. Essentially, the system is 

‘tutoring’ volunteers, but rather than simply taking images from a predefined set of training 

materials, it identifies novel images in need of classification that should still help beginners 

to learn.

Upon joining a project, a volunteer is presented glitches that have been classified by the 

machine learning models as likely belonging to only one of two very distinctive classes. For 

each glitch, volunteers are asked to annotate it as being an instance of one of the two classes 

or ‘None of the Above’ (a reduced version of the interface shown in figure 4). These 

exemplary images help the volunteer to learn how to identify this subset of glitch classes. 

Once volunteers are reliably classifying these two initial classes, additional classes are 

introduced.

In the current implementation, volunteers also classify gold standard images, which in 

practice are a subset of the full machine learning training set. After classifying a gold 

standard image, the volunteer immediately receives feedback as to whether their 

classification agrees with the expert classification. Initially, 40% of images presented to 

beginning volunteers are gold standard, and this frequency dynamically decreases as a 

volunteer classifies gold standard images correctly.

As volunteers progress through the training regimen, they are presented with more classes 

that the machine learning model has classified with high confidence. The classifications 

during this training period contribute to the project by verifying the high-confident, yet 

imperfect, machine learning results. In addition to training the volunteers in recognizing 

members of more glitch classes, the levels are expected to motivate users by appealing to 

their sense of accomplishment.

Once the user has completed multiple rounds of training on a subset of glitch classes with 

high machine learning confidence scores, they are considered fully qualified and will be 

given glitches to classify at varying levels of machine learning confidence in all known 

classes or even glitches for which the machine learning has no good classification, thus 

further contributing to the identification of new glitch categories. Since the system tracks 

each volunteer reliability, it can also assign tasks based on the capabilities of each volunteer.

3.2.3. Workflows—Glitches are first sent through the machine learning classifier, which is 

trained on a set of images pre-classified by experts (see section 3.1.3) and images retired 

from the project. Based on the machine learning confidence of the classification of each 

image, it is routed either to beginning, intermediate, or advanced workflows, as illustrated in 

figure 5.

Similarly, based on their expertise and reliability level as determined by their performance in 

classifying (described in section 3.3.2), volunteers are divided into three levels that 

correspond to the beginning, intermediate, and advanced workflows. Through the Gravity 

Spy interface, LIGO detector characterization experts will be fed glitches for which the most 

advanced users cannot reach a consensus. Each volunteer starts at the simplest level and can 

be promoted to higher levels based on their performance.
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As images are classified, the models of both the image and the volunteer are updated. The 

destination of a glitch (whether it stays in its current workflow, moves to a more difficult 

workflow, or is retired) is determined by a combination of machine learning and user 

confidence posteriors. If an image achieves high enough confidence in its classifications, it 

will be retired and added to the training set to further improve the performance of the 

machine learning classifer.

The system is built to optimize the retirement of images. Most citizen science projects rely 

solely on number of classifications as a gauge for retirement (e.g. any image that has 20 

classifications is retired from the project). However, this methodology presents multiple 

problems. Images can be retired even when there is strong disagreement on the correct class. 

Furthermore, many classifications are essentially wasted on easy images, which may only 

require a few identical classifications for accurate retirement, whereas difficult images that 

require deeper analysis may not receive enough classifications. By relying on the 

combination of machine learning and user classification, and weighting user classifications 

differently based on their prior performance, the Gravity Spy project aims to ameliorate such 

issues.

3.3. Machine learning

The following section describes the application of machine learning to the problem of 

classifying images in the Gravity Spy system and how the classifications contributed by 

volunteers are used to update models of both machine learning image classification and 

volunteer capabilities.

3.3.1. Image classifier—Deep learning is a branch of machine learning which utilizes 

algorithms that attempt to model high level abstractions in data by using multiple processing 

layers, composed of multiple linear and non-linear transformations. The Gravity Spy system 

uses a deep model with convolutional neural network (CNN) layers, which has shown great 

performance and is considered the state-of-the-art in image classification [50].

Another reason for exploiting deep learning is its scalability; compared to traditional 

machine learning methods such as support vector machines (SVMs), deep learning can 

handle and take advantage of copious amounts of data. Figure 6 illustrates the machine 

learning process used.

Many studies (e.g. [51, 52]) have shown that using multiple sources of information can 

improve the overall performance of classification. In this project, the multiple glitch 

durations that are also shown to Zooniverse volunteers are utilized. These durations are 

merged into a square form so that kernels can slide over all different durations and learn the 

glitch patterns. Two convolution layers are utilized first. The kernels slide over the input 

matrix, multiplying their corresponding weights to the input matrix and outputting a new 

matrix. The output of each kernel is known as a feature map.

Feature maps are usually subsampled using a max (or mean) operation. Here, max-pooling is 

used for down sampling—a square matrix slides over the feature map and gives the 

maximum value among the elements inside it. A layer of activation functions is used to 
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determine the output of a given neuron. The Gravity Spy model uses a popular activation 

function known as rectified linear unit (ReLU) which is defined as max(0, x). Then, a fully 

connected layer is applied. Each node in the fully connected layer is connected to all nodes 

of the previous layer. The final layer is a softmax layer with 20 outputs. Softmax is a fully 

connected layer with the same number of nodes as the number of classes, and is widely used 

as the final layer in multi-class classification tasks. The output of the softmax layer, when 

image ‘i’ is given as the input to the classifier, is defined as

oi
c = e

wc
Tx

∑c = 1
C e

wc
Tx

for c = 1, ⋯, C (2)

where oi
c is the output score of class c for glitch i, x is the output of the layer before softmax 

when image ‘i’ has been given as input to the model, and wc is the vector of weights 

connecting the output of the previous layer to cth node in softmax layer. C represents the 

total number of classes, in our current case 20. The output score of the softmax layer, oi
c, is 

used as the probability distribution found by the image classifier. The score vector obtained 

from machine learning for image i is defined as follows:

pi
ML = [oi

1, ⋯, oi
c, ⋯, oi

C] (3)

The next step is to train the model. The model optimizes a loss function defined on the 

training data, using cross-entropy:

loss = − ∑
j = 1

N
∑

c = 1

C
y j

clog o j
c (4)

where o j
c is the model’s output for class c when the jth training sample is given to the 

network, y j
c is equal to unity if the jth sample is from class c, otherwise it is zero, and N and 

C are the total numbers of the training samples and classes, respectively. To optimize the 

objective function, the Adadelta [53] optimizer is used. This optimizer monotonically 

decreases the learning rate and shows good performance in our experiments. More details 

about the proposed machine learning image classifier and experiments can be found in [54].

3.3.2. Crowdsource classifier—As noted above, the system will maintain a model of 

each volunteer ability to classify glitches of each class and will update the models after each 

classification (e.g. increasing its estimate of the volunteer’s ability when they agree with an 

assessment and decreasing it if they disagree). When the volunteer model shows that a 

volunteer abilities is above a certain threshold, the volunteer will be advanced to the next 

workflow level, in which they will be presented with new classes of glitches and/or glitches 
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with lower machine learning confidence scores. In addition, the movement of images 

through the project is determined by these volunteer performance models, as well machine 

learning and volunteer classification. As a collective, these algorithms are referred to as the 

crowdsourcing classifier. Further details regarding the crowdsourcing classifier will be 

presented in an upcoming publication [55].

A confusion matrix is assigned to each volunteer to record their labeling performance. It is 

defined as ℳk ∈ ℕC×C for the kth volunteer, where C denotes the total number of classes. 

An entry of this matrix, mpq
k  gives the number of samples belonging to class p labeled as 

belonging to class q by the kth volunteer. All entries will be initiated as 0 and updated when 

an image from the golden set is labeled by the volunteer. It will also be retrospectively 

updated with the labels of testing images that are retired.

Using a volunteer’s confusion matrix ℳk, a reliability measure is defined for volunteer k as 

the vector ak = [α1
k, ⋯, αc

k, ⋯, αC
k ] ∈ ℝC × 1, where αc

k quantifies the reliability of volunteer k in 

classifying samples of class c. It is defined as:

αc
k =

mcc
k

∑ j = 1
C mcj

k = p(yk = c | y = c) for  c ∈ {1, ⋯, C} (5)

where αc
k is also equal to the probability that the kth volunteer provides a label ŷk for an 

image, as belonging to class c, given the true label y is indeed equal to c.

After modeling the volunteers’ reliability, the classification of a test sample of images using 

multiple annotations is determined. A test image is initially provided to the machine learning 

classifier which outputs a probability vector pi
ML. The developed algorithm uses the machine 

learning probabilities and volunteer classification labels to predict the true label [55].

With the assigned labels from Ri volunteers for a given image i, the goal is to fuse these 

labels and find the posterior probabilities p(yi
cr = j | yi

1, ⋯, yi
Ri) for j ∈ {1, ⋯, C}, where yi

cr is 

the predicted label from crowdsourcing information. The final predicted label ỹi is 

calculated as:

y∼i = argmax j
p(yi

cr = j | yi
1, ⋯, yi

Ri) + pi
ML( j)

∑ j = 1
C p(yi

cr = j | yi
1, ⋯, yi

Ri) + pi
ML( j)

(6)

where pi
ML( j) denotes the jth component of pi

ML.

As classifications are made, the initial priors provided by machine learning are replaced by 

the posterior probability of each class, which contains both machine learning and volunteer 
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classification information. The posterior probabilities continually update until an image is 

retired or the image receives a predefined maximum number of volunteer classifications and 

is moved to a higher workflow to be investigated by more advanced volunteers. To decide on 

the retirement of the test image, a threshold tj is defined per class based on the difficulty of 

classifying glitches in that class. The threshold vector can be thus defined as t = [t1, t2, ⋯, 

tC]T.

Having the posterior probabilities of all the classes from equation (6) and putting them in a 

vector yi = [y1
i , ⋯, yC

i ] ∈ ℝC, the posterior probability vector yi can be compared with 

threshold vector t. If the entry of yi that carries the highest posterior probability is greater 

than the corresponding entry of t, the image is retired with label j for which y j
i ≥ t j. Then this 

retired image is sent to training set with label j as its true label. If no entry of yi is greater 

than the corresponding entry of t, further action is needed. Based on the number of 

volunteers who have labeled the image, either more volunteers at the same level must label 

the image or the image is moved to a more advanced workflow.

As for volunteer promotion, when a volunteer labels images from the golden set, their 

confusion matrices are updated. Also, as test images are retired, the golden set is updated 

and the confusion matrices are updated retrospectively by comparing their labels with the 

label of the retired image. With equation (5), the ak vector is calculated from the confusion 

matrix ℳk. Reliability threshold values are defined for each class: (Tj = [T1, ⋯, TC]). If all 

the values of the vector ak exceed the threshold values in Tj, the volunteer is promoted to the 

next level. If not, they will need to do more correct classifications to be promoted.

3.4. Socio-computational research support

Finally, the socio-computational research component will allow for systematic measurement 

and experimentation with the performance of project components. Our first planned 

experiment is to compare the performance of volunteers who have gone through the training 

process described above to the performance of those who start right away with the full set of 

classes for classification (i.e. the typical approach for citizen science projects). By doing so, 

one can test if users who go through the training regimen contribute more and show better 

performance on the classification tasks.

Second, the training system described above has a large number of parameters (e.g. how 

many and which classes to introduce at each level and the class-specific machine learning 

certainty cutoffs for images to be placed in each level). Experimentation will be useful to 

determine the optimal settings. For example, one can test the benefits and tradeoffs of 

advancing volunteers to higher levels more rapidly: quicker advancement might be good for 

motivation but negative for performance (and vice versa).

Finally, the system will enable us to experiment with other factors that affect volunteer 

performance, such as the kinds of motivational messages provided or information on the 

novelty of glitches. A particularly interesting set of questions gauge the effects of feedback 

that can be provided to volunteers based on machine learning classification confidence. 

Again, it is possible that there are tradeoffs involved: letting a volunteer know the machine 
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learning confidence score of an image might be useful feedback to improve performance but 

also potentially demotivating if the machine learning and the volunteer disagree, or if it leads 

to volunteers feeling that their contributions are unnecessary.

There are many unanswered questions about how volunteers will learn in this setting that go 

beyond the specifics of glitch classification. In particular is the concern of how much the 

volunteers will need to know about gravitational-wave astrophysics and the workings of the 

detectors that produce the glitches. Included as part of the workflows is a mini-course on 

gravitational-wave astrophysics and LIGO detector characterization that presents the next 

slide of the course after a given number of classifications. Additionally, there are 

background information pages on the site that describe the detector in more detail. Though 

the background pages are optional and one can opt-out of the mini-course, one can track 

which volunteers visit these pages to examine the impact on performance. Further details on 

the socio-computational research related to Gravity Spy can be found in [56].

4. Preliminary results

The full public launch of the Gravity Spy project was on October 12 2016, about a month 

before the planned commencement of LIGO’s second observing run (O2). Through the 

initial renditions of machine learning models and beta-testing of the human interface, the 

preceding phases of this project have already shown promise in achieving high-level, multi-

class glitch classification using true (rather than synthesized) LIGO detector data and the 

ability of the public to distinguish new categories of glitches.

4.1. Initial machine learning performance

As discussed in section 3.1.3, the initial machine learning training set consists of 7718 total 

glitches from 20 classes, using 75%, 12.5%, and, 12.5% of the full set as training, validation, 

and test sets, respectively. The number of iterations and the batch size were set to 130 and 

30, respectively. The classification of testing data achieved an average accuracy of 97.1%.

As can be seen in the training set breakdown (table 1), the distribution of samples over 

classes is highly imbalanced. Therefore, it is better to study precision and recall values of 

each class to analyze the performance of the glitch classifier. Precision is defined as the 

number of glitches that are correctly labeled as a particular class divided by the total number 

of glitches that are predicted as that particular class, gauging how often a classifier is correct 

when it predicts a glitch is in a given class. Recall, also known as sensitivity, is the number 

of glitches predicted correctly as a particular class divided by the actual number of glitches 

in that particular class, in essence a measure of how often a classifier predicts a glitch in a 

particular class when it is actually in that class. These values are presented in figure 7.

As one can observe from figure 7, the precision and recall values are near unity for most 

classes. Certain classes, particularly classes that suffered from a low number of training 

samples (e.g. ‘Wandering Line’ and ‘Paired Doves’) or a high variability in morphological 

characteristics (e.g. ‘None of the Above’ and ‘No Glitch’), achieved lower precision and 

recall values. ‘None of the Above’ and ‘No Glitch’ are not defined by specific 

morphological traits. ‘None of the Above’ is the category which harbors all glitches that do 
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not fit in the other 19 classes. Therefore, this class does not have a specific morphological 

distribution over sample space. The ‘No Glitch’ category has a similar property, as this class 

consists of all glitches which do not have intense energy in the image, and the low-level 

noise does not have a consistent morphology through the training set. Though not 

morphologically defined compared to the other classes, the inclusion of these two catch-all 
classes allows for the full classification of the dataset, and provides a medium for 

determining new classes of glitches as the project progresses. The challenge of the 

classification of ‘Paired Doves’ and ‘Wandering Line’ groups is likely due to a lack of 

samples, as these two classes have the lowest number of samples with 30 and 44, 

respectively.

4.2. Gravity Spy system beta testing results

The Gravity Spy project launched three Beta versions to test the user interface and user 

promotion in April, June, and September 2016, each of which lasted approximately one 

week. During this time, a version of the project was made public and promoted to a small 

subset (~2000) of Zooniverse volunteers. The main goal of the beta testing was to check the 

functionality of the site and to receive feedback on the interface design. However, the 

activity on the site also proved the basic premise of the project: volunteers can reliably 

classify glitches and identify new morphological classes. Beta testing of the website engaged 

over 1400 users and delivered over 45 000 glitch classifications. This activity in turn led to 

hundreds of conversation threads on the website talk forum and fostered excitement and 

intrigue for the nascent field of gravitational-wave astrophysics. The work culminated in the 

discovery of multiple new and substantial glitch categories from LIGO first observing run, 

including glitches which would later receive the names ‘Paired Doves’ [57] and ‘Helix’ [58]. 

Example images of these glitch morphologies are shown in figure 8. In particular, the 

discovery of the ‘Paired Doves’ class proved significant in LIGO detector characterization 

endeavors, as this glitch resembles signals from compact binary inspirals and is therefore 

detrimental to the search for such astrophysical signals in LIGO data. The project activity 

during the Beta versions is testament to the ability of citizen science projects to engage and 

involve the public in scientific advancement. A deeper analysis of these morphologies with 

regard to LIGO detector characterization and further techniques to optimize the integration 

of citizen science output to large-scale data analysis will be presented in future publications.

5. Conclusions and future prospects

As LIGO searches for gravitational waves, the Gravity Spy project will endeavor to improve 

the understanding of the LIGO detectors and reduce the impact of harmful noise, all while 

engaging the general public in gravitational-wave physics. Gravity Spy also plans to 

incorporate data from the multiple interferometers joining the advanced network in 

upcoming years (e.g. [5, 6]) to further assist in noise characterization. The full launch of the 

Gravity Spy project on October 12 2016 incorporated the machine learning analysis and 

crowdsource classifier into the system, providing each user with a tailored progression 

through the multiple workflows and pairing machine learning confidence scores with user 

classifications to optimize the retirement of images and classification accuracy. The project 

Zevin et al. Page 17

Class Quantum Gravity. Author manuscript; available in PMC 2018 April 30.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



shows clear utility in aiding gravitational wave detector characterization and creates an 

avenue to analyze the socio-computational interaction.

Each day during LIGO’s upcoming observing runs, the Gravity Spy system will generate 

Omega Scans of triggers that have passed low-latency data quality cuts and fit within the 

SNR and frequency thresholds defined in section 3.1. These newly-acquired images will be 

analyzed using the most current renditions of the machine learning classifier, and integrated 

into the testing sets available for human classification. As images are retired from the test 

set, they are added to the machine learning training sets, which re-trains whenever 100 new 

images are retired and appended. Daily pages summarizing the results are available to all 

LSC members.

When new classes appear in the detector and trends in the ‘None of the Above’ class emerge 

(via clustering of descriptive features from the follow-up questions and collections on the 

Gravity Spy Talk forum), new categories are added to the interface at the discretion of the 

Gravity Spy team. By doing so, the project maintains the ability to evolve with the detectors. 

In addition, the data synthesis for this project can adapt to the activity of the users; adjusting 

the SNR threshold of triggers will greatly affect the number of glitches that are generated 

from the LIGO data stream, and lowering this threshold will provide many more difficult 

images for users to analyze.

As the project progresses, continual engagement of volunteers will be cultivated by 

providing complementary data and new tools to aid in the classification (e.g. the ability to 

view spectrograms from auxiliary channels of data, deeper classifications that included sub-

classes of morphologies, and tools to support the discovery of new glitch classes and 

collaboration among volunteers). This, along with continued interaction between project 

scientists and volunteers on the Talk forum, will foster sustained engagement in the project. 

Gravity Spy also presents a test bed for socio-computational interaction. Some of the many 

possible empirical tests that will be implemented include presenting a different interface to 

subsets of users to examine its impact on user activity (e.g. retracting the training regimen, 

changing the wording of the project pitch) and analyzing the classification output to 

investigate how users learn (e.g. examining if the use of filters diminishes for a user over 

time, inspecting the performance of a user over time). Furthermore, as the human and 

machine learning components of the project utilize the exact same data for their 

classification endeavors, it will provide an interesting comparison of each classifier on a 

level playing field.

Though crowdsourcing models have proven effective in data analysis endeavors across 

multiple scientific disciplines, the exponential growth of data acquisition necessitates a 

smarter way to perform citizen science. The sheer amount of data that modern projects 

produce will soon outstrip human volunteer time, and simple crowdsourcing methods will 

no longer suffice as a means to scrutinize such sets. The coupling of citizen science to 

machine learning algorithms that resourcefully choose the optimal data for human 

classification is essential to preserve crowdsourcing as a powerful means of data analysis. 

The integration of human and computer classification schemes will maintain citizen science 
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as a prolific scientific tool and allow it to scale with the ever-increasing datasets of the 

future.
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Figure 1. 
Spectrogram representation of two example glitches, with color representing the ‘loudness’ 

of the signal. Blips (a) are short glitches that usually appear in LIGO’s gravitational-wave 

channel with a symmetric ‘teardrop’ shape in time-frequency. Blips are the single most 

important class of glitches in LIGO [11], as they appear in both Hanford and Livingston 

detectors and are the most stringent limit on LIGO’s ability to detect binary black hole 

merger signals [4]. No clear correlation to any auxiliary channel has yet been identified. 

Whistles (b), also known as radio frequency beat notes, usually appear in time-frequency 

plots with a characteristic ‘W’ or ‘V’ shape. Whistles are caused by radio signals at 

megahertz frequencies that beat with the LIGO voltage controlled oscillators [23]. These 

types of images are what volunteers in the Gravity Spy project classify, and what the 

associated machine learning algorithms use for training.
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Figure 2. 
Gravity Spy system architecture, and overall data flow through the interconnected, 

interdisciplinary components of the project.
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Figure 3. 
Gravity Spy user interface. This image shows the black hole merger workflow (see section 

3.2.3), with all 20 currently designated categories as options.
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Figure 4. 
Movement of images and volunteers through the Gravity Spy project. Green boxes represent 

the multiple workflows within the project (including the images which are forwarded to 

experts within the LSC), blue boxes represent the machine learning and crowdsourcing 

image classifiers, and orange boxes represent the full sets of images, which are designated 

either as training or testing images (the ‘golden set’ is the subset of the training set which is 

used to train volunteers). Note that there are multiple beginner workflows with an increasing 

number of glitch classes which volunteers progress through as they proceed through the 

training regimen.
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Figure 5. 
Relationship between machine learning confidence in glitch classification (x-axis) and 

proportion of images from that class assessed by human volunteers at different skill levels. 

Example glitches classified as a single class (‘power line’ glitches) with differing machine 

learning confidence scores are shown above.
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Figure 6. 
Deep CNN used for glitch image classification. The network has been introduced on top of 

the four merged glitch durations. Dimensions of the kernels and feature maps are in units of 

pixels.
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Figure 7. 
Confusion matrix for the 20 glitch classes in the testing set classified using CNNs, with 

recall and precision values appended below for reference. The x and y axes represent the 

predicted and true classes, respectively, and the confusion matrix is normalized by the total 

number of glitches in each class in the training set. Due to the normalization chosen, the 

diagonal elements are identical to the recall values for each class. Closer to unity in 

precision and recall values corresponds to a more accurate classification for a particular 

class.
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Figure 8. 
Two new O1 glitch classes uncovered during Gravity Spy beta testing: ‘Paired Doves’ (left) 

and ‘Helix’ (right). ‘Paired Doves’ [57] resemble chirps, but alternate between increasing 

frequency and decreasing frequency. These glitches are related to the ringing of a 0.4 Hz 

resonance of the pendulum mode in the Hanford beamsplitter, and couple to auxiliary 

channels monitoring the beamsplitter suspension system.‘Helix’ [58] are possibly related to 

glitches in the auxiliary lasers (called photon calibrators) that are used to push the LIGO 

mirrors and calibrate the detectors.
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