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Abstract

In diffusion governed by Fick’s law, the diffusion coefficient represents the phenomenological 

material parameter and is, in general, a constant. In certain cases of diffusion through porous 

media, the diffusion coefficient can be variable (i.e. non-constant) due to the complex process of 

solute displacements within microstructure, since these displacements depend on porosity, internal 

microstructural geometry, size of the transported particles, chemical nature, and physical 

interactions between the diffusing substance and the microstructural surroundings. In order to 

provide a simple and general approach of determining the diffusion coefficient for diffusion 

through porous media, we have introduced mass release curves as the constitutive curves of 

diffusion. The mass release curve for a selected direction represents cumulative mass (per surface 

area) passed in that direction through a small reference volume, in terms of time. We have 

developed a methodology, based on numerical Finite Element (FE) and Molecular Dynamics 

(MD) methods, to determine simple mass release curves of solutes through complex media from 

which we calculate the diffusion coefficient. The diffusion models take into account interactions 

between solute particles and microstructural surfaces, as well as hydrophobicity (partitioning). We 

illustrate the effectiveness of our approach on several examples of complex composite media, 

including an imaging-based analysis of diffusion through pancreatic cancer tissue. The presented 

work offers an insight into the role of mass release curves in describing diffusion through porous 

media in general, and further in case of complex composite media such as biological tissue.
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1. Introduction

Diffusion as a process of material transport which occurs in soils and porous rocks [1–4], in 

technological processes [5, 6] and biological systems [7, 8], has been thoroughly 

investigated. Distribution of transported material (solute) inside the pores, filled with fluid, 

is defined by the concentration field c(x,t), where x is a spatial position within the 

continuum and t is time. We consider diffusion governed by the concentration gradient, with 

the fundamental relation expressed by Fick’s law,

Ji = − Di
∂c
∂xi

, no sum on i (1)

where Ji is the mass flux in direction xi, and Di is the corresponding diffusion coefficient. 

For practical applications, diffusion coefficients are specified for three orthogonal directions 

and can have different values. The coefficients Di are the macro-scale constitutive material 

parameters for diffusion. They reflect the complex micro-scale and atomic processes 

occurring within the pores which govern motion of solute particles [9–11]. Generally, 

diffusion coefficients are taken to be functions of the current concentration at a point of the 

continuum.

In our further presentation, we will use microscopic models where we model in detail 

microstructure of the medium, with solids and pores. It is taken that in these models 

concentration represent the mass of solute per unit volume of pores, and that Fick’s law (1) 

is applicable, with diffusion coefficients corresponding to diffusion within pore space. The 

FE integration domain includes the pore space only. Next we define release curves at a 

material point of a continuum for diffusion through a porous medium (Fig. 1). In order to 

eliminate the dependence of mass release on the surface size through which the mass is 

passing, we consider the mass passing through the unit area of the continuum, and call these 

normalized curves the mass release curves m(t) with dimension, say [M/m2] or [kg/m2]. 

Hence, at a given time, the rate of the mass release curve represents the mass flux [M/(m2s)]. 

Now we formulate the following fundamental statement: diffusion properties of a porous 
medium (as a continuum) are characterized by the mass release curves. These 
phenomenological curves are also the constitutive curves for determination of the diffusion 
coefficients. This statement is applicable to “any” complex transport process at lower scales, 

as long as it results into a diffusion governed by the concentration gradient (more details 

about the generality are given in the discussion of selected examples). It can be considered 

that there is a complete analogy between this definition of the mass release curves in 

diffusion and mechanics, where the stress-strain phenomenological curve represents a result 

of the complex microstructural deformations. From Fig. 1(d) follows that the tangent to a 
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mass release curve (normalized with respect to the area) geometrically determines the mass 

flux at a considered time,

Ji = dm
dt i

= tan α (2)

and then, for a given gradient (dc/dx)i,

Di =
(dm/dt)i
(dc/dx)i

, no sum on i (3)

Note that dm has dimension mass/(unit area) and dt is time (in seconds), hence tanα is the 

mass flux in eq. (2), in, say [µg / µm2s].

The mass release curves can be determined numerically [10], or experimentally: in [3] and 

[4] experiments were performed in which the mass flux from a sample of porous rock was 

measured and diffusion coefficients calculated, while in [12] mass release was measured 

from a drug delivery system. Mass release constitutive curves have an additional important 

property with respect to traditional approaches of calculation of the equivalent diffusion 

coefficients [13–17]: they provide information about the diffusion characteristics over a 

selected range of concentration, rather than for one concentration value.

The aim of this work is to introduce mass release curves for any porous medium and then to 

show that they can be used for diffusive transport of molecules through biological tissue 

composed of cells and extracellular space, with the emphasis to the problems of drug 

transport within tumors. The extracellular space is a porous medium filled with biological 

liquid, with fibers and various proteins as solids, while cells are bounded by membranes 

with specific transport properties. Biochemical interactions between transported molecules 

and solids are incorporated through surface effect and partitioning as a measure of 

hydrophobicity.

Before presenting a numerical procedure for calculation of mass release curves (and 

consequently the diffusion coefficients), we notify that evaluation of the diffusion 

coefficients of a porous medium has been carried out by homogenization procedures, mainly 

in analytical form, or numerically [18, 19]. Generally, such procedures have limitations due 

to special assumptions regarding microstructure (e.g. periodicity, scale separation), and also 

because they rely on various asymptotic expansions and analytic forms [14, 20–27]. 

Implementation of these procedures to various porous media is given in [13–16, 28, 29] and 

to biological media in [30–40]. These procedures are not readily generalizable.

2. Computational procedure

In Fig. 1 we schematically illustrate our general concept of how the mass release curves can 

be determined numerically. We select a small volume (infinitesimal with respect to the 

diffusion domain, but finite in size and large enough to appropriately represent the 
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microstructure) surrounding a material point, and discretize the space by finite elements. It is 

possible to have a detailed FE mesh such that it captures the internal microstructural 

geometry very closely (Fig. 1(b)). For generality, we assume that physico-chemical 

interactions occur between diffusing particles and surfaces of internal microstructure. To 

account for these interactions, we use MD (schematics shown in Fig. 1(c)) to evaluate the 

effective diffusion coefficient as a function of concentration and distance from the solid 

surface (Fig. 1(e)).

Here, it is worth mentioning that diffusion at the microscale, which is captured by MD 

simulations, shows deviations from classical Fickian behavior. The interactions of diffusion 

molecules with the surroundings at the interface of solids lead to reduced diffusivity [9, 41, 

42], which was also confirmed experimentally [43, 44]. The consequence of this non-Fickian 

behavior of molecules at microscale was recognized as the cause of mass release deviations 

from the expected Fickian behavior [10, 42, 45, 46]. By using our current methodology and 

concepts, we were able to rationalize Fickian and non-Fickian transport in nanoconfined 

diffusion transport [11].

Diffusion coefficients can be calculated in the local coordinates system ξ, η, ζ of a solid 

surface, where the first local axis is normal to the surface and the other two lie in the 

tangential surface plane. These local diffusion coefficients Dξ, Dη, Dζ can be transformed to 

the global system [47],

D = TDξηςTT (4)

where T is the transformation matrix containing cosines of angles between local and global 

(x,y,z) coordinate system. Hence, Eq. (4) gives the spatial field of the diffusion tensor. 

Boundary conditions are as follows: it is assumed that concentrations at the inlet and outlet 

surfaces, Cin and Cout, are prescribed functions of time. The simplest practical approach is to 

change these concentrations in a way that the difference Cin(t) − Cout(t) is kept constant, 

hence the concentration gradient [Cin(t) − Cout(t)]/Li remains constant; here Li is the length 

in the direction of diffusion of the reference volume (RV). The curve m(t) represents the 

mass release normalized to the inlet/outlet surface area of RV (see Fig. 1(d) and caption of 

Fig. 1).

Regarding the computation, in case of evaluating diffusion coefficient with the surface 

interaction effects within the microstructure, we performed MD simulations [10] using 

NAMD 2.6 [48] with a TIP3P water model [49] and NVT ensembles, with CHARMM 

compatible force field [50]. The mean square displacement <r2>, <r2>=<|r(t)−r(0)|2>, of 

molecules were calculated along the surface normal and in the tangential plane. The 

diffusion coefficients D was calculated from the averaged <r2> slope in an appropriate time 

window (e.g. 20 ps window for t ~ 5–20 ps), as:

D = limt ∞
d
dt

〈r2〉
6 (5)

Kojic et al. Page 4

Comput Biol Med. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D values, as a function of distance from solid surface, were fitted with the function 

y=a(1−exp(−bx2)).

For the continuum, we solve the fundamental mass conservation equation, which includes 

Fick’s law (Eq. (1)),

− ∂c
∂t + ∂

∂xi
Di

∂c
∂xi

+ qV = 0, sum on i: i = 1, 2, 3 (6)

where c is concentration and qV is a source term; and i=1,2,3 denote Cartesian coordinates. 

This equation is transformed into the FE incremental equation of balance [51]

1
Δt MIJ + KIJ ΔCJ(i) = QI

ext + QI
v − 1

Δt MIJ(CJ(i − 1) − CtJ) − KIJCJ(i − 1) (7)

where CJ and ΔCJ are nodal concentrations and increments of concentrations, CtJ is the 

nodal concentration at the start of time step, Δt is the time step size, and i represents the 

equilibrium iteration counter; QI
ext and QI

v are the element external and volumetric nodal 

fluxes, respectively; expressions for the diffusion matrix KIJ, updated over iterations, and the 

“mass” matrix MIJ are given elsewhere [51]. The expressions for the matrices KIJ and MIJ 

are:

KIJ =
V

Di
∂NI
∂xi

∂NJ
∂xi

dV ,  summ on i = 1, 2, 3; MIJ =
V

NINJdV (8)

where NI are interpolation functions, and V is the finite element volume. Note that the 

coefficients Di can be concentration dependent, i. e. Di= Di(c), as in Fig. 1(e) (see also 

caption of Fig. 1).

In our incremental-iterative scheme we always have adopted implicit scheme, i.e. we use 

variable parameters, such as diffusion coefficient, corresponding to the end of time step and 

the last computed value: Dk
(i − 1) = Dk c(i − 1)  for the iteration ‘i’. The implicit scheme 

provides the best accuracy of solution and suppress error propagation [52]. Also, the meshes 

used for detailed models in order to calculate mass release curves are very fine due to 

complexity of the microstrures, and the solution accuracy has been tested using different 

meshes. On the other hand, our methodology has been verified by comparing with 

experiments (Refs. [10] and [47]); the mass release curves obtained by detailed models and 

with using the equivalent diffusion coefficients are practically the same.

We next summarize a computational scheme for taking into account the phenomenon known 

as partitioning. It occurs when transported particles display hydrophobicity with respect to 

certain solvents, as, for example in case of drug molecules which are hydrophobic and prefer 

organic phase over water [53, 54]. Then, the transport law based on concentration gradient is 
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violated. It is well known that partitioning phenomenon has a thermodynamic origin [55]. 

The partitioning coefficient P as the material parameter is defined phenomenologically as:

P =
Coil

Cwater
(9)

where Coil is the concentration of molecules in oil, and Cwater is the concentration in water, 

at the oil-water interface. In practice, partitioning of molecules is tested in octanol-1/water 

system and is expressed by a logarithm of P, logP. The logP is a common property of drug 

molecules used to characterize hydrophobicity of compounds. The partitioning effects 

within the FE computational scheme can be included as follows [53]. Namely, the ratio 

between the number of particles passing the boundary between two media during a time step 

is a constant P,

ΔNs/ΔN f = P (10)

where ΔNs and ΔNf are the numbers at the two sides, and, consequently, the same ratio is 

applicable to the concentration increments, ΔCs and ΔCf:

ΔC f = pΔCs, C f = pCs (11)

where, p=1/P is used because it is computationally more convenient. The relation (10) is 

further used to accordingly modify the matrices on the left side and nodal vectors on the 

right side of equation (7), for nodes at the interface between two media, before assembling 

equation (7) into the global system of balance for the entire diffusion domain. In case that at 

a node J there is the partitioning effect, factorization by a p-value is as follows. The modified 

terms of the left-hand side matrix KIJ
f = MIJ

f /Δt + KIJ
f  in (7) is

KIJ
f

part
= pKIJ

f , KJI
f

part
= pKJI

f (12)

while the modified right hand side of (7) is calculated using

CJf (i − 1)
part = pCJf (i − 1), CtJf )

part = pCtJf (13)

We define the diffusion coefficient for a reference volume (RV) according to Fick’s law. It 

can be calculated for a current time step, i.e. for the current concentration, as

Di = Δm/Δt
Cin − Cout /Li

(14)
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where Δm is the increment of mass release over the time step Δt. We solve Eq. (7) under 

steady-state conditions to avoid transient effects. With the calculated diffusion coefficients 

we model a homogenous continuum under the same boundary conditions and find that the 

mass release curves are the same; therefore, the calculated diffusion coefficients provide the 

same diffusion properties of the true porous medium (with diffusion through the pores 

within microstructure) and the equivalent homogenous continuum in the considered small 

volume RV. Mass release curves, and the diffusion coefficients, can be obtained for three 

orthogonal directions, hence anisotropic diffusion parameters can be determined too. 

Calculated for various points within the diffusion domain, the mass release curves capture 

non-homogeneity of the medium.

3. Numerical examples

We first present three examples which demonstrate that the mass release curves are the 

constitutive curves, i.e. the diffusion parameters computed from these curves only depend on 

material properties of the solvent and solute, porosity, interactions between the solute 

particles and microstructure, including effects such as hydrophobicity, and on internal 

microstructural geometry. The last example represents implementation of mass release 

curves to model diffusive transport through tumor tissue of a pancreatic cancer. All examples 

are solved using our FE program PAK [56] where the described approach of numerical 

homogenization is incorporated. We have included data for each model at the figure caption 

to show that very fine meshes are required to capture complex internal geometry.

1. Porous medium with spheres as microstructure

We consider a porous medium with microstructure composed of silica nanospheres, with 

diffusion of glucose molecules through water. The silica-glucose interactions and diffusion 

coefficients were evaluated using the MD modeling and the scaling functions are obtained 

(Fig. 2 (c)) [9–11, 42], where glucose-silica interactions realize reversible binding [9]. It is 

taken that the bulk diffusion coefficient, Dbulk, corresponding to free diffusion in water, 

linearly changes with concentration: c=0M, Dbulk= 690µm2/s, and c=10M, Dbulk=50 µm2/s. 

The mass release curves and equivalent diffusion coefficients are given in Figs. 2(c) and 2(e) 

for several porosities. Note that there are two slopes in the curves in Fig. 2(e). This is due to 

changes between scaling functions with concentration in Fig. 2(c); for concentrations lower 

than 3.7M we interpolate values of scaling functions among the curves, while after 

concentration greater than (or equal) 3.7M we use the lowest curve in the figure. The 

purpose of this example is to include small porosities with the small pore size and diffusion 

termed as anomalous [11].

2. Diffusion through agarose polymer gel

Here, diffusion of rhodamine 6G (R6G) molecules through an agarose polymer gel is 

modeled. The internal structure of the gel, obtained by imaging [57], is shown in Fig. 3(a) 

with discretized agarose fibers and porosity of 97%. We have taken three molecules to 

diffuse: Rhodamine (diameter d= 0.5 nm), a larger size Rhodamine (interactions like for 

Rhodamine; d= 5 nm) and a particle of size 6.25nm. Scaling functions are shown in Fig. 

3(b). The 6.25nm particle is used to emphasize effects of the molecule size. Namely, the 
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molecule cannot pass through a pore smaller than 6.25nm and concentration in that pore is 

equal to zero. It is taken a linear dependence of the bulk diffusion coefficient on 

concentration: c=0, Dbulk= 286 µm2/s; c=10M, Dbulk = 50µm2/s. The size of the RV (0,934 × 

0.934 µm) is large enough so that the overall characteristics are the same in the two 

directions. Solutions for concentration and mass flux are shown in Fig. 4, while the mass 

release curves and equivalent diffusion coefficients are displayed in Fig. 5. The mass release 

curves are continuous, while the true distribution of fluxes are highly irregular, affected not 

only by chemical interactions, but also by the molecule size; this observation is of particular 

importance in diffusion through complex porous media as rocks ([3, 4]) Accuracy of the 

prediction of the mass release using the equivalent diffusion coefficient was verified 

experimentally [47].

3. A simplified model of drug transport through tissue

We have selected a tissue domain (2D RV model) with a typical cell shapes and distribution 

as shown in Fig. 6(a). The cell membrane is considered as a biological barrier, with 

partitioning properties between membrane and extracellular space with respect to a drug 

(here doxorubicin). Extracellular space is a complex fibrous porous medium, with 

extracellular matrix and other solid entities as proteins (Fig. 7(a)).

The computational RV model includes extracellular domain, cell membranes and 

intracellular space. Diffusion coefficient for the extracellular space was calculated from the 

mass release curve (not shown) of the RV (Figs. 7(a,b)), is given in Fig. 7(c); in this 

calculation, chemical interactions between diffusing molecules (DOX) and fibrous structure 

was included using the corresponding scaling functions (MD models). Diffusion through cell 

membrane was modeled by employing fictitious 1D elements [58], which take into account 

diffusive properties of the membrane. Also, hydrophobicity at the cell membrane was 

included by partitioning parameter (here taken P=10), which imposes a discontinuous 

concentration field (as in [59]); the discontinuity can be seen from the graph in Fig. 6(a). It 

is assumed that the cell interior is a homogenous medium with diffusion coefficient 

0.1µm2/s. Results for the tissue model are shown in Figs. 6 (b), (c).

4. Diffusion in pancreatic tumor

Here we implement the mass release curves to model diffusive transport within a pancreatic 

tumor. Data are obtained from a patient who underwent resection of a localized 

adenocarcinoma of the pancreas under an Institutional Review Board approved protocol 

[61], and we used to establish only a realistic domain of transport. We have taken a typical 

Hematoxylin and Eosin image of the pancreatic tumor taken at 4× (Fig. 8a) and consider 2D 

diffusion within a selected domain at 40× magnification (Fig.8b) of three molecules: oxygen 

(O2), a small molecule and a protein. Some of the reference volumes modeled in detail are 

shown as (RV1-RV5), while the others denoted by circles are used for interpolation of 

material parameters in the entire domain.

Estimation of diffusion coefficients within the RVs is performed according to 8-bit grayscale 

data file for collagen density created with color deconvolution in Fiji [62]: the darker - the 

more collagen in that area. Each pixel (px) in 8-bit files has values in the range 0 (black) – 
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255 (white). The darkest areas in these figures are at 180 and brightest at 255, Fig. 9a. We 

have re-scaled the linearly a nominal diffusion coefficient (D255) of extracellular space by 

collagen content and the results are shown in Table 1, while the field of diffusion coefficient 

for protein molecule is displayed in Fig. 9b. The diffusion coefficients were estimated based 

on representative values [63]. Partitioning coefficients have arbitrary values to simulate 

complexity, but they still correspond to a realistic example because some drug, like 

doxorubicin, accumulates in cell nuclei [64].

Cells are modeled using diffusion within cell and within nucleus as a separate domain. Also, 

transport through cell and nucleus membranes are computed using membrane transport 

coefficients DMem, with unit [µm/s], since it relates the flux through membrane (unit 

[µg/(µm2s)]) and difference in concentration at the membrane sides (unit [µg/µm3]), and 

partitioning, with data given in Table 1.

Mass release curves are calculated for the RVs and are shown in Fig. 10. The curves are 

straight lines since diffusion coefficients and partitioning do not depend on concentration, 

but they are different in the x- and y-direction, and different among RVs due to difference in 

the RV composition. We used concentration equal 1 on one side and zero at the opposite side 

(with no diffusion through lateral boundaries). Concentration distributions within the RV2 

are shown in Fig. 11 for oxygen and protein molecule. The emphasis of this figure is to show 

that there is a significant difference in concentrations because diffusion coefficient within 

nuclei for protein is very small with high partitioning at the nucleus membrane. Detailed 

concentration distributions within two RVs are shown in Fig. 12. As in case of other 

examples, concentration distribution is very irregular, while the equivalent model has a 

constant concentration gradient. Equivalent diffusion coefficients for the RVs are given in 

Table 2. A notable difference can be seen between diffusion coefficients among RVs and 

between values for x- and y-direction.

We have interpolated values for the equivalent diffusion coefficients Dx and Dy from the RV 

results and used additional points which have close structures with the selected five RVs 

(denoted by circles in Fig. 8b). The interpolated fields of the Dx and Dy are shown in Fig. 13 

for the entire domain, for the protein molecule. A significant variation of Dx and Dy is the 

result of very heterogenous composition of the tumor tissue. Finally, the concentration field 

for the entire domain is shown in Fig. 14. It can be seen a non-symmetric and non- 

homogenous character to a certain extent.

4. Concluding remarks

In summary, we have shown that the mass release curves can be used as the material 

characteristic for diffusion through a porous medium. These curves are the constitutive 

curves for diffusion coefficients of porous media considered as a continuum. Examples are 

selected to demonstrate that the role of the mass release curves is applicable to “any” 

transport process in the lower scales, as long as it results in diffusion on the continuum level 

which is governed by the concentration gradient. This role of the mass release curves and 

possible limitations of applicability can be further investigated in view of other mathematical 

formulations of diffusion, such as based on fractional diffusion equation approach [65–67], 
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in case of coupling diffusion with convective transport [59, 68]; or, when considering 

different time and length scales (a review of experimental investigations is given in [69]). 

The first example includes conditions in pores which can be termed as anomalous diffusion; 

the second example considers not only chemical interactions particle-microstructure but also 

the particle size; the third example includes hydrophobicity effects; and the last example 

represents the application of mass release curves to model molecular transport within a 

tumor (pancreatic tumor, data obtained by imaging). Mass release curves can be determined 

experimentally and may include conditions within microstructure which can hardly be 

expressed analytically. This description of diffusion through porous media offers a new 

insight into the diffusion process within complex microstructures, like soil, biological tissues 

or any other heterogeneous or simple porous medium.
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Fig. 1. 
Mass release curves at a point of a continuum determined computationally. (a) Composite 

medium and small (reference volume RV) around a point P. (b) Schematics of microstructure 

and FE model for diffusion, with boundary conditions. (c) Molecular dynamics (MD) 

schematics of calculation of the effective diffusion coefficient. (d) Mass release curves 

obtained using FE model of RV, normalized to the inlet/outlet surface area, in, say, [µg/µm2]. 

(e) Change of diffusion coefficient with the distance from solid surface for three 

concentrations (distance is of nanometer size; Dbulk is diffusion coefficient far from surface).
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Fig. 2. 
Mass release curve for diffusion of glucose molecules through porous medium with silica 

spheres as solids [47]. (a) Larger porosity. (b) Small porosity of 15% and complex geometry 

of pores. (c) Scaling functions for glucose-silica interaction; diffusion coefficient is D(h,c)=f 
Dbulk, where h is distance from solid surface and f is the scaling function. (d) Mass release 

curves for several porosities. (e) Equivalent diffusion coefficient in terms of concentration. 

Model size: 125,000 3D finite elements, 132,651 nodes.
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Fig. 3. 
Agarose polymer gel model-1. (a) The internal structure obtained by imaging, and 

computational model of fibers (according to Ref. [47]). (b) Scaling functions for three 

molecules. Model size: 90,000 2D finite elements, 90,601 nodes.
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Fig. 4. 
Agarose polymer gel model-2, with flux in x direction (AA) due to prescribed concentration 

difference between left and right boundary of the model (according to Ref. [47]). (a) 

Distribution of concentration at time t=1s, microstructural model; zero-values correspond to 

fibers. (b) Distribution of concentration and mass flux-x along line AA, microstructural (full 

line) and continuum (dashed) solution. (c) Distribution of concentration and mass flux-y 

along line BB, microstructural (full line) and continuum (dashed) solution. (d) Mass flux-x 

distribution at time t= 1s. Molecule of 6.25nm, linear dependence of bulk diffusion 

coefficient within gel.
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Fig. 5. 
Agarose polymer gel model-3. (a) Mass release curves. (b) Equivalent diffusion coefficient.
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Fig. 6. 
Reference volume for a typical composition of tissue. The domain includes extracellular 

space, cell membranes and cell interior. Boundary conditions: Concentrations at inlet outlet 

are increased from zero to 1M with small concentration gradient, while there is no flux 

though lateral surfaces. (a) Concentration field in the RV and graph of concentration along a 

line AB. (b) Mass release curve. (c) Diffusion coefficient for the equivalent homogenous 

continuum. Model size: 34,000 2D finite elements, 1684 fictitious 1D element, 34,281 

nodes.

Kojic et al. Page 19

Comput Biol Med. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Extracellular space of skin. (a) Fibrous structure according to [60]. (b) A simplified RV 

model. (c) Diffusion coefficient for free diffusion in the liquid (Dbulk) and equivalent 

diffusion coefficient. Model size: 125,000 3D finite elements, 132,651 nodes.
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Fig. 8. 
Image of a cross-section of pancreatic tumor. (a) Image with the selected domain for 

computational model. (b) The selected domain with collagen stained in red color, while cell 

nuclei are in dark. Five reference volumes (RV1-RV5) are modeled to determine mass 

release curves and equivalent diffusion coefficients. Small circles indicate points used for 

interpolation of equivalent diffusion coefficients.
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Fig. 9. 
(a) Collagen presence in reference volumes RV1-RV5. (b) Computed field of diffusion 

coefficient for protein. Model size: minimum size model RV1-48,474 2D elements, 952 

fictitious 1D elements, 49,665 nodes; maximum size model RV2-196,048 2D elements, 

3,846 fictitious 1D elements, 200,769 nodes.
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Fig. 10. 
Mass release curves (normalized to the volume of RV) for x and y direction for five RVs.
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Fig. 11. 
Concentration field within RV 2 at time t=1s. (a) Image of the RV. (b) Small molecule. (c) 

Protein molecule.
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Fig. 12. 
(a) and (d) Concentration field at time t=1s for RV2 and RV4. (b) Distribution of 

concentration along x-direction, and (c) along y-direction. Microstructural (full line) and 

equivalent continuum (dashed) solution.
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Fig. 13. 
Diffusion coefficient field for protein molecule, in [µm2/s]. (a) X-direction (DXmax = 19.2, 

DXmin = 5.4). (b) Y-direction (DYmax = 17.5, DYmin = 8.7). Model size: 35,418 2D elements, 

35,418 nodes.
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Fig. 14. 
Concentration distribution of the Small molecule in the selected domain of tumor at time 

t=1s. Concentration is prescribed at two boundaries, while the other two are impermeable.
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