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Abstract

We provide a comprehensive multi-aspect study of the performance of a pipeline used by the 

LIGO-Virgo Collaboration for estimating parameters of gravitational-wave bursts. We add 

simulated signals with four different morphologies (sine-Gaussians (SGs), Gaussians, white-noise 

bursts, and binary black hole signals) to simulated noise samples representing noise of the two 

Advanced LIGO detectors during their first observing run. We recover them with the BayesWave 

(BW) pipeline to study its accuracy in sky localization, waveform reconstruction, and estimation 

of model-independent waveform parameters. BW localizes sources with a level of accuracy 

comparable for all four morphologies, with the median separation of actual and estimated sky 

locations ranging from 25°.1 to 30°.3. This is a reasonable accuracy in the two-detector case, and 

is comparable to accuracies of other localization methods studied previously. As BW reconstructs 

generic transient signals with SG wavelets, it is unsurprising that BW performs best in 

reconstructing SG and Gaussian waveforms. The BW accuracy in waveform reconstruction 

increases steeply with the network signal-to-noise ratio (S/Nnet), reaching a 85% and 95% match 

between the reconstructed and actual waveform below S/Nnet ≈ 20 and S/Nnet ≈ 50, respectively, 

for all morphologies. The BW accuracy in estimating central moments of waveforms is only 

limited by statistical errors in the frequency domain, and is also affected by systematic errors in 

the time domain as BW cannot reconstruct low-amplitude parts of signals that are overwhelmed by 

noise. The figures of merit we introduce can be used in future characterizations of parameter 

estimation pipelines.
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1. Introduction

The network of Advanced LIGO (aLIGO) gravitational-wave (GW) detectors (Aasi et al. 

2015), consisting of aLIGO-Hanford (H1) and aLIGO-Livingston (L1), completed its first 

observing run (O1) in 2016 January. During O1, this network achieved the first direct 

detections of GWs by detecting GW150914 (Abbott et al. 2016a) and GW151226 (Abbott et 

al. 2016b), two signals from coalescences of binary black holes. In addition to binary black 

holes, other astrophysical sources of GW transients (e.g., core-collapse supernovae, 

magnetar flares, and cosmic string cusps) are also targeted by aLIGO (Abbott et al. 2016c). 

Searches for generic GW transients aim to detect weakly modeled GW signals (“bursts”) 

from such systems as well as from binary black holes, and also from as-yet-unknown 

sources (see e.g., Abbott et al. 2016d; Belczynski et al. 2016).

Detections of GW signals will be used to test and constrain models of astrophysical sources 

(see e.g., Abbott et al. 2016e). This usually requires reconstructing the signal waveform 

from the GW detector output and estimating parameters of the waveform (see e.g., Abbott et 

al. 2016f). For sources for which an accurate waveform model exists, such as binary black 

holes in circular orbits, this is done by matching the detector output with template 

waveforms (see e.g., Abbott et al. 2016f). In this case, the estimated parameters are 

astrophysical, e.g., chirp mass and spins. Parameter estimation (PE) for burst signals for 

which no model templates exist need a different approach. In these cases, basis functions are 

used to reconstruct the waveform and to estimate model-independent parameters of it, such 

as central time and frequency, signal duration, and bandwidth. In addition to these intrinsic 

parameters of the waveform, estimates can also be given on the extrinsic parameters of the 

source (e.g., sky location).

BayesWave (BW) is a pipeline for detecting and characterizing GW bursts that works within 

the framework of Bayesian statistics and uses sine-Gaussian (SG) wavelets as basis 

functions to reconstruct the signal (Cornish & Littenberg 2015). In O1, BW was used as a 

follow-up PE tool on triggers provided by the coherent Waveburst (cWB) search pipeline 

(Klimenko et al. 2008, 2016), which identifies coincident excess power in strain data of 

multiple GW detectors. We note, however, that cWB can also reconstruct the sky location of 

a GW source and the waveform of the GW signal, independently of BW (Klimenko et al. 

2011). This provides an opportunity to compare the performances of BW and cWB in PE 

using the same set of triggers (for the results of this comparison, see Section 3.1). BW is 

effective in distinguishing GW signals from non-Gaussian noise artifacts (“glitches”), which 

enables the combination of the cWB and BW pipelines to achieve high-confidence 

detections across a range of waveform morphologies (Kanner et al. 2016; Littenberg et al. 

2016). The estimates of mass parameters and sky location obtained by BW for GW150914 

have been shown to be consistent with template-based PE pipelines (Abbott et al. 2016d).

In this paper we characterize the BW performance in PE by injecting a large set of simulated 

signals into simulated aLIGO noise, and recovering them and their parameters with BW. The 

main purpose of this study is to determine the accuracy of the reconstructions that can be 

achieved with BW. By knowing the accuracy, future studies can identify the broadest range 

of astrophysical models that can be tested with BW, while further improvements of BW can 
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be guided by these results. Among the estimated parameters, we give special attention to sky 

location of the GW source, because of its key role in electromagnetic (EM) follow-up 

observations of GW events (see, e.g., Singer et al. 2014; Berry et al. 2015; Abbott et al. 

2016g; Vitale et al. 2017). Sky localization of GW burst sources can also be carried out with 

the cWB and LALInferenceBurst (LIB) pipelines (Lynch et al. 2015; Veitch et al. 2015). An 

extensive analysis of the sky localization performance of cWB and LIB was published in 

Essick et al. (2015). Here we present a similar analysis for BW in order to characterize its 

performance and to allow comparisons with other burst pipelines studied in Essick et al. 

(2015). We note, however, that as we use a reduced set of triggers compared to Essick et al. 

(2015) (for an explanation, see Appendix A), our results in Figures 1–4 should not be 

compared directly with results in Figures 3–6 of Essick et al. (2015). Instead, to allow direct 

comparisons between BW, cWB, and LIB, we repeat our analysis with cWB and with LIB 

on the same reduced set of triggers, and present the results in Figures 1–4 (available in the 

online journal). We also note that new cWB sky localization results for binary black holes 

presented recently (see Vitale et al. 2017) show that the cWB performance has improved 

significantly for a three-detector network, while it has not changed significantly for the two-

detector case we present here.

We focus on three aspects of the BW performance: (i) sky localization, (ii) waveform 

reconstruction, and (iii) estimation of model-independent waveform parameters. In Section 2 

we describe the methods used for creating simulated signals and noise samples, and the ones 

used by BW to carry out PE. In Section 3 we present the results of our analyses regarding all 

(i)–(iii) aspects. We summarize our findings and highlight some implications in Section 4.

2. Methods

We used software injections to test the PE performance of BW, i.e., we created mock 

samples of aLIGO noise and added simulated GW signals with four different morphologies 

to these samples. We then used these samples at trigger times provided by cWB as inputs for 

BW to test what it recovers from the signals embedded in the mock detector noise. In this 

section we discuss the characteristics of the noise samples and of the simulated signals we 

used (Section 2.1), as well as the methods BW uses for PE (Section 2.2).

2.1. Noise and Injections

In this section we summarize the characteristics of the injections and noise samples we used 

in our analyses, which are the same as those used in Essick et al. (2015). For further details 

on this, see Section 2, Appendix C, and Table 4 in Essick et al. (2015).

In our analysis we considered a two-detector network consisting of H1 and L1. We used 

stationary Gaussian mock-noise samples generated using the expected 2015 sensitivity curve 

of aLIGO, therefore they have slightly different characteristics than the actual noise 

collected during the O1 run. Projections show that the two LIGO detectors will operate in 

the first two months of the second observing run (O2) with sensitivity curves similar to those 

they operated with during O1. We therefore expect that our results are representative for this 

first period of O2 as well.
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Our set of software injections consists of signals with four different morphologies: SG, 

Gaussians (G), white-noise bursts (WNBs), and binary black hole (BBH) mergers. This wide 

range of signal morphologies allows us to test the PE performance of BW with minimal 

assumptions on the GW signal. The amplitude distribution of the injected signals was chosen 

such as to represent a uniform distribution of GW sources in volume. Signal injections were 

distributed uniformly over the sky and were regularly spaced in time.

The number of signals we analyzed was determined by multiple factors (see Table 1): (i) the 

BW version we used runs only on triggers produced by cWB (Abbott et al. 2016d), (ii) we 

reduced the number of BBH triggers in order to reduce computational costs, and (iii) we 

only used signals that were correctly identified as signals by BW. For details on why BW 

identified many SG and WNB signals as glitches or Gaussian noise, and how this has been 

improved for O2, see Appendix A.

Sine-Gaussian waveforms are often used to model generic transients (e.g., Abadie et al. 

2012) because they are the most localized signals in time-frequency space where generic 

burst searches (including cWB) operate (see Chatterji 2005). We define SG waveforms with 

the following two equations:

h+(t) = cos(α)hrss
4 f 0 π

Q(1 + cos(2ϕ0)e−Q2
)

× cos(2π f 0(t − t0) + ϕ0)e
−(t − t0)2/τ2

(1a)

h×(t) = sin(α)hrss
4 f 0 π

Q(1 − cos(2ϕ0)e−Q2
)

× sin(2π f 0(t − t0) + ϕ0)e
−(t − t0)2/τ2

, (1b)

where α ∈ [0, π/2] is a parameter that sets the relative weights between polarizations h+ and 

h×, hrss
2 = (h+

2 + h×
2 ) is the square of the root-sum-squared strain amplitude chosen as a free 

parameter in the amplitude randomization process, f0 is the central frequency, t0 is the 

central time, ϕ0 is the phase at time t = t0, τ is the width of the signal in the time domain 

(TD), and Q = 2πτ f 0 is the quality factor encoding the characteristic number of cycles 

within the duration of the signal.

Gaussian signals are special cases of SG signals when f0 → 0, and are defined as

h+(t) = cos(α)
hrss

τ
2
π

1/4
e

−(t − t0)2/τ2
(2a)
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h×(t) = sin(α)
hrss

τ
2
π

1/4
e

−(t − t0)2/τ2
. (2b)

Despite their similarity to SGs, these signals pose different challenges because they have 

their highest amplitude at f = 0 Hz in the frequency domain (FD), and thus they have most of 

their power at low frequencies where aLIGO is less sensitive.

White-noise burst waveforms are intended to model a time-localized excess power that is 

uniformly distributed in a given frequency band, and that satisfy

h+, ×(t) ∝ e

−(t − t0)2

τ2

−∞

∞

e−i2π ftw( f )df , (3)

where w(f) values are randomly drawn from a Gaussian white noise within and chosen to be 

w(f) = 0 outside the band f ∈ [fmin, fmax]. We generated the right side of Equation (3) 

independently for the + and × polarizations, and normalized them to derive h+ and h× with 

the desired hrss. Unlike signals with the other three morphologies, WNB signals are not 

elliptically polarized because the procedure used to produce them generates h+ and h× 

independently.

The only astrophysical signals we used were binary black holes with spins aligned or anti-

aligned with the orbital angular momentum. We only considered binaries with relatively 

high detector-frame total masses (Mtot ∈ [30, 50] M⊙) because their signals are more 

compact in time-frequency space, which makes them good targets for generic burst searches. 

Three different methods have been used for calculating the waveform in the three different 

phases of binary evolution: 3.5PN post-Newtonian expansion, numerical relativity, and 

analytic quasi-normal modes to calculate the inspiral, merger, and ringdown waveforms, 

respectively (see Hannam et al. 2010; Ajith et al. 2011 for details).

2.2. The BW Pipeline

BayesWave uses a trans-dimensional reversible-jump Markov chainMonte Carlo 

(RJMCMC) algorithm (Green 1995) to explore the following three competing models of the 

data and test them with the input data samples from each aLIGO detector: (i) Gaussian noise 

only, (ii) Gaussian noise with glitches, and (iii) Gaussian noise with a GW signal. This 

approach makes BW effective in distinguishing GW signals from glitches (Littenberg et al. 

2016), but it also makes BW computationally expensive, and thus in O1, BW was used to 

follow-up candidate events from cWB.

BayesWave assumes that all signals are elliptically polarized, i.e., h× = εh+eiπ/2, where ε ∈ 
[0, 1] is the ellipticity parameter, which is 0 for linearly polarized signals and 1 for circularly 

polarized signals. This is a valid assumption for many expected astrophysical signals, but not 
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for our injections with WNB morphology (see Section 2.1). However, for a LIGO-only 

network, it is often the case that only a single combination of the two polarizations, rather 

than the separate + and × components, will be detectable, making the elliptical constraint a 

fair approximation for many cases.

We used the BW version that had been used for the offline analysis of O1 data to attain a 

characterization of the BW performance during O1 and to support a fair comparison with the 

versions of other PE pipelines characterized in Essick et al. (2015). PE pipelines used by the 

LIGO-Virgo Collaboration (including BW) have undergone improvements since the 

beginning of O1 (some of which were motivated by this study).

3. Results

In this section we show how BW performed in different aspects of PE. These aspects are sky 

localization (see Section 3.1), waveform reconstruction (see Section 3.2), and point 

estimates of waveform central moments (see Section 3.3).

Even though the current version of BW (O2) is more efficient in identifying signals (see 

Appendix A), we used the version of BW used during O1 in order to characterize the BW 

performance during O1 and to allow a comparison of our results with those presented in 

Essick et al. (2015). We only analyzed signals that were properly identified as signals by 

BW (see Table 1). We present a reproduction of results of Essick et al. (2015) for the subset 

of events we used in this study to enable a fair comparison of sky localization results (see 

Figures 1–4).

Results presented here depend on the parameter distributions of injected signals defined in 

Table 4 of Essick et al. (2015) and on the corresponding detection efficiencies of the 

combination of cWB and BW pipelines for the different parameter sets. Results are 

particularly dependent on the chosen hrss distribution of injected signals, and thus on the 

network signal-to-noise ratio (S/Nnet) distribution of them (see inset of Figure 5). However, 

the hrss distribution we chose for this study is a good approximation for generic burst signals 

that are uniformly distributed in volume (see Appendix C in Essick et al. 2015).

3.1. Sky Localization

BayesWave computes a skymap defined as the posterior probability density function of the 

GW source location expressed as a function of celestial coordinates α (right ascension) and 

δ (declination), denoted by psky (α, δ). Example skymaps for each morphology are shown in 

Appendix B. Skymaps for all the injections can be found in the Burst First2Years sky 

localization Open Data release.7 There are many possible quantitative measures for the 

“goodness” of source localization; here we implement the measures defined in Essick et al. 

(2015), i.e., angular offset, searched area, extent, and fragmentation. We reproduced the 

results of Essick et al. (2015) for LIB and cWB using the same subset of events as we used 

in this study (those identified as signals by BW) to enable a direct comparison of the results 

(see Figures 1–4).

7http://www.ligo.org/scientists/burst-first2years/
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The first measure is the angular offset (δθ), which is the angular distance between the 

maximum of psky and the true location of the injected signal. Figure 1 shows normalized 

histograms of cos(δθ) for all injections, with the upper axis showing the corresponding δθ 
values. The distribution has a peak at cos(δθ) = 1, which suggests that BW tends to 

reconstruct the most probable location of the source close to the actual source location. 

There is also a smaller peak at cos(δθ) = −1, which indicates that it is more likely that BW 

reconstructs the opposite direction of the sky compared to the location of the injected signal 

than a direction perpendicular to the injected signal’s location. The reason is that opposite 

directions cannot be distinguished using the network antenna pattern, which has the same 

value at opposite directions because of the near co-alignment of H1 and L1 detectors (Singer 

et al. 2014). However, the peak at cos(δθ) = −1 is smaller than the peak at cos(δθ) = 1 

because opposite directions are only allowed by the triangulation ring when the source is 

right above (or below) the detectors, and thus the triangulation ring is a great circle on the 

celestial sphere. We note that the distributions for different morphologies are very similar to 

each other, which means that the angular offset depends weakly on signal morphology. We 

show the summary statistics of δθ distributions for all morphologies in Table 2. It is clearly 

visible that BW performs best for BBH signals, while SG, G, and WNB signals show 

slightly higher δθ values. Statistical errors on reported values are in the order of a few 

percent. Figure 1 shows normalized histograms of cos(δθ) obtained with the cWB and LIB 

pipelines on the subset of signals identified as signals by BW.

Electromagnetic follow-up observations tend to target the point of the sky with the highest 

psky value first, and continue with points of lower psky values. This motivates the 

introduction of the searched area ( ) as a second measure, which is the total sky area 

observed before aiming a hypothetical telescope at the true location of the source:

𝒜 = H(psky(α, δ) − p0)dΩ, (4)

where H is the Heaviside step function, p0 is the value of psky at the true location of the 

source, and dΩ = cos δ dδ dα.

We show the cumulative histogram of  for all injections in Figure 2. Histograms for 

different morphologies follow a similar trend, but the curves are shifted along the horizontal 

axis. This can be quantified, e.g., with median searched area, which is 252.8 deg2 for G, 

151.0 deg2 for WNB, 121.3 deg2 for SG, and 99.2 deg2 for BBH signals. Another difference 

between the morphologies is that there is a fraction of WNB signals with a searched area 

equal to the whole sky (  ≃ 4 × 104 deg2). The reason is that p0 = 0 for these signals, i.e., 

the posterior distribution has no support at the true location of the source. There are no such 

signals with SG, G, and BBH morphologies. A reference curve labeled SG (LIB) shows 

results for the LIB pipeline of the subset of SG signals identified as signals by BW. We note 

that LIB uses a single SG to reconstruct the signal, so that for SG injections LIB becomes a 

matched-filtering analysis for which better performance is expected, while BW sometimes 

uses more than one SG because it favors more complex signals. This shows that LIB 

performed similarly, but slightly better for SG signals. We show the summary statistics of 
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the  distributions for all morphologies in Table 2. It is clearly visible that BW performs 

best for BBH signals, while SG, G, and WNB signals show significantly higher  values. 

Statistical errors on the reported values are in the order of a few percent. Figure 2 shows 

normalized histograms of  obtained with the cWB and LIB pipelines on the subset of 

signals identified as signals by BW.

Even if δθ and  are small, the favored sky positions can still be either well localized or 

spread out over various parts of the sky. To quantify this feature, we introduce the extent 

(δθinj) of a skymap as the maximum angular distance between the location of the injected 

signal and any other point satisfying psky (α, δ) ≥ p0. We show histograms of δθinj in Figure 

3. The distributions are clearly bimodal, with peaks at cos(δθinj) = ± 1. The peak at 

cos(δθinj) = 1 corresponds to well-localized signals, while the peak at cos(δθinj) = −1 shows 

that there is a similarly large number of events with the skymap extended even to the 

opposite direction of the sky compared to the true location of the signal. The reason is the 

same effect as described previously when explaining Figure 1. We note that there are 

significant differences in the height of the two peaks, e.g., the histogram for the BBH signals 

has a peak at cos(δθinj) = 1 that is twice as high as the peak in the histogram for the G 

signals. Figure 3 shows histograms of δθinj obtained with the cWB and LIB pipelines on the 

subset of signals identified as signals by BW.

Even if previous measures indicate a well-localized source, the skymap can still be 

fragmented, which makes it more difficult to cover the whole with EM observations. We 

therefore introduce the fragmentation of a skymap as the number of disjoint regions in the 

union of points satisfying psky (δ, α) ≥ p0. We show the distribution of the number of 

disjoint regions in Figure 4. There are fewer than four disjoint regions for more than 50% of 

the injected signals for all morphologies. Skymaps for SG and WNB signals are significantly 

more fragmented than for G and BBH signals. The reason is that the skymaps of these 

signals are more likely to have “fringe peaks.” These are separate rings in the sky 

corresponding to local maxima of matches between different data streams obtained when 

they are shifted by half-integer multiples of the period of the signal (for details see Appendix 

A). Figure 4 shows distributions of the number of disjoint regions obtained with the cWB 

and LIB pipelines on the subset of signals identified as signals by BW.

To compare the BW performance with the performance of LIB and cWB (Essick et al. 

2015), we created the equivalents of Figures 1–4 with LIB and cWB using the same subset 

of events as we used in this study (see Figures 1–4). We have found that all metrics show 

that these algorithms perform similarly in localizing the source. Histograms of  show that 

 values for BW are comparable to but systematically higher than for cWB and LIB for all 

morphologies, except for BBH signals, for which BW typically yields smaller searched 

areas than LIB. There are also more WNB skymaps with large searched areas (  ≥ 100 

deg2) for LIB than for BW. This is most likely due to its ability to recover more of the signal 

by using multiple wavelets as opposed to a single SG template.

3.2. Waveform Reconstruction

BayesWave uses SG wavelets to reconstruct a GW signal from the detector output, which 

means that the recovered signal is always given as a linear combination of SG wavelets, the 
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number of which is a parameter in the RJMCMC. To characterize the quality of waveform 

reconstruction, we introduce the overlap ( , sometimes referred to as match), which 

measures the similarity of an injected (hi) and a recovered (h) waveform as

𝒪 =
(hi |h)

(hi |hi)(h |h) , (5)

where (․|․) is a noise-weighted inner product, defined as

(a |b) = 2
0

∞ a( f )b∗( f ) + a∗( f )b( f )
Sn( f ) df , (6)

where Sn is the one-sided power spectral density of the detector noise, and x* denotes the 

complex conjugate of x.

From Equation (5) it is visible that  ranges from −1 to 1, with  = 1 meaning a perfect 

match between hi and h,  = 0 meaning no match at all, and  = −1 meaning a perfect 

anticorrelation between hi and h. With Equation (5), we can calculate the overlap using data 

from only one detector. To characterize the waveform reconstruction for the network of GW 

detectors, we introduce the network overlap ( net) by changing the inner products in 

Equation (5) with the sum of the inner products calculated for different detectors:

𝒪net =
∑ j = 1

N (hi
( j) |h( j))

∑ j = 1
N (hi

( j) |hi
( j))·∑ j = 1

N (h( j) |h( j))
, (7)

where j denotes the jth detector in the network, and N is the number of detectors used in the 

analysis (note that N = 2 in this study). We note that in our analysis we only considered 

waveforms reconstructed from outputs of each detector (h(j)), but not the astrophysical GW 

polarizations (h+, h×), because the two polarizations cannot be decomposed from detections 

with two coaligned GW detectors, such as H1 and L1.

Figure 5 shows the cumulative distribution functions (CDFs) of net. Shaded ranges 

represent the 2σ uncertainty calculated using the Dvoretzky-Kiefer-Wolfowitz inequality 

(Dvoretzky et al. 1956). The fraction of injected signals with net > 0.9 is 97% for G, 96% 

for SG, 48% for BBH, and 47% for WNB signals after the waveform reconstruction with 

BW. 95% of injections have net > 0.92 for G signals, net > 0.91 for SG signals, net > 0.75 

for BBH signals, and net > 0.68 for WNB signals. In Figure 5, the lower the curves reach at 

a given net value, the better the reconstruction. This suggests that the BW waveform 

reconstruction works most effectively for SG and G signals, for which the curves are 

identical within the 2σ statistical error. The BW waveform reconstruction is less effective for 

WNB and BBH signals, and it shows similar characteristics for these morphologies at high 

network overlaps (≳0.8), but the distribution for WNB signals has a longer tail at low net 
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values. BW performs better for SG and G signals because at low S/Nnet BW tends to use 

fewer wavelets to avoid overfitting the data. SG and G signals can be reconstructed 

accurately even with only two to three SG wavelets, while this is not possible for WNB and 

BBH signals. This also means that the curves for SG and G signals in Figure 5 represent the 

highgest BW capability of reconstructing a GW signal for a given noise level, while the 

results for WNB and BBH signals represent the BW performance on more generic (and thus, 

more realistic) GW signals. We note that while net values are lower for WNB and BBH 

signals, BW detects them with greater confidence because its detection statistic depends 

more strongly on the signal complexity than on S/Nnet (for details see Littenberg et al. 

2016). The inset plot in Figure 5 shows the normalized histogram of the injected signals’ 

S/Nnet for the four different signal morphologies. SG and G signals have an overabundance 

at S/Nnet ≲ 20 relative to WNB and BBH signals. This indicates that the previously 

described difference in the distribution of net is not due to the different S/Nnet distributions 

because BW performs better for SG and G signals, even though S/Nnet values for SG and G 

signals are usually lower than for WNB and BBH signals. We note that these distributions 

strongly depend on the parameter distributions of the injected signals as defined in Table 4 

of Essick et al. (2015) and on the corresponding detection efficiencies of the combination of 

cWB and BW pipelines for the different parameter sets (see the S/Nnet histogram in the inset 

of Figure 5).

We show net versus S/Nnet for SG, G, and WNB signals in the left panel of Figure 6. The 

curves were estimated with a Gaussian kernel smoother, which is a nonparametric regression 

method. The shaded regions between dashed lines represent the 1σ uncertainty regions 

calculated with the bootstrap method, in which we estimated the curve repeatedly for 

subsamples that were randomly drawn from the full sample. We note that we excluded the 

injections with S/Nnet > 100 from the estimation of these curves, and we only show the 

estimated curves up to S/Nnet = 70. All three morphologies show a clear trend of net 

increasing with S/Nnet.

For BBH signals we calculated the net versus S/Nnet curves in two separate bins of total 

mass (Mtot) of the BBH system, calculated in the detector frame. The two bins were defined 

with Mtot being Mtot < M̂
tot and Mtot > M̂

tot, where M̂
tot = 44.49 M⊙ is the median of Mtot 

values for all BBH injections. The net versus S/Nnet curves for BBH signals are shown in 

the right panel of Figure 6. Similarly to other morphologies, BBH injections also show a 

clear trend of increasing net with increasing S/Nnet. At low (≲35) S/Nnet values, BW 

performed significantly better for signals with higher Mtot, while differences in the curves 

are within the level of statistical errors for higher S/Nnet values. Signals with high Mtot are 

recovered with better accuracy because a large portion of the signal power is in a compact 

region of time-frequency space and therefore can be captured with a small number of 

wavelets, while signals with low Mtot spend a comparatively longer amount of time in the 

sensitive band of the detectors, requiring more wavelets and a greater total signal strength to 

achieve a similar fit. This difference vanishes at high S/Nnet because BW uses more wavelets 

to reconstruct signals with higher S/Nnet.

Figure 6 shows (similarly to Figure 5) that BW performs very similarly on SG and G 

signals, and much less efficiently on WNB and BBH signals. The reason is that BW needs to 
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use more wavelets to accurately reconstruct WNB and BBH signals. We note that despite the 

weaker performance on WNB and BBH signals, they also approach the reconstruction 

accuracy for SG and G signals at higher S/Nnet values. When we compare the two panels of 

Figure 6, it is visible that the curve for BBH signals is similar to the curve for WNB signals, 

with slightly lower overlap at low S/Nnet and slightly higher overlap at high S/Nnet values.

Our results show that BW reliably reconstructs waveforms with various morphologies. 

Although there are significant differences between the efficiency of reconstructions of 

signals with different morphologies, even for the worst case of WNB signals (which do not 

even match BW’s assumption that the signal is always elliptically polarized), most of them 

have relatively high overlaps, and there is a clear trend of net approaching 1 as S/Nnet 

increases.

3.3. Point Estimates of Waveform Central Moments

For a generic burst signal, we do not have any specific astrophysical model whose 

parameters could be estimated. In this case, we can still give estimates of the model-

independent parameters of the signal. Here we consider the central moments of the 

waveform as such parameters.

The first central moments are central time (t0) and central frequency (f0), and the second 

central moments are duration (Δt) and bandwidth (Δf), defined as

t0 =
−∞

∞
dt  ρTD(t)t, (8a)

f 0 =
0

∞
df   ρFD( f ) f , (8b)

(Δt)2 =
−∞

∞
dt  ρTD(t)(t − t0)2, (8c)

(Δ f )2 =
0

∞
df   ρFD( f )( f − f 0)2, (8d)

respectively, where ρTD and ρFD are the effective normalized distributions of signal energy, 

expressed in the time domain (TD) and in the frequency domain (FD):

ρTD(t) = h(t)2

hrss
2 , (9a)
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ρFD( f ) = 2(|h∼( f )|2

hrss
2 , (9b)

where h(t) is the whitened (i.e., normalized with the amplitude spectral density of the 

detector noise) waveform for a given detector and h̃ (f) is the Fourier transform of h(t). 

These distributions satisfy −∞
∞ ρTD(t)dt = 1, and 0

∞ρFD( f )df = 1.

Estimates of higher-order moments could also be given with BW, but we excluded them 

from our analysis because they are more strongly affected by statistical errors than estimates 

of the first-order moments (for a detailed discussion of this, see the end of this section).

BayesWave reconstructs the waveform and calculates the waveform moments for each 

sample in the Markov chain. We calculated the median value to give a point estimate of the 

waveform moments. To quantify the accuracy of the point estimate of waveform moment x, 

we define the absolute error of the estimation, ex, as

ex = | x(e) − x(r) | , (10)

where x(e) is the estimated and x(r) is the real value of x. We also introduce the relative error 

of an estimate, ηx, as

ηx =
ex

x(r) . (11)

We show CDFs of et0/Δt, ef0/Δf, ηΔt, and ηΔf in Figure 7, where shadings represent the 2σ 
uncertainties calculated using the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al. 

1956). All moments were calculated for H1 detector data, but the results are also very 

similar for L1. We divided the absolute errors of the first-moment estimates with the real 

values of the corresponding second moments because we expect that the statistical error of 

the first-moment estimate scales with the real values of the second moments.

We show CDFs of et0/Δt for different morphologies in the top left panel of Figure 7. These 

show that the most accurate t0 estimates with BW are obtained for G signals, while estimates 

for BBH signals are the least accurate. The relatively high et0 values are obtained because 

BW cannot reconstruct the low-amplitude parts of the signal that are overwhelmed by noise, 

which can cause a systematic error in the estimation of t0. For example, BW is almost 

insensitive to the inspiral parts of BBH signals, which make up the bulk of BBH signal 

durations, and this bias increases the lower the total mass of the systems is. This effect is less 

significant for the other three morphologies, which explains why the estimate of t0 is less 

accurate for BBH signals (with a median et0 value of 0.16Δt). The t0 values we obtain for H1 

and for L1 are strongly correlated, which means that the error on the estimation of the 
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difference of arrival times between H1 and L1 (determining the thickness of the sky 

localization triangulation ring) is typically smaller than et0.

We show CDFs of ηΔt in the top right panel of Figure 7. These curves significantly differ for 

different waveform morphologies. Regarding the median ηΔt, the Δt estimate is the most 

accurate for SG signals (with a median value of 0.06) and the least accurate for BBH signals 

(with a median value of 0.57). We note, however, that median values contain no information 

about the lengths of the tails of the ηΔt distributions. Of the four morphologies, the ηΔt 

distribution for the SG signals has the longest tail (see top right panel of Figure 7). For 1 ηΔt 

≲ 1, CDF values for BBH signals are significantly lower than for the other three 

morphologies, while for 1 ηΔt ≳ 1, they are higher. The reason is the steep part of the BBH 

curve around 1 ηΔt = 1, which corresponds to the systematic underestimation of the duration 

of low-mass BBH signals (which is due to the effect explained in the previous paragraph).

We show CDFs of ef0/Δf in the bottom left panel of Figure 7. Curves for different 

morphologies are identical within the error bars, in contrast with CDFs of et0/Δt, where the 

curves are similar but not identical. This indicates that these errors are purely due to the 

statistical errors of the central frequency estimation, determined by the non-zero value of Δf. 
We note that all ef0 values are lower than Δf, and the median of ef0 is smaller than 0.1 for all 

morphologies (see Table 3).

We show CDFs of ηΔf in the bottom right panel of Figure 7. The accuracies of the Δf 
estimate are similar for different morphologies, but not as much as for ηf0/Δf. The 95th 

percentiles are between 0.2 and 0.4 for the different morphologies. We note that relative 

errors of bandwidth estimates tend to be higher than the relative error of central frequency 

estimates. The reason is that estimates of second-order moments inherit errors from 

estimates of lower order moments (see Equations 8(c) and 8(d)) and thus have higher 

statistical errors. We expect that estimates of third and higher-order moments would have 

even larger errors, and thus we restrict our attention to examining only estimates of the first 

two moments. The medians and 95th percentiles of the errors for each moment and for each 

morphology are shown in Table 3.

As a summary, the results presented in Figure 7 show that the error distributions for f0 and 

Δf are very similar for different morphologies, while the error distributions for t0 and Δt 
show significant differences between different morphologies. This also means that while the 

errors of the f0 and Δf estimates are purely statistical, the errors of t0 and Δt estimates also 

include systematics. The latter occurs because BW cannot reconstruct low-amplitude parts 

of a signal that is overwhelmed by noise, which may result in a systematic error in the 

estimation of t0 and Δt. It is clear that the accuracy of the moment estimation is affected by 

how accurately the signals are reconstructed. However, we see identical CDFs of ef0/Δf for 

different morphologies, while they have different net distributions, which suggests that net 

is not a good indicator of the BW moment estimation accuracy.
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4. Conclusion

We presented a comprehensive multi-aspect study of the performance of BW, a Bayesian 

GW burst PE pipeline used by the LIGO-Virgo Collaboration for reconstructing GW burst 

signals and their parameters. We injected a large number of simulated signals with four 

different morphologies (SGs, Gaussians, WNBs, and BBH signals) into simulated O1 

aLIGO noise to test the BW performance in three different aspects of PE: sky localization, 

waveform reconstruction, and estimation of waveform central moments (for details on the 

methods we used, see Section 2).

BayesWave localizes sources with a level of accuracy comparable for all four morphologies, 

with the median separation of actual and estimated sky locations ranging from 25°.1 to 30°.3 

(see Table 2), and a median searched area ( , see Equation (4)) ranging from 99.2 deg2 to 

252.8 deg2 (see Section 3.1). This is reasonable accuracy for a two-detector network, and is 

comparable to accuracies of other localization pipelines (cWB and LIB) studied previously 

(Essick et al. 2015). Histograms of  (see Figure 2) show that  values for BW are 

comparable to but systematically larger than for cWB and LIB for all morphologies. The 

exceptions are BBH signals, for which the BW  values are systematically lower. We note 

that the runtime of cWB and LIB is much shorter than of BW.

BayesWave reconstructs waveforms as a linear combination of SG wavelets. To measure the 

goodness of reconstruction, we used the network overlap ( net, see Equation (7)), which 

quantifies the similarity between the injected and the reconstructed signals. We have found 

that BW reconstructs signals with net > 0.9 for 98% of G, 96% of SG, 45% of WNB, and 

47% of BBH signals (see Section 3.2). We have also found that (see Figure 6) net increases 

rapidly with increasing S/Nnet, reaching net = 0.95 at S/Nnet ≈ 14 for SG and G, at S/Nnet ≈ 
50 for WNB, and at S/Nnet ≈ 35 for BBH signals. These results suggest that we can expect 

very good reconstruction ( net > 0.95) for almost any signal with high (≳50) S/Nnet, and 

reasonably good reconstruction ( net > 0.85) for almost any signal with moderate (≳20) S/

Nnet.

We also examined how accurately BW can estimate the central moments of a GW waveform 

(see Section 3.3). These are model-independent parameters of a signal, which means that by 

examining the estimation of them, we can characterize PE without assuming any 

astrophysical model for the source. We have found that errors of f0 and Δf estimations are 

purely statistical, while errors of t0 and Δt estimations also include some systematics. We 

have also found that net is not a good indicator of the BW moment estimation accuracy. 

The median value of ef0/Δf is 0.09 for SG, G, and WNB signals, and 0.07 for BBH signals 

(see Table 3). There is no standard procedure of how the estimated moments of GW bursts 

can be used to test astrophysical models, but future studies can use our results to test the 

feasibility of particular methods using signal moments.

This paper fits into a series of studies examining PE for GW bursts (see, e.g., Klimenko et 

al. 2011; Essick et al. 2015). These studies can be used in comparisons with improved 

performances of future PE pipelines and to test the feasibility of possible astrophysical 

applications of future GW burst detections.
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Appendix A

Resolving the BW O1 Version Issue with High-Q Signals

During O1, BW was prone to classifying simulated short-duration high-frequency signals 

that underwent many wave cycles (i.e., high-Q signals) while in the measurement band of 

the detector as glitches. In principle, there is no reason for the Bayesian evidence used to 

rank a hypothesis under consideration by BW to have strong frequency dependence.

Upon examination of the misclassified injections, it was revealed that the high-f, high-Q 
signals exhibit multimodal likelihood support in the (α, δ, t0, f0) parameter subspace. For 

these signals, the Markov chain Monte Carlo (MCMC) sampler, which serves as the central 

engine to the BW algorithm, was not generically sampling between the different modes and 

was thus prone to missing significant portions of the coherent signal and preferring the 

incoherent glitch model (which does not suffer the correlations between time-frequency 

parameters and sky location).

The cause of the multimodal likelihood function is clear. For a sinusoidal signal (Q = ∞) the 

waveform is perfectly degenerate when time-shifted by an integer number of wave-periods 

(T). For high-Q signals, a number of integer periods (or half-integer periods with a π radians 

phase shift), time shifts produce similarly good fits to the data. For coherent signals, these 

(nearly) degenerate time shifts are also present in the time delay between detectors, which, 

for BW, is encoded in the sky location.

To overcome the susceptibility of BW to missing modes of the likelihood when analyzing 

high-Q signals, we added a proposal distribution to the MCMC that explicitly suggests half-

integer-period time shifts, along with half-integer-cycle phase shifts, for the wavelet 

parameters. Furthermore, extensive development (beyond the scope of this paper) to improve 

the overall capabilities of the BW MCMC to sample the complex sky-location posteriors 

encountered by two-detector GW networks has been completed.

Figure 8 contains two scatter plots from the BW MCMC using the dedicated proposal 

distributions. The multimodal nature of the posterior is clearly displayed, as is the efficiency 

with which the MCMC sampler is able to move between local maxima in the likelihood. 

This example came from an f ~ 512 Hz, Q ~ 40 SG injection. Using the MCMC as it was 

during O1, we found a preference for the incoherent “glitch” model, with a Bayes factor 
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between that and the coherent “signal” model of ~e60 in favor of the glitch model. Using the 

updated sampler and analyzing the same (simulated) data, we find a Bayes factor of ~e18 in 

favor of the signal model.

Despite this upgrade to the BW MCMC engine, we elected to present results as the 

algorithm performed during O1 to facilitate a direct comparison with the snapshot of other 

burst PE techniques during the first observing run. Future studies showing how the upgraded 

sampler performs on similar injections are underway.

Appendix B

Example Skymaps

Figure 9 shows an example skymap for an injected SG signal. The injected location is 

marked with a star, and the corresponding triangulation ring for L1 and H1 detectors is 

denoted with a gray line. H–L and L–H marks the direction between the two detectors, H+ 

and L+ the directions above the detectors, and H- and L- the directions below the detectors. 

The skymap in Figure 9 is a typical map. It is consistent with the triangulation ring of the 

two-detector network and the constraint of the network antenna pattern, which leads to a 

relatively small elongated area on the sky with the maximum close to the injected location. 

Figure 8 shows 20 example skymaps (five for each morphology) in the online journal. 

Skymaps for all the signals used in this study are available in the Burst First2Years sky 

localization Open Data release.7
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Figure 1. 
Normalized histograms of angular offsets (δθ) for injections with four different 

morphologies (SG, G, WNB, and BBH). Most of the injected signals have cos(δθ) = 1, 

which indicates that BW tends to place the most probable location close to the true location. 

Note that the distributions for different morphologies are very similar to each other, which 

means that the angular offset does not depend strongly on signal morphology. The complete 

figure set (three figures) showing the same plot for cWB and LIB pipelines is available in 

the online journal.

(The complete figure set (3 images) is available.)
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Figure 2. 
Cumulative histograms of the searched area ( ). Histograms for different morphologies 

follow a similar trend, except that the curves are shifted along the horizontal axis. A 

reference curve labeled with SG (LIB) shows results for the LIB pipeline on the subset of 

SG signals identified as signals by BW. The complete figure set (three figures) showing the 

same plot for cWB and LIB pipelines is available in the online journal.

(The complete figure set (3 images) is available.)
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Figure 3. 
Normailzed histograms of the extent (δθinj) of skymaps for the four different injection 

morphologies. The distributions are bimodal for all morphologies with peaks at cos(δθinj) = 

±1. The complete figure set (three figures) showing the same plot for cWB and LIB 

pipelines is available in the online journal.

(The complete figure set (3 images) is available.)
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Figure 4. 
Distributions of fragmentation. Each row corresponds to one of the four morphologies (SG, 

G, WNB, and BBH). Numbers at the bottom of the chart represent the number of disjoint 

regions in parts of the sky where psky ≥ p0. The number of disjoint regions is smaller than 4 

for more than 50% of injected signals for all morphologies. The complete figure set (three 

figures) showing the same plot for cWB and LIB pipelines is available in the online journal.

(The complete figure set (3 images) is available.)

Bécsy et al. Page 21

Astrophys J. Author manuscript; available in PMC 2018 April 30.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 5. 
Cumulative distribution function (CDF) of network overlaps ( net). Shadings represent the 

2σ uncertainties calculated using the Dvoretzky-Kiefer– Wolfowitz inequality (Dvoretzky et 

al. 1956). The lower the curves reach at a given net value, the better the reconstruction. The 

inset shows the normalized histogram of the network signal-to-noise ratio (S/Nnet) for 

signals with four different morphologies. The curves for SG and G signals are identical 

within the 2σ statistical errors, and they indicate significantly better reconstructions of SG 

and G signals than of WNB and BBH signals.
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Figure 6. 
Dependence of network overlaps ( net) on network signal-to-noise ratios (S/Nnet) for SG, G, 

WNB, and BBH signals. Note that we excluded the injections with S/Nnet > 100 from the 

curve estimation. Shaded areas represent the 1σ uncertainty regions of the measured net 

values. The left panel shows the S/Nnet dependence of net for SG, G, and WNB signals. All 

three morphologies show a clear trend of increasing overlap with increasing S/Nnet. The 

right panel shows the S/Nnet dependence of network overlaps for BBH signals with a 

detector-frame total mass below and above the median total mass M̂
tot = 44.49 M⊙. BW 

performed significantly better for signals with higher Mtot at S/Nnet ≲ 35 values.
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Figure 7. 
Cumulative distribution functions (CDF) of waveform central moment errors: absolute errors 

of central time estimates divided by signal durations (et0/Δt, upper left), relative errors of 

duration estimates (ηΔt, upper right), absolute errors of central frequency estimates divided 

by signal bandwidths (ηf0/Δf, lower left), and relative errors of bandwidth estimates (ηΔf, 

lower right). Shadings represent the 2σ uncertainties calculated using the Dvoretzky-Kiefer-

Wolfowitz inequality (Dvoretzky et al. 1956). Colors indicate CDFs for signals with sine-

Gaussian (SG), Gaussian (G), white-noise burst (WNB), and binary black hole (BBH) 

morphologies. We list the values of the 95th percentiles and medians in Table 3.
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Figure 8. 
Scatter plot of MCMC samples for signal model parameters of a high-Q, high-f sine-

Gaussian injection. The left panel shows the time-frequency plane with points colored by the 

wavelet phase parameter. Multiple modes and their phase-dependence are evident. The right 

panel shows the same chain samples, but now projected on the sky-location plane of the 

parameter space and colored by the time parameter. Here again it is plainly visible how 

different half-integer-period time shifts correspond to different “rings” on the sky, making 

this a challenging distribution to sample without well-tuned proposal distributions.
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Figure 9. 
Example skymap showing the reconstructed sky location for an injected SG signal. The 

injected location is marked with a star, and the corresponding triangulation ring for L1 and 

H1 detectors is denoted with a gray line. H–L and L–H marks the direction between the two 

detectors, H+ and L+ the directions above the detectors, and H- and L- the directions below 

the detectors. The complete figure set (20 figures) showing 5 example skymaps for each 

morphology is available in the online journal. Skymaps for all the signals used in this study 

are available in the Burst First2Years sky localization Open Data release (http://

www.ligo.org/scientists/burst-first2years/).

(The complete figure set (20 images) is available.)
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Table 1

Number of Injected Signals for Each Morphology at Different Stages of the Analysis

SG G WNB BBH

Triggers produced by cWB 1112 256 769 2488

Left out to reduce computational costs 0 0 0 −1988

Analyzed by BW 1112 256 769 500

Identified as glitches or Gaussian noise by BW −779 0 −355 −1

Used in our analysis 333 256 414 499

Note. For details on why BW identified many SG and WNB signals as glitches or Gaussian noise, and how this has been improved for O2, see 
Appendix A.
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