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Abstract

Brain Computer Interfaces (BCIs) offer restoration of communication to those with the most 

severe movement impairments, but performance is not yet ideal. Previous work has demonstrated 

that latency jitter, the variation in timing of the brain responses, plays a critical role in determining 

BCI performance.

In this study, we used Classifier-Based Latency Estimation (CBLE) and a wavelet transform to 

provide information about latency jitter to a second-level classifier. Three second-level classifiers 

were tested: least squares (LS), step-wise linear discriminant analysis (SWLDA), and support 

vector machine (SVM). Of these three, LS and SWLDA performed better than the original online 

classifier. The resulting combination demonstrated improved detection of brain responses for many 

participants, resulting in better BCI performance. Interestingly, the performance gain was greatest 

for those individuals for whom the BCI did not work well online, indicating that this method may 

be most suitable for improving performance of otherwise marginal participants.
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1. Introduction

Brain-Computer Interfaces (BCIs) use brain signals to provide a direct method of interaction 

with computers and other devices [1]. BCIs can help to restore communication for people 

with severe movement impairments such as amyotrophic lateral sclerosis (ALS), 

neuromuscular disease (NMD), brainstem stroke, cerebral palsy, and spinal cord injury [2]. 

One of the most common BCI applications is the P300 or P3 Speller indroduced by Farwell 

and Donchin [3], which uses event-related potentials (ERPs), including the P300 – a positive 

deflection approximately 300ms post-stimulus. In classical P3 Speller implementations, a 

grid matrix of 6× 6 or more characters and commands are presented to the user. Subsets of 

the matrix, usually rows and columns, are flashed in a random order (c.f. [4]). The 

probability of the flashed row/column containing the target character is 1/6, which creates a 

rare event that will elicit a P300 response. A classifier can detect those elicited P300 

responses and identify target characters [5]. With a few exceptions (e.g. [6, 7]), classifiers 

must be trained on data from each participant, as all event-related potentials (ERPs) 

including the P300 are participant-specific.
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Researchers have tried different feature extraction and classification methods for the P3 

Speller in search of better performance (see e.g. [8]). Early research used step-wise linear 

discriminant analysis (SWLDA) and showed that SWLDA performed well as a P3 Speller 

classifier [9, 10, 11]. For the 2003 BCI competition data, support vector machines (SVM) 

[12, 13] outperformed other classifiers, though the performance was dependent on proper 

tuning parameters. Other recent works used Bayesian Linear Discriminant Analysis (BLDA) 

and Fisher’s Linear Discriminant Analysis (FLDA) [14] and Convolutional Neural Network 

(CNN) [15] for classification. All these above-mentioned works reported some improvement 

on performance compared with prior studies.

Early research on the P300 found that P300 latency and reaction time varies between people 

[16, 17]. Magliero found that the latency of the P300 depends on the stimulus evaluation 

process [18]. These and other studies have shown that P300 latency varies, and that this 

variation is related to age, cognitive disabilities and other factors [19, 20]. Latency varies 

within-user, within the same session [21, 22] and even trial to trial [23]. Hence, P300 latency 

can affect classifier performance and BCI speed [24]. Though P300 latency is an important 

factor for the P3 Speller, only a few very recent studies have attempted to explicitly calculate 

or correct for P300 latency. Researchers used Bayesian methods [25] and spatiotemporal 

filtering methods [26] to estimate properties of single-trial event-related potentials (ERPs), 

including latency estimates. But, surprisingly only one study has been found in the literature 

which attempted to correct latency jitter [27], using a maximum-likelihood estimation 

(MLE) method. In [22], we proposed a classifier-based latency estimation (CBLE) method 

to estimate the P300 latency. In that work, the latency estimates were primarily used to 

predict BCI performance from small datasets.

In this study, we used a wavelet transform of the CBLE scores as input features to another 

classifier, improving overall BCI performance. Like the CBLE method it relies upon, this 

new technique should be helpful regardless of classifier used. The new technique should 

dynamically account for latency variation on a per-flash basis, unlike previous work such as 

[28], which showed improved BCI performance from a static correction for the average 

latency in different tasks.

2. Experimental Data and Methods

2.1. Data Description

An earlier study by Thompson et al., demonstrated a classifier-based latency estimation 

technique to estimate and predict BCI accuracy from small datasets [22], which will be 

discussed later in section 2.3. Some of the data used here were previously reported in [22, 

29], and all other data were taken using the same protocol. This protocol involved three 

separate visits (sessions) for each participant. There are three data files per session, with an 

additional training file in the first session. This study includes data from all files from 

sessions one, two and three. Results are shown separately for the average for files from 

session one and the average for files from sessions two and three combined. The participants 

included 9 people with ALS, 4 people with NMD, and 20 control participants with no motor 

impairments. Only people who completed the study are included.
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EEG data were collected using a 16-electrode cap from ElectroCap International, with 

mastoid reference and ground. The electrodes were fixed in the cap at F3, Fz, F4, T7, T8, 

C3, Cz, C4, Cp3, Cp4, P3, Pz, P4, PO7, PO8, and Oz according to the 10–20 electrode 

placement system. The data were amplified and digitized at 256 Hz using a g.USBamp 

(Guger Technologies). Stimulus presentation and recording was controlled through the 

BCI2000 software platform.

Online classification was performed using least squares (LS). The training file was used to 

create a participant-specific classifier that was used in all three sessions. A heuristic based 

on training accuracy was used to set the number of times each row and column flashed 

(sequences). Each data file contains at least 23 characters of BCI typing; users corrected 

mistakes using a backspace selection within the BCI, so the number of characters varies 

between files. For additional details, see [22].

2.2. Classifier Basics and Terminology

Perhaps because classifiers and machine learning techniques have broad application 

domains, their terminology is not yet perfectly standardized. In this work, we will be 

discussing three classifiers - Least Squares (LS), Step-Wise Linear Discriminant Analysis 

(SWLDA), and Support Vector Machine (SVM). Each method is a linear classifier, meaning 

that it works by taking a weighted sum of the inputs (features). This weighted sum will be 

called a ”score.” This process is done once per ”observation” or measurement, in our case 

once per ”flash.” In typical binary classification tasks, the sign function is applied to the 

score for each observation, in order to estimate the class ”label” - whether the observation in 

question belongs to the positive or negative class.

The classifiers we use differ primarily in how the weights (which then are used to calculate 

the score) are chosen. The score, ŷ, is calculated using the following equations [30]:

LS: y(x) = XWLS where, X = [1 x] and WLS = (XTX)−1XTy (1)

LDA: y(x) = wT(x − x0) where, w = ∑−1 (μ1 − μ0) and

x0 = 1
2(μ1 + μ0) − (μ1 − μ0)

log (π1/π0)
(μ1 − μ0)T ∑−1 (μ1 − μ0)

π is the prior probability of membership in each class

(2)

SVM: y(x) = w0 + ∑
i = 1

N
αik(xi, x) Where, αi = λiyi, λ is the ℓ1 regularization term . (3)
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P3 Spellers are unusual among binary classification tasks, because each row and column is 

flashed multiple times while the user is trying to produce a single output character. The sign 

function is therefore not used, and instead the scores (ŷ) for the multiple observations of 

each row and column are averaged. Then the maximum-scoring row and column are chosen. 

Note that as these three classifiers are all linear (we used a linear kernel for the SVM), this 

process is equivalent to averaging the features from multiple observations prior to 

classification.

2.3. CBLE

Traditional P300 classification uses a single time window locked to the stimulus 

presentation, for example, the EEG signal 0 to 800 ms post-stimulus [8]. Classifier based 

latency estimation (CBLE) creates many copies of that time window, each offset by an 

integral number of amplifier samples; for example, if the sampling rate was 1kHz, one 

window might be −1 to 799 ms, and another 1 to 801 ms. The ”first-level classifier” (here, 

LS) is applied to the data in each window, producing a score as described above. Thus, the 

method produces a vector of scores, with one element per time shift used.

In [22], the time shift that produced the maximum score was used as an estimate for the 

latency difference between the new P300 response and the average P300 response from 

training data. The variance of that latency difference estimate on target characters was used 

to predict BCI performance. The vector of scores was not used directly, although we did 

note that there are strong differences in the shape of the scores for target and non-target 

characters. In this work, by contrast, we wanted to use the full vector of scores directly, to 

aid in detection of the P300 response.

Figure 1 shows the CBLE scores as a function of time shift from a participant with ALS, for 

several representative flashes. Figure 2(a) shows the average across all flashes, which 

reflects the overall shape of the responses to target flashes. The CBLE scores from most 

target flashes show a peak near 0 time shift; different flashes produce different peak times. 

This is an indication of latency jitter and also shows how latency jitter can affect the P300 

classifier performance. For non-target characters there are no visible peaks which is also 

expected behavior in this paradigm. A few naive approaches were to (i) align all the single-

trials based on CBLE and use the aligned trials to train a second-level classifier, (ii) use the 

CBLE outputs along with the non-aligned trials as extra features for a second-level classifier 

and (iii) use the CBLE scores alone to train a second-level classifier. We tested each of these 

approaches on pilot data and found the third approach more useful than the others. However, 

latency jitter is still visible in the fact that the CBLE scores peak at non-zero time shift; we 

wanted to reduce the number of features for the end classifier and also reduce the latency 

jitter. Given the characteristic shape of the CBLE scores for target flashes, we thought a 

frequency domain transform such as wavelets would be valuable.

2.4. Wavelet Transforms

Wavelet transforms are generally used for decomposing signals into multiple time-frequency 

domains. However, they also can be used for feature reduction. We accomplished both 

purposes by computing the wavelet approximation coefficients of CBLE scores. For a signal 
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with N – 1 samples, x(t) = {x(1), …, x(N – 1)}, the approximation coefficients can be 

calculated from equation 4 [31]:

Wϕ[ j0, k] = 1
N ∑

n
x(n)Φ j0, k(n) (4)

There are many wavelet families; we applied different mother wavelet transformations on 

session 1 data for several participants, and that found the daubechies-4 mother wavelet, 

particularly the 5 level wavelet decomposition, produced good results while significantly 

reducing the number of features. To find the approximation coefficients of last level we used 

MATLAB default appcoef.m fuction. Figure 2(b) shows the averages of approximation 

coefficients of CBLE score vectors, for target and non-target flashes.

2.5. Second-level Classifier

Wavelets reduced the dimensionality of the CBLE scores while still showing a difference 

between target and non-target characters, but a classifier is still needed to make decisions 

based on the wavelet coefficients. We investigated three classifiers (LS, SWLDA, and SVM) 

as ”second-level” classifiers, which were given only the wavelet coefficients as input 

features. The scores from these second-level classifiers were used in the typical P3 Speller 

fashion - each flash was scored by the second-level classifier, and the scores for each row 

and column were averaged individually. The row and column with the highest average score 

was designated as the selected output character. Both first- and second-level classifiers were 

trained using only the training data file.

2.6. Performance Measurement

Because the goal of this work is improving communication accuracy and speed, a 

performance metric capturing throughput was chosen. Although Information Transfer Rate 

is often used for the P3 Speller, we have chosen BCI Utility [32], in line with the 

suggestions in [33, 34]. BCI Utility is calculated using the formula of equation 5:

U = 2p − 1
c , this is only valid for (2p − 1) > 0, i.e, p > 0.5 (5)

Where c is the time per selection, and p is the probability of correctly selecting a symbol or 

character in the interface. We calculated this probability by assuming it was constant for all 

characters and within the duration of each file. Backspaces, if required to produce correct 

text, were counted as correct selections for calculating accuracy. These accuracies were then 

averaged together if multiple files were used (as an example, if we report average session 1 

accuracy).

BCI Utility is a useful metric in that it correctly calculates the rate of corrected characters 

per unit time. In other words, BCI Utility is a measure of ”corrected typing speed,” or how 

quickly a person can produce corrected text.
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3. Results

Table 1 shows the online accuracies and accuracies after the proposed method for a subset of 

participants to demonstrate how BCI Utility changes with the change of accuracies. For 

readability, we limited the table to only participants with ALS as they come from a potential 

end-user population. Bolded participant identifiers indicate consistent improvement across 

sessions, which was found for the five of the six participants with online accuracies at or 

below 90%.

Figure 3 shows the improvement of BCI Utility for participants with amyotrophic lateral 

sclerosis (ALS) after using the proposed technique. The technique shows greater 

improvement for participants with lower online accuracy. Improvement of performance is 

also consistent in other sessions as shown in figure 3(b). Note participant K160 is not plotted 

in figure 3(b) despite the improvement shown in Table 1 because this participant’s online 

utility was zero and the percentage change become mathematically undefined. Mean change 

in BCI Utility in session 1 is 11.5% and in session 2 & 3 is 24.57%.

Figure 4 shows the improvement for participants with neuromuscular disease (NMD). 

Again, larger benefit is shown for individuals with lower online accuracy. In session 2 & 3, 

the performance improved for all four participants, but are larger in value for lower online 

accuracies. Mean BCI Utility change for session 1 is 16.35% and for session 2 & 3 is 

32.29%.

Figure 5 shows the effect of the proposed technique on 21 control participants. Unlike 

participants with ALS and NMD, there is no obvious pattern. Mean BCI Utility change in 

session 1 is 2.03% and in session 2 & 3 is 16.59%.

Overall we had data from 33 participants. In session 1, 18 participants showed improved 

performance with the new method, with a mean of 13% increase in BCI Utility. Nine 

participants showed decreased performance, with a mean decrease of −2.89% in BCI Utility. 

Five participants had no change in performance. Among these five, one participant had very 

low online accuracy and the other four had online accuracies around 98%. Overall mean 

change in BCI Utility for session 1 for all participants is 6.5%.

In session 2 & 3, two participants (K118, K160) had original accuracies of 32% and 30%. 

While their accuracy improved by 2 and 6 percentage points, neither showed non-zero BCI 

Utility with or without the new method. Twenty-three additional participants showed 

increased performance, with mean BCI Utility changes of 27.5%. Seven participants’ 

performance worsened with a mean of −1.6% utility change. Overall mean of utility changes 

in session 2 & 3 is 20.75%.

We have also compared the performance of LS, SWLDA and SVM binary classifiers as the 

second-level classifier. The results are shown in Figure 6. In session 1, both LS and SWLDA 

classifiers have median change above 0, and first quartile at or very near 0, indicating that 

approximately 75% of the subjects experienced improvement or at least no decrease. For 

SVM on session 1, the median is nearer to zero but the quartile is below zero. On session 2 

& 3, the box plots are more similar between classifiers.
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Finally, Figure 7 shows the changes in BCI Utility versus the standard deviation of CBLE-

estimated latency for all 288 files. The figure demonstrates that the changes in performance 

are located at areas with higher estimated latency jitter.

Here, we have reported data for 32 participants overall. Modeling performance change as a 

binomial random variable with ”success” being increased performance, the maximum 

likelihood estimate (MLE) of increased performance probability is 0.67 with 95% 

confidence interval of [0.54 0.78]. This can be interpreted as the technique being more likely 

to help than do nothing or decrease performance. Using the two-sided p-value gives us 

p2 = ∑s = 43
64 Bin(s ∣ 64, 0.5) + ∑s = 0

21 Bin(s ∣ 64, 0.5) = 0.0081 < 0.01.

If we define success more generously, as improving or at least not changing performance, 

the MLE is 0.75 with 95% confidence interval of [0.63 0.85]. Two-sided p-value in this case 

are given by p2 = ∑s = 48
64 Bin(s ∣ 64, 0.5) + ∑s = 0

16 Bin(s ∣ 64, 0.5) = 0.000077 < 0.001.

4. Discussion

From previous studies, it is obvious that P300 latency varies between individuals, between 

sessions for the same individual, and most importantly between trials even for the same 

individual and session [16, 17, 21, 22, 23]. The effect of latency variations between 

individuals can be compensated by using subject-specific classification, and training on the 

same day can address some of the between-session variations. But trial-to-trial variations in 

latency make the classification task difficult and also affect BCI performance. This 

motivated us to find a technique to correct latency variation and thus minimize the effect of 

latency jitter on performance. Previously, the classifier-based latency estimation (CBLE) 

method has been used to predict BCI performance [22]. Here, CBLE-estimated latency has 

been used to improve BCI performance.

At the beginning of the investigation, we used CBLE-estimated latency to ”correct” for 

latency jitter on a trial-by-trial basis, and used the corrected trials as the ”second-level” 

classifier’s features. However, the improvement in performance was not significant enough 

to merit reporting - without knowledge of the class labels, correcting for latency had the 

unfortunate effect of maximizing the classifier score for examples that did not contain 

P300’s, leading in many cases to less separable score distributions. Further investigations 

using feature reduction techniques, such as wavelet transforms, provided better results. We 

found that wavelet approximation coefficients of CBLE scores are also different for target 

and non-target characters (Fig. 2(b)). That findings motivated us to use wavelet 

approximation coefficients as features for our ”second-level” classifier. For that ”second-

level” classifier, we have compared LS, SWLDA and SVM. Though the performance for all 

three classifiers was almost equal, it is notable that a comparitively simple classification 

technique, LS, was found to be equally or more effective than SWLDA and SVM. This 

provides an insight that using better feature transformation methods may give better results 

even while using simple classification techniques.

The proposed technique appears to be helpful only for participants with lower accuracies 

and higher estimated latency jitter, which are strongly correlated [22]. The largest 
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improvements were found among participants with ALS and NMD. Part of this is because 

the BCI Utility metric highlights the importance of relatively small absolute changes in 

accuracy when the accuracy is low. For example, one participant with ALS had an increase 

of accuracy of 4.4%, resulting in a 30.76% improvement in BCI Utility. However, BCI 

Utility is measuring the capability of a person to produce corrected text - in other words, it is 

an ecologically valid measure of communication throughput. While the accuracy changes 

are small, for users who struggle with the BCI (accuracies in the 50–70% range), even small 

changes can show large improvements in usability.

The two-sided p-value we have found demonstrates that the proposed technique statistically 

improves BCI performance. It should be noted that for some subjects, the performance was 

already good enough that there was no need or room for improvement in accuracy. In this 

case, it is desirable that our performance improvement technique would not decrease 

performance for these individuals. Hence, we have also computed the two-sided p-value for 

the performance improving or at least not changing the performance. That p-value was also 

statistically significant and demonstrates that this method is more likely to help or do 

nothing than to hurt performance.

While the improvements here are not large in magnitude (and not the orders of magnitude of 

improvement that are necessary to e.g. restore natural speech), it is notable that the 

improvements are much larger in our pool of participants from potential user populations. 

The method does not completely compensate for the effects of latency jitter found in [22], 

and significant improvement is still required beyond this work to bring all users to equal 

performance.

We believe the power of this method lies in its ability to correct for latency variation. Our 

previous work has shown that latency variation as measured by CBLE is strongly inversely 

correlated to BCI performance [22]. This has a compounding effect for individuals with high 

online accuracies. If the online accuracy was near 100%, not only is there little room for 

improvement in an absolute sense, but the participant almost certainly demonstrated little 

latency variation. Since this method provides improvement by removing latency variation, 

these individuals will see little benefit from this method. However, it should be noted that 

target populations for BCI often experience lower performance than controls, so this is not a 

critical weakness of this method.

Finally, it is noted that on this dataset LS appears to perform better than SWLDA, even 

without CBLE. This is in contrast with [8], and may be due to the fact that the number of 

stimulus presentations for each participant was chosen based on LS performance.

5. Limitations

CBLE itself has been demonstrated to be at least partially classifier independent [22]. 

Therefore, it is possible that this boosting method could be applied with other first-level 

classifiers being used to estimate the latency. However, we have not tested this claim here. 

We did use a SWLDA-based CBLE with this approach, but the results were not different 

enough to merit inclusion.
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This is an offline analysis of existing data, and the method is not yet ready for online 

implementation.

6. Conclusion

This work demonstrates an improvement in information throughput using a technique that 

can be used with many classifiers, including the relatively simple LS classifier used here. 

Interestingly, the improvement is the largest for participants with marginal accuracies, those 

for whom the typical techniques produced some communication but not ideal performance. 

This suggests that the technique helps to offset, but does not eliminate, the negative effect of 

latency jitter on classification. Further work on removing latency jitter should continue 

providing improved performance for individuals for whom current-generation BCIs do not 

perform well.
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Figure 1. 
Sample classifier scores as function of time shift of participant K143 (participant with ALS).

Mowla et al. Page 12

Brain Comput Interfaces (Abingdon). Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Averages of classifier scores which are shown in Fig. 1(a) & Fig. 1(b) and wavelet 

approximation coefficient for target and non-target characters.
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Figure 3. 
Changes in BCI Utility for participants with ALS versus online test accuracy in different 

sessions. Upper-triangle and lower-triangle indicates the BCI Utility increased and 

decreased, respectively. The diamond indicates no change. Participant IDs are shown only 

for improved performance, to allow the reader to assess consistency of improvement.
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Figure 4. 
Changes in BCI Utility for participants with NMD versus online test accuracy in different 

sessions. Upper-triangle and lower-triangle indicates the BCI Utility increased and 

decreased, respectively. Participant IDs are shown only for improved performance, to allow 

the reader to assess consistency of improvement.
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Figure 5. 
Changes in BCI Utility for control participants versus online test accuracy in different 

sessions. Upper-triangle and lower-triangle indicates the BCI Utility increased and 

decreased, respectively. Diamonds indicate unchanged performance. Participant IDs are 

shown only for improved performance, to allow the reader to assess consistency of 

improvement.
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Figure 6. 
Box plots of the BCI Utility changes for LS, SWLDA and SVM on different sessions.
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Figure 7. 
Changes in BCI Utility versus sCBLE (the standard deviation of CBLE-estimated P300 

latency from target flashes).
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