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Abstract

A novel Gaussian Accelerated Molecular Dynamics (GaMD) method has been developed for 

simultaneous unconstrained enhanced sampling and free energy calculation of biomolecules. 

Without the need to set predefined reaction coordinates, GaMD enables unconstrained enhanced 

sampling of the biomolecules. Furthermore, by constructing a boost potential that follows a 

Gaussian distribution, accurate reweighting of GaMD simulations is achieved via cumulant 

expansion to the second order. The free energy profiles obtained from GaMD simulations allow us 

to identify distinct low energy states of the biomolecules and characterize biomolecular structural 

dynamics quantitatively. In this chapter, we present the theory of GaMD, its implementation in the 

widely used molecular dynamics software packages (AMBER and NAMD), and applications to 

the alanine dipeptide biomolecular model system, protein folding, biomolecular large-scale 

conformational transitions and biomolecular recognition.
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1 Introduction

Biomolecules such as proteins, lipids and nucleic acids often undergo structural changes 

between different low-energy conformational states. The structural dynamics of 

biomolecules plays an essential role in their biological function, e.g., gene translation/

editing, protein folding, biomolecular recognition and cellular signaling1, 2, 3, 4. The 

structure, dynamics and function of biomolecules have been suggested to result from the 

underlying free energy landscapes5, 6. It is important to calculate free energy profiles of 

biomolecules in order to understand their functional mechanisms. However, conformational 

transitions of biomolecules usually take place on timescales of milliseconds or even longer, 

due to high-energy barriers (e.g., 8-12 kcal/mol)1, 7, 8. Sufficient conformational sampling 

and accurate free energy calculations have proven challenging for computational molecular 

dynamics (MD) simulations that are limited to typically hundreds-of-nanoseconds to tens of 

microseconds9, 10, 11, 12.
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To address this challenge, biasing simulation methods have been found to be useful in 

enhanced sampling and free energy calculations of biomolecules. These methods include 

umbrella sampling13, 14, conformational flooding15, 16, metadynamics17, 18, adaptive biasing 

force (ABF) calculations19, 20, orthogonal space sampling21, 22, etc. During the simulations, 

a potential or force bias is applied along certain reaction coordinates (or collective variables) 

to facilitate the biomolecular conformational transitions across high-energy barriers. Typical 

reaction coordinates include atom distances, torsional dihedrals, root-mean square deviation 

(RMSD) relative to a reference configuration, eigenvectors generated from the principal 

component analysis16, and so on. The definition of the reaction coordinates, however, often 

requires expert knowledge of the studied systems. Furthermore, the pre-defined reaction 

coordinates largely place constraints on the pathway and conformational space to be 

sampled during the biasing simulations, which often leads to slow convergence of the 

simulations when important reaction coordinates are missed during the simulation setup18.

Accelerated molecular dynamics (aMD)23, 24 is an enhanced sampling technique that works 

often by adding a non-negative boost potential to smooth the system potential energy 

surface. The boost potential, ΔV decreases the energy barriers and thus accelerates 

transitions between the different low-energy states24, 25. With this, aMD is able to sample 

distinct biomolecular conformations and rare barrier-crossing events that are not accessible 

to conventional MD (cMD) simulations. Unlike the above-mentioned biasing simulation 

methods, aMD does not require pre-defined reaction coordinate(s), which can be 

advantageous for exploring the biomolecular conformational space without a priori 

knowledge or restraints. aMD has been successfully applied to a number of biological 

systems26, 27, 28, 29, 30 and hundreds-of-nanoseconds aMD simulations have been shown to 

capture millisecond-timescale events in both globular and membrane proteins31, 32, 33.

Whereas aMD has been demonstrated to greatly enhance the conformational sampling of 

biomolecules, it suffers from large energetic noise during reweighting34. The boost potential 

applied in aMD simulations is typically on the order of tens to hundreds of kcal/mol, which 

is much greater in magnitude and wider in distribution than that of other biasing simulation 

methods that make use of pre-defined reaction coordinates (e.g., several kcal/mol). It has 

been a long-standing problem to accurately reweight aMD simulations and recover the 

original free energy landscapes, especially for large proteins35, 36. Our recent studies showed 

that when the boost potential follows near-Gaussian distribution, cumulant expansion to the 

second order provides improved reweighting of aMD simulations compared with the 

previously used exponential average and Maclaurin series expansion reweighting methods37. 

The reweighted free energy profiles are in good agreement with the long-timescale cMD 

simulations as demonstrated on alanine dipeptide and fast-folding proteins38. However, such 

improvement is limited to rather small systems (e.g., proteins with less than ~35 amino acid 

residues)38. In simulations of larger systems, the boost potential exhibits significantly wider 

distribution and does not allow for accurate reweighting.

Here, a Gaussian Accelerated Molecular Dynamics (GaMD) approach is presented to reduce 

the energetic noise for simultaneous unstrained enhanced sampling and free energy 

calculation of biomolecules, even for large proteins39, 40. GaMD makes use of a harmonic 

function to construct the boost potential that is adaptively added to the biomolecular 
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potential energy surface. A minimal set of simulation parameters is dynamically adjusted to 

control the magnitude and distribution width of the boost potential. As such, the resulting 

boost potential follows a Gaussian distribution and allows for accurate reweighting of the 

simulations using cumulant expansion to the second order. In this chapter, we present the 

theory of GaMD, its implementation in widely used molecular dynamics software packages 

(particularly AMBER41 and NAMD42), and applications to the alanine dipeptide 

biomolecular model system, protein folding, biomolecular large-scale conformational 

transitions and biomolecular recognition.

2 Theory

2.1 Gaussian Accelerated Molecular Dynamics (GaMD)

Gaussian Accelerated Molecular Dynamics (GaMD) enhances the conformational sampling 

of biomolecules by adding a harmonic boost potential to smooth the system potential energy 

surface (Figure 1)39. Consider a system with N atoms at positions r = r 1, ⋯ r N . When 

the system potential V r  is lower than a threshold energy E, a boost potential is added as:

ΔV r = 1
2k E − V r 2, V r < E, (1)

where k is the harmonic force constant. The modified system potential, 

V∗ r = V r + ΔV r  is given by:

V∗ r = V r + 1
2k E − V r 2, V r < E . (2)

Otherwise, when the system potential is above the threshold energy, i.e., V r ≥ E, the boost 

potential is set to zero and V∗ r = V r .

In order to smooth the potential energy surface for enhanced sampling, the boost potential 

needs to satisfy the following criteria. First, for any two arbitrary potential values V1 r  and 

V2 r  found on the original energy surface, if V1 r < V2 r , ΔV should be a monotonic 

function that does not change the relative order of the biased potential values, i.e., 

V1
∗ r < V2

∗ r . By replacing V∗ r  with Equation (2) and isolating E, we then obtain:

E < 1
2 V1 r + V2 r + 1

k . (3)

Second, if V1 r < V2 r , the potential difference observed on the smoothened energy 

surface should be smaller than that of the original, i.e., V2
∗ r − V1

∗ r < V2 r − V1 r . 

Similarly, by replacing V∗ r  with Equation (2), we can derive:
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E > 1
2 V1 r + V2 r . (4)

With Vmin ≤ V1 r < V2 r ≤ Vmax, we need to set the threshold energy E in the following 

range by combining Equations (3) and (4):

Vmax ≤ E ≤ Vmin + 1
k , (5)

where Vmin and Vmax are the system minimum and maximum potential energies. To ensure 

that Equation (5) is valid, Vmax ≤ Vmin + 1
k  and k have to satisfy:

k ≤ 1
Vmax − Vmin

. (6)

Let us define k ≡ k0 • 1
Vmax − Vmin

, then 0 < k0 ≤ 1. As illustrated in Figure 1, k0 determines 

the magnitude of the applied boost potential. With greater k0, higher boost potential is added 

to the potential energy surface, which provides enhanced sampling of biomolecules across 

decreased energy barriers.

Third, the standard deviation of ΔV needs to be small enough (i.e., narrow distribution) to 

ensure accurate reweighting using cumulant expansion to the second order37:

σΔV = ∂ΔV
∂V V = Vavg

2

σV
2 = k E − Vavg σV ≤ σ0, (7)

where Vavg and σV are the average and standard deviation of the system potential energies, 

σΔV is the standard deviation of ΔV with σ0 as a user-specified upper limit (e.g., 10kBT) for 

accurate reweighting.

Provided Equation (5) that gives the range of threshold energy E, when E is set to the lower 

bound E = Vmax, we substitute in E and k, and obtain:

k0 ≤
σ0
σV

•
Vmax − Vmin
Vmax − Vavg

. (8)
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Let us define the RHS in Equation (8) as k0′ =
σ0
σV

•
Vmax − Vmin
Vmax − Vavg

. For efficient enhanced 

sampling with the highest possible acceleration, k0 can then be set to its upper bound as:

k0 = min(1 . 0, k0′ ) = min 1 . 0,
σ0
σV

•
Vmax − Vmin
Vmax − Vmin

. (9)

The greater σΔV is obtained from the original potential energy surface (particularly for large 

biomolecules), the smaller k0 may be applicable to allow for accurate reweighting. 

Alternatively, when the threshold energy E is set to its upper bound E = Vmin + 1
k  according 

to Equation (5), we substitute in E and k in Equation (7) and obtain:

k0 ≥ 1 −
σ0
σV

•
Vmax − Vmin
Vavg − Vmin

. (10)

Let us define the RHS in Equation (10) as k0″ ≡ 1 −
σ0
σV

•
Vmax − Vmin
Vavg − Vmin

. Note that a smaller k0

will give higher threshold energy E, but smaller force constant k. When 0 < k0″ ≤ 1, k0 can be 

set to either k0″ for the highest threshold energy E or its upper bound 1.0 for the greatest force 

constant k. In this regard, k0 = k0″ is applied in the current GaMD. Otherwise, k0 is calculated 

using Eqn. (9).

Given E and k0, we can calculate the boost potential as:

ΔV r = 1
2k0

1
Vmax − Vmin

E − V r 2, V r < E . (11)

Similar to aMD, GaMD provides options to add only the total potential boost ΔV p, only 

dihedral potential boost ΔVD, or the dual potential boost (both ΔV p and ΔVD). The dual-

boost simulation generally provides higher acceleration than the other two types of 

simulations for enhanced sampling25. The simulation parameters comprise of the threshold 

energy values and the effective harmonic force constants, k0P and k0D for the total and 

dihedral potential boost, respectively.

2.2 Energetic Reweighting of GaMD for Free Energy Calculations

For simulations of a biomolecular system, the probability distribution along a selected 

reaction coordinate A r  is written as p∗ A , where r denotes the atomic positions r1, ⋯, rN . 
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Given the boost potential ΔV r  of each frame, p∗ A  can be reweighted to recover the 

canonical ensemble distribution, p A , as:

p A j = p∗ A j

eβΔV r
j

∑
i = 1

M
p∗ Ai eβΔV r

i

, j = 1, ⋯, M, (12)

where M is the number of bins, β = kBT and eβΔV r
j is the ensemble-averaged Boltzmann 

factor of ΔV r  for simulation frames found in the jth bin. In order to reduce the energetic 

noise, the ensemble-averaged reweighting factor can be approximated using cumulant 

expansion43, 44:

eβΔV = exp ∑
k = 1

∞ βk

k! Ck , (13)

where the first three cumulants are given by:

C1 = ΔV ,

C2 = ΔV2 − ΔV 2 = σΔV
2 ,

C3 = ΔV3 − 3 ΔV2 ΔV + 2 ΔV 3 .

(14)

When the boost potential follows near-Gaussian distribution, cumulant expansion to the 

second order (or “Gaussian Approximation”) provides the accurate approximation for free 

energy calculations37. The reweighted free energy F A = − kBT ln p A  is calculated as:

F A = F∗ A − 1
β ∑

k = 1

2 βk

k! Ck + Fc, (15)

where F∗ A = − kBTlnp∗ A  is the modified free energy obtained from GaMD simulation 

and Fc is a constant.

To characterize the extent to which ΔV follows Gaussian distribution, its distribution 

anharmonicity γ is calculated as37:

γ = Smax − SΔV = 1
2ln 2πeσΔV

2 + ∫
0

∞
p ΔV ln p ΔV dΔV , (16)
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where ΔV is dimensionless as divided by kBT with kB and T being the Boltzmann constant 

and system temperature, respectively, and Smax = 1
2 ln 2πeσΔV

2  is the maximum entropy of 

ΔV45. When γ is zero, ΔV follows exact Gaussian distribution with sufficient sampling. 

Reweighting by approximating the exponential average term with cumulant expansion to the 

second order is able to accurately recover the original free energy landscape. As γ increases, 

the ΔV distribution becomes less harmonic and the reweighted free energy profile obtained 

from cumulant expansion to the second order would deviate from the original. The 

anharmonicity of ΔV distribution serves as an indicator of the enhanced sampling 

convergence and accuracy of the reweighted free energy. Nevertheless, with the new GaMD 

theoretical framework, the GaMD boost potential does not change shape of the biomolecular 

overall energy landscape. A near Gaussian distribution is achieved for the GaMD boost 

potential.

3 Implementation

3.1 Implementation of GaMD in AMBER

GaMD was originally implemented in the GPU version of AMBER 1246, and was later 

transferred to AMBER 14 with a patch available. Currently, GaMD is fully supported in 

AMBER 16 (http://gamd.ucsd.edu). GaMD provides enhanced sampling of biomolecules by 

adding a harmonic boost potential to smooth the system potential energy surface. Following 

is a list of the input parameters for a GaMD simulation:

igamd Flag to apply boost potential

= 0 (default) no boost is applied

= 1 boost on the total potential energy only

= 2 boost on the dihedral energy only

= 3 dual boost on both dihedral and total potential energy

iE Flag to set the threshold energy E

= 1 (default) set the threshold energy to the lower bound E = Vmax

= 2 set the threshold energy to the upper bound E = Vmin + (Vmax - Vmin)/k0

ntcmd The number of initial conventional molecular dynamics simulation steps used to calculate the 
maximum, minimum, average and standard deviation of the system potential energies (i.e., 
Vmax, Vmin, Vavg, σV). The default is 1,000,000 for a simulation with 2 fs timestep.

nteb The number of simulation steps used to equilibrate the system after adding boost potential. The 
default is 1,000,000 for a simulation with 2 fs timestep.

sigma0P The upper limit of the standard deviation of the total potential boost that allows for accurate 
reweighting if igamd is set to 1 or 3. The default is 6.0 (unit: kcal/mol).

sigma0D The upper limit of the standard deviation of the dihedral potential boost that allows for accurate 
reweighting if igamd is set to 2 or 3. The default is 6.0 (unit: kcal/mol).

The GaMD algorithm is summarized as the following:

GaMD {

 For i = 1, …, ntcmd // run short initial conventional molecular dynamics

  Calculate Vmax, Vmin, Vavg, sigmaV

 End

 Calc_E_k0(iE,sigma0,Vmax,Vmin,Vavg,sigmaV)

Miao and McCammon Page 7

Annu Rep Comput Chem. Author manuscript; available in PMC 2018 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://gamd.ucsd.edu


 For i = 1, …, nteb // Equilibrate the system after adding boost potential

  deltaV = 0.5*k0*(E-V)**2/(Vmax-Vmin)

  V = V + deltaV

  Update Vmax, Vmin, Vavg, sigmaV

  Calc_E_k0(iE,sigma0,Vmax,Vmin,Vavg,sigmaV)

 End

 For i = 1, …, nstlim // run production simulation

  deltaV = 0.5*k0*(E-V)**2/(Vmax-Vmin)

  V = V + deltaV

 End

}

Subroutine Calc_E_k0(iE,sigma0,Vmax,Vmin,Vavg,sigmaV) {

 if iE = 1 :

  E = Vmax

  k0′ = (sigma0/sigmaV) * (Vmax-Vmin)/(Vmax-Vavg)

  k0 = min(1.0, k0′)

 else if iE = 2 :

  k0″ = (1-sigma0/sigmaV) * (Vmax-Vmin)/(Vavg-Vmin)

  if 0 < k0” <= 1 :

   k0 = k0”

  else

   k0 = 1.0

  end

  E = Vmin + (Vmax-Vmin)/k0

 end

}

3.2 Implementation of GaMD in NAMD

GaMD has also been implemented in another popular MD software package NAMD40. 

Similar to the previous aMD implemented in NAMD47, three modes are available for 

applying boost potential to biomolecules in GaMD: (1) boosting the dihedral energetic term 

only, (2) boosting the total potential energy only, and (3) boosting both the dihedral and total 

potential energetic terms (i.e., “dual-boost”). The major code modification is to extend the 

aMD function in NAMD 2.11 to include the boost potential calculation used in GaMD. The 

GaMD boost potential is computed based on statistics of the system potential such as the 

minimum, maximum, average and standard deviation. Therefore, three stages of simulation 

are needed to collect the potential statistics. They include the (i) cMD stage, (ii) 

equilibration and (iii) production stages. The program first collects potential statistics from a 

short cMD run. Subsequently, a boost potential is added to the system in the equilibration 

stage while update of the potential statistics continues. During this stage, the boost potential 

applied in each step is computed based on the energetic statistics collected up to that 

particular step. After the equilibration stage, the statistics collected is assumed to be 

sufficient to represent the potential energy landscape of interest. Hence, the potential 

statistics are fixed to calculate the boost potential for running the production simulation. 

Note that in both the cMD and equilibration stages, there are a small number of steps at the 
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beginning of each stage during which we do not collect statistics. These steps, named 

preparation steps, are performed to allow the system to adapt to the simulation environment. 

The program starts collecting statistics of the potential energies after the preparation steps.

The GaMD algorithm is implemented in NAMD 2.1142 as the following:

GaMD {

 If (accelMDGRestart == 1) then

  Read parameters from restart file

  Jump to the state written in the restart file

 End if

 For i = 1, …, cMDSteps // run short initial conventional molecular dynamics

  if (i == cMDPrepSteps) reset Vmax, Vmin, Vavg, sigmaV

  Update_Stat(n,V,Vmax,Vmin,Vavg,M2,sigmaV)

  if (i % restartfreq) Save restart file

 End

 Calc_E_k(iE,sigma0,Vmax,Vmin,Vavg,sigmaV)

 For i = 1, …, EquilSteps // Equilibrate the system after adding boost potential

  If (E > V) then

   deltaV = 0.5*k*(E-V)**2

   V = V + deltaV

  EndIf

  Update_Stat(n,V,Vmax,Vmin,Vavg,M2,sigmaV)

  if (i >= EquilPrepSteps)

   Calc_E_k(iE,sigma0,Vmax,Vmin,Vavg,sigmaV)

  if (i % restartfreq) Save restart file

 End

 For i = 1, …, ProdSteps // run production simulation

  If (E > V) then

   deltaV = 0.5*k*(E-V)**2

   V = V + deltaV

  EndIf

  if (i % restartfreq) Save restart file

 End

}

Subroutine Update_Stat(n,V,Vmax,Vmin,Vavg,M2,sigmaV) {

  if (V > Vmax) Vmax = V

  if (V < Vmin) Vmin = V

  Vdiff = V – Vavg

  Vavg = Vavg + Vdiff / n

  M2 = M2 + Vdiff * (V – Vavg)

  sigmaV = sqrt(M2 / n)

  n = n + 1

}

Subroutine Calc_E_k(iE,sigma0,Vmax,Vmin,Vavg,sigmaV) {

  if iE = 1 :
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   E = Vmax

   k0′ = (sigma0/sigmaV) * (Vmax-Vmin)/(Vmax-Vavg)

   k0 = min(1.0, k0′)

  else if iE = 2 :

   k0” = (1-sigma0/sigmaV) * (Vmax-Vmin)/(Vavg-Vmin)

   if 0 < k0” <= 1 :

    k0 = k0”

    E = Vmin + (Vmax-Vmin)/k0

   else

    E = Vmax

    k0′ = (sigma0/sigmaV) * (Vmax-Vmin)/(Vmax-Vavg)

    k0 = min(1.0, k0′)

   end

  end

  k = k0/(Vmax-Vmin)

}

The following is a list of the input parameters for GaMD simulation in NAMD:

- accelMDG < Is Gaussian accelerated MD on? >

Acceptable Values: on or off

Default Value: off

Description: Specifies whether Gaussian accelerated MD (GaMD) is on.

- accelMDGiE < Flag to set the threshold energy E for adding boost potential >

Acceptable Values: 1, 2

Default Value: 1

Description: Specifies how the threshold energy E is set in GaMD. A value of 1 

indicates that the threshold energy E is set to its lower bound E = Vmax. A value 

of 2 indicates that the threshold energy E is set to its upper bound E = Vmin + 

(Vmax - Vmin) / k0.

- accelMDGcMDPrepSteps < no. of preparatory cMD steps >

Acceptable Values: Zero or Positive integer

Default Values: 200,000

Description: The number of preparatory conventional MD (cMD) steps in 

GaMD. This value should be smaller than accelMDGcMDSteps (see below). 

Potential energies are not collected for calculating the values of Vmax, Vmin, 

Vavg, σV during the first accelMDGcMDPrepSteps.

- accelMDGcMDSteps < no. of total cMD steps in GaMD >

Acceptable Values: Positive integer

Default Value: 1,000,000
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Description: The number of total cMD steps in GaMD. With 

accelMDGcMDPrepSteps < t < accelMDGcMDSteps, Vmax, Vmin, Vavg, σV 

are collected and at t = accelMDGcMDSteps, E and k0 are computed.

- accelMDGEquiPrepSteps < no. of preparatory equilibration steps in GaMD >

Acceptable Values: Zero or Positive integer

Default Value: 200,000

Description: The number of preparatory equilibration steps in GaMD. This value 

should be smaller than accelMDGEquiSteps (see below). With 

accelMDGcMDSteps < t < accelMDGEquiPrepSteps + accelMDGcMDSteps, 

GaMD boost potential is applied according to E and k0 obtained at 

t=accelMDGcMDSteps.

- accelMDGEquiSteps < no. of total equilibration steps in GaMD >

Acceptable Values: Zero or Positive integer

Default Value: 1,000,000

Description: The number of total equilibration steps in GaMD. With 

accelMDGEquiPrepSteps + accelMDGcMDSteps < t < accelMDGEquiSteps + 

accelMDGcMDSteps, GaMD boost potential is applied, and E and k0 are 

updated every step.

- accelMDGSigma0P < upper limit of the standard deviation of the total boost 

potential in GaMD >

Acceptable Values: Positive real number

Default Value: 6.0 (kcal/mol)

Description: Specifies the upper limit of the standard deviation of the total boost 

potential. This option is only available when accelMDdihe is off or when 

accelMDdual is on.

- accelMDGSigma0D < upper limit of S.D. of the dihedral potential boost in 

GaMD >

Acceptable Values: Positive real number

Default Value: 6.0 (kcal/mol)

Description: Specifies the upper limit of the standard deviation of the dihedral 

boost potential. This option is only available when accelMDdihe or 

accelMDdual is on.

- accelMDGRestart < Flag to restart GaMD simulation >

Acceptable Values: on or off

Default Value: off
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Description: Specifies whether the current GaMD simulation is the continuation 

of a previous run. If this option is turned on, the GaMD restart file specified by 

accelMDGRestartFile (see below) will be read.

- accelMDGRestartFile < Name of GaMD restart file >

Acceptable Values: UNIX filename

Description: A GaMD restart file that stores the current number of steps, 

maximum, minimum, average, standard deviation of the dihedral and/or total 

potential energies (depending on the accelMDdihe and accelMDdual 

parameters) and the current timestep settings. This file is saved automatically 

every restartfreq steps. If accelMDGRestart is turned on, this file will be read 

and the simulation will restart from the point where the file was written.

3.3 “PyReweighting” toolkit for Energetic Reweighting

A toolkit of Python scripts “PyReweighting”37 has been developed to reweight the GaMD 

(as well as aMD) simulations for calculating the potential of mean force (PMF) profiles and 

examine the boost potential distributions. “PyReweighting” is distributed free of charge at 

http://mccammon.ucsd.edu/computing/amdReweighting/. In addition to the cumulant 

expansion to the second order reweighting as described in Section 2.2, “PyReweighting” 

provides the “exponential average” and Maclaurin series expansion reweighting algorithms 

for comparison.

In the “exponential average” algorithm, the ensemble-averaged Boltzmann reweighting 

factor eβΔV r
j of ΔV r  for simulation frames found in the jth bin in Equation (12) is 

calculated directly. Because the Boltzmann reweighting factors are often dominated by high 

boost potential frames, the “exponential average” reweighting leads to high energetic noise 

for free energy calculations37.

Furthermore, the exponential term can be approximated by summation of the Maclaurin 

series of boost potential ΔV r  with the reweighting factor rewritten as:

eβΔV = ∑
k = 0

∞ βk

k! ΔVk , (17)

where the subscript j has been suppressed. The Maclaurin series expansion up to the 5th-10th 

order has been used in practice to reweight aMD trajectories31. The reweighted PMF profiles 

are typically less noisy than those obtained from exponential average reweighting. Note that 

the Maclaruin series expansion is equivalent to cumulant expansion on the first order37:

eβΔV = ∑
k = 0

∞ βk

k! ΔVk = eβ ΔV . (18)
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When the boost potential follows near-Gaussian distribution, cumulant expansion to the 

second order (or “Gaussian Approximation”) provides more accurate reweighting compared 

with the exponential average and Maclaurin series expansion methods37.

4 Applications

GaMD provides unconstrained enhanced sampling of biomolecules without the need to set 

predefined reaction coordinates. This enables a wide range of technological applications in 

biomolecular modeling. Furthermore, the GaMD boost potential follows Gaussian 

distribution, which allows accurate reweighting using cumulant expansion to the 2nd order 

and recovery of the original biomolecular free energy landscapes, even for large 

proteins39, 40, 48. Depending on the system size, GaMD provides orders of magnitude 

speedup for biomolecular simulations. Short GaMD simulations performed over hundreds-

of-nanoseconds to microseconds are able to capture millisecond-timescale events. Here, we 

will describe the applications of GaMD in the alanine dipeptide biomolecular model system, 

protein folding, biomolecular large-scale conformational transitions and biomolecular 

recognition.

4.1 Alanine Dipeptide

Simulation Protocol—The AMBER ff99SB force field was used for alanine dipeptide 

and the simulation system was built using the Xleap module in the AMBER 

package39, 49, 50, 51, 52, 53. By solvating alanine dipeptide in a TIP3P54 water box that 

extends 8 to 10 Å from the solute surface, the system contained 630 water molecules and 

1,912 atoms in total. Periodic boundary conditions were applied for the simulation systems. 

Bonds containing hydrogen atoms were restrained with the SHAKE algorithm55 and a 2fs 
timestep was used. Weak coupling to an external temperature and pressure bath was used to 

control both temperature and pressure56. The electrostatic interactions were calculated using 

the particle mesh Ewald (PME) summation57 with a cutoff of 8.0 Å for long-range 

interactions. After the initial energy minimization and thermalization39, dual-boost GaMD 

was applied to simulate the alanine dipeptide system. The system threshold energy E for 

applying the boost potential was set to Vmax. The default parameter values were used for the 

GaMD simulations. Statistics of the system potential were first collected from an initial 2 ns 

cMD run, followed by a 6 ns equilibration run. Finally, three independent 30 ns production 

runs were performed with different randomized initial atomic velocities. The 

implementations of GaMD in both AMBER and NAMD have been applied to simulate 

alanine dipeptide yielding similar results39, 40. We will present results mainly obtained from 

GaMD-NAMD40 in the following.

Simulation Results—Free energy profiles were computed for backbone dihedrals (Φ, Ψ) 

in alanine dipeptide (Figure 2A). A bin size of 6° is selected to balance between reducing the 

anharmonicity and increasing the bin resolution37. Analysis of the system boost potential 

showed that it followed Gaussian distribution with low anharmonicity (7.18×10−3) (Figure 

2B). The boost potential average is 6.93 kcal/mol with 1.87 kcal/mol for the standard 

deviation. With this set of parameters, the cumulant expansion to the 2nd order was applied 

for the reweighting.
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In comparison, the reweighted PMF profiles obtained from 30ns GaMD trajectories agree 

quantitatively with the original profiles from much longer 1000 ns cMD simulation. 

Although the GaMD derived PMF profile of Φ exhibits moderate fluctuations near the 

energy barrier at 0° and slightly elevated free energy well centered at ~50° (Figure 2C), it 

essentially overlaps with the original profile in the other regions, similar for the entire PMF 

profile of Ψ (Figure 2D). In contrast, three cMD simulations did not properly sample the 

energy barriers of Φ at 0° and Ψ at 120°40. For Φ, the energy well centered at 60° obtained 

from the 30 ns cMD simulations was higher than that from 1000 ns cMD simulation. 

Therefore, whereas cMD simulations performed for 30ns are poorly converged for alanine 

dipeptide, GaMD simulations of the same length yielded significantly improved free energy 

profiles that agree quantitatively with those of the 1000 ns cMD simulation.

In addition, we calculated a 2D PMF of (Φ, Ψ) in alanine dipeptide by reweighting the three 

30 ns GaMD trajectories combined. As shown in Figure 2E, five free energy wells were 

identified in the reweighted PMF profile of (Φ, Ψ), which are centered around (−144°, 0°) 

and (−72°, −18°) for the right-handed α helix (αR), (48°, −6°) for the left-handed α helix 

(αL), (−150°, 156°) for the β-sheet and (−72°, 162°) for the polyproline II (PII) 

conformation (Figure 2E). Their corresponding minimum free energies are estimated as 0 

kcal/mol, 0.47 kcal/mol, 1.82 kcal/mol, 1.44 kcal/mol and 2.35 kcal/mol, respectively. In 

addition, the distribution anharmonicity of ΔV of frames clustered in each bin of the 2D 

PMF is smaller than 0.10 in all low-energy regions (Figure 2F), suggesting that reweighting 

using 2nd order cumulant expansion is a reasonable approximation. Indeed, the reweighted 

2D PMF profile obtained from three 30ns GaMD trajectories (Figure 2E) is very similar to 

that obtained from 1000ns cMD, but not for the 30 ns cMD simulations40.

Therefore, short GaMD simulations of the alanine dipeptide performed for only 30ns were 

able to reproduce highly accurate free energy profiles of the backbone dihedrals that may 

need as long as 1000 ns cMD simulation to converge. The free energy errors were almost 

negligible except the elevated free energy well of Φ near 50° by ~0.5 kcal/mol and slight 

fluctuations in the energy barriers (particularly Φ at 0° and Ψ at −120°) (Figures 2C and 

2D). In contrast, cMD simulations lasting 30 ns hardly sample these free energy barriers and 

exhibit poor convergence40. These results show that GaMD-NAMD greatly accelerates the 

conformational sampling and accurate free energy calculation of the alanine dipeptide 

biomolecular model system.

4.2 Protein Folding

Simulation Protocol—GaMD was applied to simulate the folding of chignolin, which is a 

fast-folding protein with 10 amino acid residues. Simulations of chignolin were performed 

using the AMBER ff99SB force field on GPUs49, 50, 51, 52. The simulation system was built 

using the Xleap module of the AMBER package. By solvating chignolin in a TIP3P54 water 

box that extends 8 to 10 Å from the solute surface, the system contained 2,211 water 

molecules and 6,773 atoms in total. Periodic boundary conditions were applied for the 

simulation system. Bonds containing hydrogen atoms were restrained with the SHAKE 

algorithm55 and a 2fs timestep was used. Weak coupling to an external temperature and 

pressure bath was used to control both temperature and pressure56. The electrostatic 
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interactions were calculated using the PME (particle mesh Ewald summation)57 with a 

cutoff of 8.0 Å for long-range interactions.

The system was initially minimized for 2,000 steps using the conjugate gradient 

minimization algorithm and then the solvent was equilibrated for 50 ps in isothermal-

isobaric (NPT) ensemble with the solute atoms fixed. Another minimization was performed 

with all atoms free and the system was slowly heated to 300 K over 500 ps. Final system 

equilibration was achieved by a 200 ps isothermal-isovolumetric (NVT) and 400 ps NPT run 

to assure that the water box of simulated system had reached the appropriate density.

In GaMD simulations of chignolin, the system threshold energy is set as E = Vmax. The 

maximum, minimum, average and standard deviation values of the system potential ( Vmax, 

Vmin, Vavg and σV) were obtained from an initial 2 ns NVT simulation with no boost 

potential. The GaMD simulation proceeds with 50 ns equilibration after adding the boost 

potential and then three independent 300 ns production runs using the dual-boost. The 

GaMD implemented in both AMBER and NAMD has been applied to simulate chignolin 

yielding similar results39, 40, although certain difference was found in the calculated free 

energy profiles, which will be described below. We will present results mainly obtained from 

GaMD-NAMD40 in the following.

Simulation Results—Starting from an extended conformation of chignolin, GaMD 

simulations were able to capture complete folding of the protein into its native structure 

within 300 ns. The RMSD obtained between the simulation-folded chignolin and NMR 

experimental native structure (PDB: 1UAO) reaches a minimum of 0.2 Å (Figure 3A). The 

system boost potential applied in the GaMD simulations followed Gaussian distribution with 

the anharmonicity equal to 9.66×10−3 (Figure 3B). The average and standard deviation of 

the boost potential are 11.2 kcal/mol and 2.8 kcal/mol, respectively. During the three 

independent 300ns GaMD simulations, chignolin folded into the native conformational state 

with RMSD < 2 Å and unfolded repeatedly in two of the simulations. It remained in the 

folded state after rapid folding within ~20 ns in the third simulation (Figure 3C). Upon 

folding, the chignolin showed decrease of the radius of gyration, Rg, to 4.2 Å (Figure 3D).

Based on the Gaussian distribution of the boost potential, cumulant expansion to 2nd order 

was applied to reweight the combined three 300 ns GaMD simulations of chignolin. A 2D 

PMF profile was calculated for the protein RMSD relative to the PDB native structure and 

the radius of gyration, (RMSD, Rg) as shown in Figure 3E. The reweighted PMF allowed us 

to identify the folded (“F”) and intermediate (“I”) conformational states, which correspond 

to the global energy minimum at (1.0 Å, 4.0 Å) and a low-energy well centered at (4.5 Å, 

5.5 Å), respectively. Figure 3F plots the distribution anharmonicity of ΔV for frames found 

in each bin of the 2D PMF as shown in Figure 3E. The anharmonicity exhibits values 

smaller than 0.05 in the simulation sampled conformational space, suggesting that the boost 

potential follows Gaussian distribution for proper reweighting using cumulant expansion to 

the 2nd order. Therefore, GaMD enables efficient enhanced sampling and free energy 

calculations of protein folding as demonstrated on the chignolin.
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In summary, the GaMD-NAMD simulations were able to fold the protein rapidly. In two of 

the three 300ns GaMD simulations, chignolin undergoes both folding and unfolding 

repeatedly (Figure 3C). Compared with the average folding time obtained from long-

timescale cMD simulations (600 ns)58, GaMD folds the protein within ~28 ns, i.e., ~30 

times faster. Unlike the previous GaMD-AMBER simulations39, the fully unfolded state of 

chignolin does not appear as a low-energy well in the reweighted free energy profile 

obtained from the present GaMD-NAMD simulations. This behavior will be subject to 

further investigation in future GaMD studies. Nonetheless, in addition to sampling the 

folded state in the global free energy minimum, the GaMD-NAMD simulations also 

captured the intermediate state during the folding of the protein. This is consistent with the 

previous long-timescale cMD58 and aMD38 simulations.

4.3 Biomolecular Conformational Transitions: G-Protein-Coupled Receptors (GPCRs)

G-protein-coupled receptors (GPCRs) represent primary targets of about one third of 

currently marketed drugs. The structure, dynamics and function of GPCRs result from 

complex free energy landscapes6. Here, we have applied the GaMD method to study the 

ligand-dependent behavior of the M2 muscarinic GPCR. The M2 muscarinic receptor is 

widely distributed in mammalian tissues. It plays a key role in regulating the human heart 

rate and heart contraction forces. The M2 receptor has been crystallized in both an inactive 

state bound by the inverse agonist 3-quinuclidinyl-benzilate (QNB)59 and an active state 

bound by the full agonist iperoxo (IXO) and a G protein mimetic nanobody60. The receptor 

activation is characterized by rearrangements of the transmembrane (TM) helices 5, 6 and 7, 

particularly closing of the ligand-binding pocket, outward tilting of the TM6 cytoplasmic 

end and close interaction of Tyr2065.58 and Tyr4407.53 in the G protein-coupling site60. The 

residue superscripts denote the Ballesteros-Weinstein (BW) numbering of GPCRs61. 

Extensive GaMD simulations have revealed distinct structural flexibility and free energy 

profiles that depict graded activation of the M2 receptor. We have unprecedentedly captured 

both dissociation and binding of an orthosteric ligand in a single all-atom GPCR simulation, 

which will be described in Section 4.4.3.

Simulation Protocol—GaMD simulations were performed on the M2 muscarinic GPCR 

that is bound by the full agonist IXO, partial agonist arecoline (ARC)62 and inverse agonist 

QNB, in the presence or absence of the G protein mimetic nanobody Nb9-8. The 

CHARMM36 parameter set63 was used for the M2 receptor, G-protein mimetic nanobody 

and POPC lipids. Force field parameters of QNB were obtained from the CHARMM 

ParamChem web server and QNB was simulated in the protonated state as described 

previously64. For full agonist IXO and partial agonist ARC, the force field parameters were 

computed using the General Automated Atomic Model Parameterization (GAAMP) tool65. 

By using ab initio quantum mechanical calculations, GAAMP65 generates force field 

parameters that are compatible with CHARMM as used for protein and lipids36.

For each of the M2 receptor complex systems, initial energy minimization, thermalization 

and 100 ns cMD equilibration were performed using NAMD 2.1042. A cutoff distance of 12 

Å was used for the van der Waals and short-range electrostatic interactions and the long-

range electrostatic interactions were computed with the particle-mesh Ewald summation 
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method using a grid point density of 1/Å. A 2 fs integration time-step was used for all MD 

simulations and a multiple-time-stepping algorithm was employed with bonded and short-

range nonbonded interactions computed every time-step and long-range electrostatic 

interactions every two time-steps. The SHAKE algorithm was applied to all hydrogen-

containing bonds. The NAMD simulation started with equilibration of the lipid tails. With 

all other atoms fixed, the lipid tails were energy minimized for 1000 steps using the 

conjugate gradient algorithm and melted with an NVT run for 0.5 ns at 310 K. The two 

systems were further equilibrated using an NPT run at 1 atm and 310 K for 10 ns with 5 

kcal/(mol·Å2) harmonic position restraints applied to the crystallographically-identified 

atoms in the protein and ligand. The system volume was found to decrease with a flexible 

unit cell applied and level off within 10 ns NPT run, suggesting that solvent and lipid 

molecules in the system were well equilibrated. Final equilibration of each system was 

performed using an NPT run at 1 atm and 310 K for 0.5 ns with all atoms unrestrained. After 

energy minimization and system equilibration, a cMD simulation was performed on each 

system for 100 ns at 1 atm pressure and 310 K with a constant ratio constraint applied on the 

lipid bilayer in the X-Y plane.

With the NAMD output structure, together with the system topology and CHARMM36 force 

field files, the ParmEd tool in the AMBER package was used to convert the simulation files 

into the AMBER format41. The GaMD module implemented in the GPU version of 

AMBER1439, 41 was then applied to perform the GaMD simulation, which included a 10 ns 

short cMD simulation to collect the potential statistics for calculating GaMD acceleration 

parameters, a 50 ns equilibration after adding the boost potential, and finally multiple 

independent GaMD production simulations with randomized initial atomic velocities. All 

GaMD simulations were run at the “dual-boost” level by setting the reference energy to the 

lower bound, i.e., E = Vmax
39. One boost potential is applied to the dihedral energetic term 

and another to the total potential energetic term. The average and standard deviation of the 

system potential energies were calculated every 200,000 steps (400 ps) and 250,000 (500 ps) 

steps for the nanobody-free and nanobody-bound complex systems, respectively. The upper 

limit of the boost potential standard deviation, σ0 was set to 6.0 kcal/mol for both the 

dihedral and total potential energetic terms. Similar temperature and pressure parameters 

were used as in the NAMD simulations. GaMD production simulations were performed on 

the different M2 receptor complex systems at 400 - 2030 ns lengths. The simulation frames 

were saved every 0.1 ps for analysis.

Simulation Results—Detailed ligand-dependent dynamics and free energy profiles of the 

M2 muscarinic GPCR were obtained through the GaMD simulations (~19 μs in total). The 

receptor orthosteric pocket exhibits both closed and open conformations (Figure 4A), for 

which the “Tyrosine lid”60 composed of residues Tyr1043.33, Tyr4036.51 and Tyr4267.39 

samples free energy minima at ~30 Å and ~33 Å, respectively (Figure 4C). In the presence 

of the G protein mimetic nanobody, IXO shifts the receptor conformational equilibrium to 

the closed state. In contrast, the orthosteric pocket interconverts dynamically between the 

closed and open states when the ligand is changed from IXO to ARC in the nanobody-

coupled receptor, although the extracellular vestibule remains to adopt the narrowest 

opening48. Without the nanobody, QNB confines the receptor orthosteric pocket in the open 

Miao and McCammon Page 17

Annu Rep Comput Chem. Author manuscript; available in PMC 2018 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



state. ARC and IXO, however, yield a significantly broader energy well covering both the 

open and closed states although the open state is favored. Given such plasticity, the 

orthosteric pocket of the M2 receptor is able to accommodate different ligands of various 

sizes60, 62. In addition, the extracellular vestibule in the IXO- and ARC-bound receptor 

samples both the narrow and wide opening conformations, for which the distances between 

Tyr177ECL2−Asn4106.58 are 12.5 Å and ~16 Å, respectively48. Overall, the extracellular 

vestibule appears highly flexible. Binding of allosteric modulators may stabilize it in specific 

conformations and alter the orthosteric ligand-mediated responses60, 66.

The G protein-coupling site samples the inactive, intermediates “I1” and “I2”, and active 

conformational states (Figure 4B), for which low-energy minima are found for the 

Arg1213.50−Thr3866.34 distance at 6.0-7.0 Å, ~10 Å, ~12 Å, ~15 Å, respectively (Figure 

4D). QNB confines the receptor in the inactive state, while binding of IXO and ARC, 

together with the nanobody, shifts the receptor to the fully active state. In contrast, the full/

partial agonist alone allows the receptor to sample more than one low-energy state. The M2-

ARC complex samples the inactive and intermediate “I1” states with similar free energies. In 

addition, IXO shifts the conformational equilibrium further and allows the receptor to visit 

the intermediate “I2” state.

Overall, the M2 receptor samples a large conformational space (Figure 5). In the presence of 

the G protein mimetic nanobody, the receptor is stabilized in the fully active state with the 

most open intracellular pocket and the narrowest extracellular vestibule. In the orthosteric 

pocket, IXO stabilizes the receptor in the closed state, while ARC binding allows the 

receptor to change between the closed and open states with two alternative conformations 

(ARC-P1 and ARC-P1′)48. Such dynamic binding of the partial agonist, along with multiple 

associated receptor conformations, has previously been observed in NMR experiments of the 

peroxisome proliferator-activated receptor γ67.

Removal of the nanobody leads to deactivation of the M2 receptor with inward displacement 

of the TM6 cytoplasmic end. This is consistent with extensive experimental and 

computational studies of GPCRs, especially on the β2-adrenergic receptor (β2AR)68. 

Binding of QNB confines the receptor in the inactive state with the shortest distance 

between Arg1213.50−Thr3866.34 (~6-7 Å). Without the G protein or mimetic nanobody, 

ARC biases the receptor to visit an intermediate state “I1” that exhibits increased distance 

between Arg1213.50−Thr3866.34 (~10 Å). In comparison, IXO is able to bias the receptor 

further, sampling both intermediates “I1” and “I2” with ~10 Å and ~12 Å distances between 

Arg1213.50−Thr3866.34, respectively. Note that our earlier accelerated MD (aMD) 

simulations captured similar conformational change during activation of the apo M2 receptor 

that exhibits basal activity32. Even without agonist binding, the apo receptor undergoes 

transient outward movement of the TM6 cytoplasmic end up to ~12 Å. To a certain extent, 

the intermediate “I2” in the present study can be considered as an “active-like” state, which 

has been used to define the agonist-bound adenosine A2A receptor (A2AAR)69. In summary, 

graded activation of the M2 receptor is characterized by outward movement of the TM6 

cytoplasmic end at increasing magnitudes when the ligand changes from inverse to partial 

and full agonists.
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4.4 Biomolecular Recognition

4.4.1 Ligand binding of the T4-lysozyme

Simulation Protocol: GaMD simulations of ligand binding to the T4-lysozyme were 

performed using the AMBER ff99SB force field on GPUs49, 50, 51, 52. The simulated 

systems were built using the Xleap module of the AMBER package. The ligand benzene 

was removed from the X-ray crystal structure of the Leu99Ala mutant (PDB: 181L)70. 

Another four benzene molecules were placed in the bulk solvent at least 40 Å away from the 

ligand-binding site in the starting configuration. By solvating T4-lysozyme in a TIP3P54 

water box that extends 8 to 10 Å from the solute surface, the system contained 9,011 water 

molecules and 29,692 atoms in total. Five independent 800 ns dual-boost GaMD simulations 

were initially performed. Complete binding of benzene to the target ligand-binding site was 

observed in one of the five simulations. Even when the simulation was extended to 1,800 ns, 

benzene remained tightly bound in the ligand-binding cavity. The simulation frames were 

saved every 0.1 ps for analysis.

Simulation Results: GaMD captured complete binding of benzene to the deeply buried 

ligand-binding cavity in the T4-lysozyme within ~100 ns in one of the five independent 800 

ns simulations. Benzene remained bound in ligand-binding site even when the simulation 

was extended to 1,800 ns. As shown in Figure 6A, Benzene diffuses from the bulk solvent to 

the protein surface formed by the αD and αG helices and then to the target ligand-binding 

site in the protein C-terminal domain. In the intermediate state, benzene interacts with 

residues Lys83, Pro86 and Val87 from the αD helix and the Thr115, Thr119 and Gln122 

residues from the αG helix (Figure 6B). In the bound pose (the binding position and 

orientation of a ligand at a protein target site), benzene is superimposable with the ligand co-

crystallized in the 181L crystal structure. By aligning the C-terminal domain (residues 

80-160) of the T4-lysozyme, the RMSD of the diffusing benzene molecules relative to the 

bound pose in the 181L X-ray crystal structure reaches a minimum of 0.1 Å (Figure 6C). It 

forms hydrophobic interactions with residues Ile78, Leu84, Tyr88, Val87, Leu91, Val111, 

Leu118 and Leu121 in the deeply buried protein cavity39.

The boost potential applied during the 1,800 ns GaMD simulation follows Gaussian 

distribution and its distribution anharmonicity γ equals 1.39×10−3 (Figure 6D). The average 

and standard deviation of ΔV are 36.5 kcal/mol and 4.7 kcal/mol, respectively. Although the 

ΔV average values exhibit variations between five independent simulations, the ΔV standard 

deviations are closely similar to each other provided that ( σ0P, σ0D) were set to (3.0, 4.0).

Using the RMSD of benzene relative to the bound pose and the number protein heavy atoms 

that are within 5 Å of benzene (Ncontact) with a bin size of (1.0 Å, 5), a 2D PMF profile was 

calculated by reweighting the 1,800 ns GaMD simulation (Figure 6E). The reweighted PMF 

allows us to identify three distinct low-energy states: the unbound (“U”), intermediate (“I”) 

and bound (“B”) states. The bound state corresponds to the global energy minimum located 

at ~(0 Å, 30), the unbound state in a local energy well centered at ~(33 Å, 0) and the 

intermediate centered at ~(11 Å, 20). It is important to note that since the complete binding 

of benzene to the target ligand-binding site was observed only once, the calculated binding 

free energy between the bound and unbound states is subject to the error of limited 
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sampling. Nevertheless, benzene visits the intermediate site many times during the 1800 ns 
GaMD simulation with the ligand RMSD decreased to ~11 Å (Figure 6E)39. Repeated 

sampling of the intermediate state was observed in the other four 800 ns GaMD simulations 

as well, for which a local energy well appears around (11.0 Å, 20) in the 2D PMF profiles39. 

The relative free energy between the intermediate and unbound states is estimated to be 

0.53±0.46 kcal/mol from PMF profiles of the five GaMD simulations. Furthermore, benzene 

was observed to bind another intermediate 2 (“I2”) site that is located in the pocket formed 

by the hinge αC helix and the αB helix from the N-terminal domain39. A corresponding 

local energy well of the I2 state appears in the calculated 2D PMF profiles. Figure 6F plots 

the ΔV distribution anharmonicity, γ for frames found in each bin of the 2D PMF. It exhibits 

relatively large values in the high-energy regions (less sampling), notably the energy barrier 

between the intermediate and bound states. The ligand entry from the intermediate to the 

bound state is thus suggested to be the rate-limiting step for benzene binding. In comparison, 

γ exhibits values smaller than 0.01 in the energy well regions, suggesting that ΔV achieves 

sufficient sampling for reweighting using cumulant expansion to the 2nd order.

In summary, GaMD captured complete binding of benzene to the ligand-binding site of the 

T4-lysozyme. Distinct low-energy unbound, intermediate and bound states were identified 

from the reweighted free energy profiles. The atomistic GaMD simulation also elucidates a 

highly detailed binding pathway of benzene that diffuses from the bulk solvent to an 

intermediate site located on the protein surface formed by the αD and αG helices, and then 

slides into the target ligand-binding cavity through a channel formed by the αD, αF and αG 

helices. The free energy difference between the intermediate and unbound states was found 

to be small at 0.53 ± 0.46 kcal/mol as estimated from the five independent GaMD 

simulations. Benzene repeatedly visits the intermediate site on the protein surface. In 

comparison, the ligand entry from protein surface to the deeply buried protein cavity appears 

to be the rate-limiting step for complete benzene binding. It is important to note that the 

complete ligand binding was not observed in the four 800 ns GaMD simulations, suggesting 

that the present GaMD simulations still suffer from insufficient sampling of the ligand entry 

process and the reweighted free energy profiles remain un-converged. This is also indicated 

by the increased anharmonicity corresponding to the free energy barrier between the 

intermediate and bound states as shown in Figure 6F. Nevertheless, our GaMD simulation 

captured a binding pathway of benzene to the T4-lysozyme. The ligand entry site is indeed 

adjacent to the mobile αF helix (residues 108-113), which has been suggested earlier71, 72, 73 

based on the finding that the αF helix exhibit increased B-factors in the Leu99Ala complex 

structures compared to the apo structures70, 74, 75.

4.4.2 Ligand Binding of the M3 Muscarinic GPCR—The GaMD implemented in 

NAMD 2.1140 was applied to simulate binding of the endogenous agonist acetylcholine 

(ACh) to the M3 muscarinic GPCR (Figure 7). The M3 muscarinic receptor is widely 

expressed in human tissues and a key seven-transmembrane (TM) GPCR that has been 

targeted for treating various human diseases, including cancer76, diabetes77, 78 and obesity79.

Simulation Protocol: Simulations of the M3 muscarinic receptor were carried out using the 

inactive tiotropium (TTP)-bound X-ray structure (PDB: 4DAJ) that was determined at 3.40 
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Å resolution59. To simulate the ligand binding, TTP was removed from the X-ray structure. 

The T4 lysozyme that was fused into the protein to replace intracellular loop 3 (ICL3) for 

crystallizing the receptor was omitted from all simulations, based on previous findings that 

removal of the bulk of ICL3 does not appear to affect GPCR function and ICL3 is highly 

flexible68. All chain termini were capped with neutral groups (acetyl and methylamide). Two 

disulphide bonds that were resolved in the crystal structure, i.e., C1403.25-C220ECL2 and 

C5166.61-C5197.29, were maintained in the simulations. Using the psfgen plugin in VMD80, 

the Asp1132.50 residue was protonated as in previous microsecond-timescale Anton 

simulations64. All other protein residues were set to the standard CHARMM protonation 

states at neutral pH64, including the deprotonated Asp1473.32 residue in the orthosteric 

site33, 36.

The M3 receptor was inserted into a palmitoyl-oleoyl-phosphatidyl-choline (POPC) bilayer 

with all overlapping lipid molecules removed using the Membrane plugin and solvated in a 

water box using the Solvate plugin in VMD80. Four ligand molecules were placed at least 40 

Å away from the receptor orthosteric site in the bulk solvent of the starting structures (Figure 

7A). The system charges were then neutralized with 18 Cl− ions. The simulation systems of 

the M3 receptor initially measured about 80 × 87 × 97 Å3 with 130 lipid molecules, ~11,200 

water molecules and a total of ~55,500 atoms. Periodic boundary conditions were applied to 

the system.

Initial energy minimization and thermalization of the M3 receptor system follow the same 

protocol as used in a previous study36. GaMD simulation was then performed using the 

dual-boost scheme with the threshold energy E set to Vmax. The GaMD simulations included 

2 ns cMD, 50 ns equilibration after adding the boost potential and then three independent 

production runs with randomized atomic velocities (one for 400 ns and another two for 300 

ns). The GaMD simulations were carried out using NAMD 2.11 on the Gordon 

supercomputer at the San Diego Supercomputing Center. Benchmark simulations showed 

that GaMD ran at ~10 ns/day with 64 CPUs and up to ~61 ns/day with 640 CPUs, which 

were ~8 to 11% slower than the corresponding cMD runs. This performance is very similar 

to that of the conventional aMD implemented in NAMD47. GaMD production frames were 

saved every 0.1 ps. The VMD80 and CPPTRAJ81 tools were used for trajectory analysis. The 

Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm82 was 

applied to cluster the diffusing ligand molecules for identifying the highly populated binding 

sites. Finally, the PyReweighting toolkit37 was applied to compute the potential of mean 

force (PMF) profiles of structural clusters of the diffusing ACh.

Simulation Results: Analysis of GaMD simulations on the M3 muscarinic GPCR showed 

that the system boost potential follows Gaussian distribution with anharmonicity equal to 

1.33×10−2 (Figure 7B). The average and standard deviation of the boost potential are 10.9 

kcal/mol and 3.0 kcal/mol, respectively. Such narrow distribution will ensure accurate 

reweighting for free energy calculation using cumulant expansion to the 2nd order.

During the 400 ns GaMD simulation of the M3 muscarinic receptor, ACh was observed to 

enter the receptor and then bind to the receptor endogenous ligand-binding (“orthosteric”) 

site (Figure 7C). Highly populated clusters were identified for the ligand in the extracellular 
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vestibule and orthosteric site of the receptor, while the ligand diffuses nearly homogenously 

in the bulk solvent. Note that periodic boundary conditions were applied on the simulation 

system and thus ACh diffused to the cytoplasmic side of the lipid membrane, which may not 

occur in the real cells. Nonetheless, ACh entered the receptor from only the extracellular 

side, recapitulating the first step of GPCR-mediated cellular signaling machinery. Figure 7D 

plots the RMSD of the four diffusing ACh molecules relative to the ligand binding pose 

predicted from Glide docking83, 84 in the orthosteric site. The ACh-3 molecule was observed 

to bind the extracellular vestibule with ~10 Å RMSD, dissociate completely from the 

receptor, rebind to the extracellular vestibule at ~200ns and then enter the receptor to the 

orthosteric pocket at ~270 ns. It finally rearranged its conformation in the orthosteric pocket, 

reached a minimum RMSD of 2.0 Å at ~340 ns and stayed bound in the orthosteric site until 

the end of the 400 ns GaMD simulation. Moreover, during the dissociation of the ACh-3, 

another ligand molecule (ACh-2) bound briefly to the receptor extracellular vestibule during 

~125-180 ns. Similar observations were obtained in the other 300 ns GaMD simulations of 

the M3 receptor40, during which different ACh molecules were able to bind the extracellular 

vestibule but could not reach the orthosteric site within the limited simulation time.

In order to obtain a quantitative picture of the ligand binding pathway, the DBSCAN 

algorithm82 was applied to cluster trajectory snapshots of four diffusing ligand molecules 

from the 400 ns GaMD simulation. Energetic reweighting37, 39 was then applied to each of 

the ligand structural clusters to recover the original free energy. Ten structural clusters with 

the lowest free energies are shown in Figure 7E. Global free energy minimum (0.0 kcal/mol) 

was found for cluster “C1” in the orthosteric site. The second lowest energy minimum was 

identified for cluster “C2” (0.12 kcal/mol) located in the extracellular vestibule formed 

between ECL2/ECL3. Moreover, cluster “C3”, which exhibits a different conformation 

compared with cluster “C1” and higher free energy (0.33 kcal/mol), was also identified in 

the orthosteric pocket. In addition to cluster “C2”, clusters “C4” with 0.45 kcal/mol, “C6” 

with 0.51 kcal/mol, “C8” with 1.23 kcal/mol and “C10” with 1.96 kcal/mol were also 

identified in the extracellular vestibule, in which the positively charged N atom of the ligand 

interacts with residue Trp5257.35 through cation-π interactions. The residue superscripts 

denote the Ballesteros-Weinstein (BW) numbering of GPCRs61. Three clusters of higher 

free energies, “C5” with 0.50 kcal/mol, “C7” with 0.94 kcal/mol, “C9” with 1.50 kcal/mol, 

appear to connect “C1” in the orthosteric pocket and “C2” in the extracellular vestibule. 

Therefore, structural clusters “C1”, “C3” ↔ “C7”, “C5”, “C9” ↔ “C2”, “C4”, “C6”, “C8”, 

“C10” appear to represent an energetically preferred pathway for the endogenous agonist 

binding to the M3 muscarinic receptor.

In summary, GaMD-NAMD was demonstrated to be of use for ligand binding to the M3 

muscarinic GPCR as a model membrane protein system. While the ACh endogenous agonist 

binds only transiently to the receptor extracellular vestibule in two 300 ns GaMD 

simulations, the ligand enters the receptor and binds to the target orthosteric site in a 400 ns 

GaMD simulation. Although, in principle, multiple binding and unbinding events may be 

needed in order to compute converged ligand binding free energy, structural clustering and 

reweighting of the GaMD simulation allows us to identify energetically preferred binding 

sites and pathway of the diffusing ligand. Particularly, the lowest energy cluster of ACh is 

identified in the orthosteric site, in excellent agreement with the Glide docking pose. The 

Miao and McCammon Page 22

Annu Rep Comput Chem. Author manuscript; available in PMC 2018 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



second lowest energy cluster is located in the extracellular vestibule, with the positively 

charged N atom of ACh forming cation-π interaction with the receptor residue Trp5257.35. 

This is consistent with previous extensive experimental and computational studies which 

showed that the extracellular vestibule of class A GPCRs acts as a metastable intermediate 

site during binding of orthosteric ligands36, 64. The energetically preferred pathway of 

agonist binding to the M3 receptor identified from the current GaMD-NAMD simulation is 

similar to that found in previous long-timescale cMD85 and aMD36 of class A GPCRs.

4.4.3. Ligand Dissociation and Binding of the M2 Muscarinic GPCR

Simulation Protocol: GaMD simulations of the M2 muscarinic GPCR, which is bound by 

the full agonist IXO, partial agonist arecoline (ARC) and inverse agonist QNB, are the same 

as described in Section 4.3. For each of the receptor complexes, initial energy minimization, 

thermalization and 100 ns cMD equilibration were performed using NAMD2.1042. Using 

the NAMD output structure, together with the system topology and CHARMM3663 force 

field files, ParmEd was used to convert the simulation files into the AMBER format41. The 

GaMD module implemented in the GPU version of AMBER1439, 41 was then applied to 

perform GaMD simulation, which included 10 ns short cMD simulation used to collect 

potential statistics for calculating the GaMD acceleration parameters, 50 ns equilibration 

after adding the boost potential and finally multiple independent GaMD production runs 

with randomized initial atomic velocities. The simulation frames were saved every 0.1 ps for 

analysis.

The DBSCAN algorithm82 implemented in CPPTRAJ was applied to cluster trajectory 

frames of the diffusing ARC and IXO by combining all the GaMD production simulations of 

the M2-ARC and M2-IXO systems, respectively. A total length of ~9100 ns GaMD 

simulation (~91 million frames) was obtained for ARC clustering. Because of the large data 

set, the frames were sieved at a stride of 2000 for clustering. A distance cutoff of 1.6 Å and 

minimum number of 80 sieved frames were set for forming a cluster. The remaining frames 

were assigned to the closest cluster afterwards. Similar parameters were used to cluster the 

M2-IXO simulation (total ~6300 ns), except that a minimum number of 10 sieved frames 

were set for forming a cluster. The PyReweighting37 toolkit was used to reweight ligand 

structural clusters to compute the free energy values.

Simulation Results: Whereas the inverse agonist QNB with high binding affinity (~0.06 

nM)60 remains tightly bound to the orthosteric site, the full and partial agonists with lower 

affinities, ~5 μM for ARC62, 86 and ~0.01 μM for IXO60, exhibit significantly higher 

fluctuations. During one of the GaMD simulations, IXO escapes out of the orthosteric 

pocket and visits the extracellular vestibule48. For ARC, not only does it escape out of the 

orthosteric pocket, but it also dissociates completely and rebinds to the receptor repeatedly 

during a 2030 ns GaMD simulation. This was indicated by the timecourse of the ligand-

Asp1033.32 distance (Figure 8A). Four dissociation (denoted “D1”, “D2”, “D3” and “D4”) 

and three binding (denoted “B1”, “B2” and “B3”) events took place. ARC exited the 

receptor via three extracellular openings, one formed between ECL2/ECL3 (“D1”, Figure 

8B), the second between ECL2/TM2/TM7 (“D2”, Figure 8F) and another between 

ECL2/TM7 (“D3” and “D4”, Figures 8G and 8H). ARC rebound to the receptor through two 

Miao and McCammon Page 23

Annu Rep Comput Chem. Author manuscript; available in PMC 2018 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the three openings, i.e., ECL2/ECL3 (“B1”, Figure 8C) and ECL2/TM7 (“B2” and “B3”, 

Figures 8D and 8E).

With DBSCAN structural clustering and energetic reweighting, ten ligand clusters with the 

lowest free energies are shown in Figure 8I. Global energy minimum (0 kcal/mol) is found 

for cluster “C1” in the orthosteric pocket. The second lowest energy is identified for cluster 

“C2” (1.34 kcal/mol) at the center of the extracellular vestibule between ECL2/TM7. Two 

clusters of higher energies, “C3” with 2.01 kcal/mol and “C4” with 2.29 kcal/mol, appear to 

connect “C1” in the orthosteric pocket and “C2” in the extracellular vestibule. A cavity 

formed by the extracellular domains of TM3/TM2/TM7 is filled with two clusters, “C5” 

(2.33 kcal/mol) and “C8” (2.69 kcal/mol). Similarly, another cavity formed by the 

TM4/TM5/TM6 extracellular domains is filled with clusters “C7” and “C9” with 2.49 

kcal/mol and 3.15 kcal/mol free energies, respectively. In the extracellular vestibule, 

although ARC was observed to exit between ECL2/TM2/TM7 in one of the dissociation 

events, this location does not appear among the ten lowest energy clusters. In contrast, two 

energetically favored clusters are found in the opening between ECL2/ECL3, i.e., “C6” 

(2.36 kcal/mol) and “C10” (3.22 kcal/mol). Therefore, clusters “C1”↔“C3”↔“C4”↔“C2”

↔“C10”↔“C6” appear to represent an energetically preferred pathway for ARC 

dissociation and binding. IXO also follows a similar pathway during dissociation from the 

orthosteric site to the ECL2/ECL3 opening and rebinding to the center of the extracellular 

vestibule48.

Therefore, a pathway connecting the orthosteric site, center of the extracellular vestibule and 

the ECL2/ECL3 opening appears to be energetically favorable for ligand dissociation and 

binding of the M2 muscarinic receptor (Figure 8I). This route has also been identified as the 

dominant pathway for drug binding to β2AR85. Therefore, it is likely a common pathway 

adopted by class A GPCRs for ligand recognition, although this may also depend on the 

structural arrangement of the receptor extracellular domains and ligand size and chemical 

properties. For the M2 receptor, it is worth investigating the binding of more ligands and 

associated receptor dynamics in the future, e.g., the N-methylscopolamine and atropine 

inverse agonists62, the pilocarpine and McN-A343 partial agonists that elicit more consistent 

partial response of the M2 receptor62, 86, etc. In this context, although ligand dissociation 

from β2AR was simulated in a previous random acceleration MD (RAMD) study87, it was 

difficult to capture rebinding of the ligand. The ligand was observed to exit with similar 

probability via the ECL2/ECL3 and ECL2/TM2/TM7 openings, but the RAMD simulations 

could not differentiate the two pathways energetically. Another steered MD study on ligand 

dissociation from the β-ARs88 also suggested that the two routes “may serve 

indistinguishably for ligand entry and exit”. Although free energy profiles were obtained 

from the steered MD simulations, the ligand was constrained to predetermined CAVER 

channels, which may not reflect the real pathways as observed in the cMD simulations85. In 

comparison, GaMD provides unconstrained enhanced sampling and allows for free ligand 

diffusion. The simulation-derived free energy profiles can be used to characterize the ligand 

pathways quantitatively. Notably, the orthosteric pocket and extracellular vestibule were 

calculated as two low-energy binding sites of ARC. This is consistent with previous binding 

assay experiments, suggesting that several partial agonists have two or more binding sites in 

the M2 receptor62, 89. Earlier computational studies also identified the extracellular vestibule 
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as a metastable site during binding of orthosteric ligands to the M2 and M3 muscarinic 

receptors36, 64. Therefore, GaMD is well suited for investigating ligand binding and 

dissociation of GPCRs and other large biomolecules.

5 Concluding Remarks

GaMD provides both unconstrained enhanced sampling and efficient free energy 

calculations of biomolecules. Important statistical properties of the system potential, such as 

the average, maximum, minimum and standard deviation values, are used to calculate the 

simulation acceleration parameters, particularly the threshold energy E and force constant 

k0. A minimal set of simulation parameters is dynamically adjusted to control the magnitude 

and distribution width of the boost potential. On one hand, GaMD does not require 

predefined reaction coordinates like many other enhanced sampling methods and thus 

enables unconstrained enhanced sampling90. On the other hand, within the new GaMD 

theoretical framework, the boost potential does not greatly change the shape of the overall 

biomolecular energy landscape. We are running near-equilibrium simulations in GaMD. As 

such, the resulting boost potential follows a Gaussian distribution and allows for accurate 

reweighting of the simulations using cumulant expansion to the second order.

In comparison with many enhanced sampling methods such as umbrella sampling13, 14, 

conformational flooding15, 16, metadynamics17, 18, ABF calculations19, 20 and orthogonal 

space sampling21, 22, GaMD has the advantage of no need to set predefined reaction 

coordinates. Metadynamics, in particular, is another potential biasing technique that has 

been widely used to map the free energy landscapes of biomolecules such as protein 

conformational changes91, 92 and protein-ligand binding18, 93. By monitoring the energy 

surface of biomolecules during the simulation, metadynamics keeps adding small Gaussians 

of potential energies to the low energy regions. This will eventually fill the low energy wells 

and achieve uniform sampling of the free energy surface along selected reaction coordinates. 

The usage of predefined coordinates greatly reduces the complexity of biomolecular 

simulation problems and facilitates the free energy calculations (e.g., significantly lower 

energetic noise compared with aMD simulations). However, it is key to select proper 

reaction coordinates, which often requires expert knowledge of the studied systems. 

Construction of biomolecular reaction coordinates or collective variables has thus been one 

of the main objectives in metadynamics studies17. When important reaction coordinates are 

missed during the simulation setup, metadynamics simulations may still suffer from slow 

convergence problems. In comparison, aMD simulations are not constrained by reaction 

coordinates, but this also leads to much higher energetic noise and presents grand challenge 

for accurate reweighting to recover the original free energy landscapes of biomolecules34. 

Although cumulant expansion to the 2nd order was shown to improve aMD reweighting 

when the boost potential follows near Gaussian distribution37, such improved reweighting is 

still limited to small systems such as protein with ≤ 35 residues38. Here, by constructing 

boost potential using a harmonic function that follows Gaussian distribution, GaMD enables 

rigorous energetic reweighting through cumulant expansion to the 2nd order, even for 

simulations of larger proteins (e.g., T4-lysozyme and GPCRs). With this, GaMD achieves 

simultaneous unconstrained enhanced sampling and free energy calculations.
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GaMD has been implemented in AMBER39 and NAMD40, and this approach should be 

transferrable to other popular MD software packages, including GENESIS94, OpenMM95, 

etc. Notably, NAMD shows excellent scalability for supercomputer simulations of large 

biomolecules42. It is complementary to the implementation of GaMD in the graphics 

processing unit (GPU) version of AMBER39 that runs extremely fast simulations with one or 

a small number of GPU cards41, 51. As demonstrated on the model systems, these 

implementations facilitate the applications of GaMD in enhanced sampling and free energy 

calculations of a wide range of biomolecular systems, such as proteins, lipid membrane, 

nucleic acids, virus particles and cellular complex structures. Ongoing applications of 

GaMD also include the clustered regularly interspaced short palindromic repeats-CRISPR 

associated protein 9 (CRISPR-Cas9) system96, HIV protease, protein kinases, the acyl 

carrier proteins, and so on.

However, several cautions have also resulted from GaMD studies. First, while the present 

GaMD simulations seem to provide sufficient sampling of the low energy regions, they 

appear to remain unconverged in sampling of the high-energy barriers. This is particularly 

true for the ligand entry step in the GaMD simulation of benzene binding to the T4-

lysozyme. It is worthy to recall that the threshold energy for adding the boost potential is set 

to its lower bound in the previous GaMD simulations. A subject of future investigation is 

whether using the upper bound of the threshold energy will facilitate sampling of the high-

energy barriers in GaMD simulations.

Second, based on a potential biasing approach, GaMD mainly accelerates transitions across 

enthalpic energy barriers. Improvement for its application to systems with high entropic 

barriers is still needed. In this regard, GaMD can be potentially combined with the parallel 

tempering (PT)97 and replica exchange (RE)98, 99 algorithms like in replica-exchange aMD 

(REXAMD)99, 100 for further enhanced sampling. Particularly, the combination of parallel 

tempering and metadynamics (PT-MetaD)91 has been shown to facilitate enhanced sampling 

of biomolecules over entropic barriers. Moreover, the REXAMD that combines RE and 

aMD methods have been found helpful in free energy calculations101. Thus, one can 

combine GaMD that provides improved reweighting and RE for more accurate free energy 

calculations. In addition, we can use the essential potential energy as described in the 

essential energy space random walk (EESRW)102, 103, 104 method to improve the potential-

biasing sampling methods such as GaMD.

Third, in order to obtain accurate free energy calculations, rigorous error analysis 

(particularly the reweighting) is still needed for GaMD. In this context, because the boost 

potential ΔV is physically equivalent to nonequilibrium work W, reweighting of aMD/

GaMD simulations for calculating free energies can be expressed by the Jarzynski 

equality105: e−βΔF = e−βΔV . When the three ΔF estimators and different aMD reweighting 

techniques examined in Refs.106 and 37 are compared, the mean work estimator is found 

equivalent to the approximation using Maclaurin series expansion, the fluctuation-

dissipation (FD) theorem estimator corresponds to the cumulant expansion to the 2nd order 

(also referred to as the “Gaussian approximation”107) and the Jarzynski estimator 

corresponds to direct “exponential average” calculation. Detailed analysis showed that in the 
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near-equilibrium regime, the mean work estimator gives comparatively larger errors and the 

Jarzynski estimator is more accurate than the FD estimator when the number of W (or ΔV) 

data points N≤16. However, the FD estimator gives the smallest error with increasing N (see 

Figure 4 in Ref. 106). This is consistent with our previous aMD reweighting study that 

shows the cumulant expansion to the 2nd order is the most accurate compared with the 

Maclaurin series expansion and exponential average, for which the number of ΔV values N 
used for aMD reweighting is on the order of 102−106 37. The bias and error of free energy 

calculations were examined rigorously in Ref. 106. Similar error estimates need to be 

performed for GaMD simulations when they are applied for free energy calculations.

In summary, without the need to set predefined reaction coordinates, GaMD is generally 

applicable to a wide range of biomolecular systems, including protein folding, biomolecular 

large-scale conformational transitions and biomolecular recognition as described in this 

chapter. For systems of increasing size, the upper limit of the ΔV standard deviation, σ0 can 

be adjusted dynamically to ensure that the distribution width of the applied boost potential is 

narrow enough for accurate energetic reweighting using cumulant expansion to the second 

order. Therefore, GaMD serves as a promising tool for biomolecular conformation sampling, 

prediction of drug-receptor interactions and computer-aided drug design and 

discovery108, 109.
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Figure 1. 
Schematic illustration of Gaussian Accelerated Molecular Dynamics (GaMD): when the 

threshold energy is set to the maximum potential (E = Vmax), the system potential energy 

surface is smoothed by adding a harmonic boost potential that follows Gaussian distribution. 

The system original potential energy obtained from conventional molecular dynamics (cMD) 

is shown in black. The modified potential energy surfaces obtained after adding the boost 

potential with different effective harmonic constants k0 are shown in red (0.2), blue (0.4), 

cyan (0.6), purple (0.8) and yellow (1.0). With greater k0, higher boost potential is added to 

the original energy surface, which provides enhanced sampling of biomolecules across 

decreased energy barriers.
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Figure 2. 
Demonstration of GaMD on the alanine dipeptide: (A) Schematic representation of 

backbone dihedrals Φ and Ψ in alanine dipeptide. (B) Distribution of the boost potential ΔV
applied in the GaMD simulations with anharmonicity equal to 7.18×10−3. (C-D) potential of 

mean force (PMF) profiles of the (C) Φ and (D) Ψ dihedrals calculated from three 30 ns 
GaMD simulations combined using cumulant expansion to the 2nd order. (E) The 2D PMF 

profile of backbone dihedrals (Φ, Ψ). The low energy wells are labeled corresponding to the 

right-handed α helix (αR), left-handed α helix (αL), β-sheet (β) and polyproline II (PII) 
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conformations. (F) The distribution anharmonicity of ΔV of frames found in each bin of the 

PMF profile.

Miao and McCammon Page 35

Annu Rep Comput Chem. Author manuscript; available in PMC 2018 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
GaMD simulations of protein folding as demonstrated for chignolin: (A) comparison of 

simulation-folded chignolin (blue) with the PDB (1UAO) native structure (red) that exhibits 

0.2 Å RMSD, (B) distribution of the boost potential ΔV, (C) 2D (RMSD, Rg) PMF 

calculated by reweighting the three 300 ns GaMD simulations combined and (D) the 

distribution anharmonicity of ΔV of frames found in each bin of the PMF profile.
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Figure 4. 
GaMD simulations revealed distinct low-energy states of the M2 muscarinic GPCR in the 

orthosteric ligand-binding and intracellular G protein coupling sites: (A) The orthosteric site 

exhibits closed (red, 4MQS X-ray) and open (green, 3UON X-ray) conformations. (B) The 

G protein coupling site samples inactive (green, 3UON X-ray), intermediates “I1” (orange), 

“I2” (purple) and active (red, 4MQS X-ray) conformational states. (C-D) The 1D PMF 

profiles of (C) the Tyr1043.33−Tyr4036.51−Tyr4267.39 triangle perimeter and (D) the 

Arg1213.50−Thr3866.34 distance calculated for the M2-QNB, M2-ARC, M2-IXO, M2-

nanobody-ARC and M2-nanobody-IXO complex systems.
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Figure 5. 
Mechanism of graded activation of the M2 muscarinic GPCR: The M2 receptor (ribbons) 

samples a large conformational space with significant structural rearrangements, especially 

for the TM6 helix. Binding of the inverse agonist QNB (green spheres) confines the receptor 

in the inactive state. Without the G protein or mimetic nanobody, the partial agonist ARC 

(yellow spheres) biases the M2 receptor to visit an intermediate state “I1” (orange ribbons). 

ARC is able to dissociate completely to the bulk solvent via the extracellular vestibule and 

rebinds to the receptor repeatedly during a 2030 ns GaMD simulation. In comparison, the 

full agonist IXO (red spheres) biases the receptor further, sampling both intermediate “I1” 

(orange ribbons) and “I2” (purple ribbons). IXO escapes out of the orthosteric pocket and 

visits the extracellular vestibule in one of the GaMD simulations. By adding the G protein 

mimetic nanobody (purple surface), the M2 receptor is stabilized in the fully active state (red 

Miao and McCammon Page 38

Annu Rep Comput Chem. Author manuscript; available in PMC 2018 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ribbons) as bound by IXO or ARC, although ARC adopts two alternative conformations in 

the orthosteric pocket, ARC-P1 (yellow spheres) and ARC-P1′ (cyan spheres).
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Figure 6. 
GaMD simulations captured binding of ligand benzene to the T4-lysozyme: (A) A pathway 

of benzene binding to the T4-lysozyme observed during the GaMD simulation. (B) The 

intermediate (“I”) poses of the protein-ligand complex (blue) with the protein C-terminal 

domain (residues 80-160) aligned to the PDB native structure (red). The protein and benzene 

are represented by ribbons and spheres, respectively, and they are colored by blue for the 

simulation structure with red for the PDB native structure, except that in (A) the simulated 

benzene is represented by lines and colored by simulation time in a BWR color scale. 
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Residues with heavy atoms found within 3 Å of benzene are represented by sticks. (C) 

Comparison of simulation-derived complex structure that captures benzene binding (blue) 

with 0.1 Å ligand RMSD relative to the 181L PDB structure (red), (D) distribution of the 

boost potential ΔV, (E) 2D (Ligand RMSD, Ncontact) PMF calculated by reweighting the 

1,800 ns GaMD simulation and (F) the distribution anharmonicity of ΔV of frames found in 

each bin of the free energy profile.
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Figure 7. 
GaMD simulations captured binding of the acetylcholine (ACh) endogenous agonist to the 

M3 muscarinic GPCR: (A) schematic representation of the computational model, in which 

the receptor is shown in ribbons (orange), lipid in sticks, ions in small spheres and four 

ligand molecules in large spheres, (B) distribution of the boost potential ΔV with 

anharmonicity equal to 1.33×10−2, (C) probability distribution of the ACh (the N atom in 

blue dots) diffusing in the bulk solvent and bound to the M3 receptor (orange ribbons), in 

which the Glide docking pose of ACh is shown in green sticks, (D) the RMSD of the 
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diffusing ACh relative to the Glide docking pose calculated from the 400 ns GaMD 

simulation, and (E) Ten lowest energy structural clusters of ACh that are labeled and colored 

in a green-white-red (GWR) scale according to the PMF values obtained from reweighting 

of the GaMD simulation.
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Figure 8. 
GaMD simulations revealed pathways of dissociation and binding of the arecoline (ARC) 

partial agonist of the M2 muscarinic GPCR: (A) Timecourse of the ARC−Asp1033.32 

distance during 2030 ns GaMD simulation. Four dissociation and three binding events are 

labeled. (B-H) Schematic representations of the ligand pathways during (B) “D1”, (C) “B1”, 

(D) “B2”, (E) “B3”, (F) “D2”, (G) “D3” and (H) “D4”. The receptor is represented by blue 

ribbons and the ligand by sticks colored by the position along the membrane normal. (I) Ten 
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lowest energy structural clusters of ARC that are labeled and colored in a GWR scale 

according to the PMF values.
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