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Abstract

A number of features at the host-parasite interface are reminiscent of those that are also

observed at the host-tumor interface. Both cancer cells and parasites establish a tissue

microenvironment that allows for immune evasion and may reflect functional alterations of

various innate cells. Here, we investigated how the phenotype and function of human mono-

cytes is altered by exposure to cancer cell lines and if these functional and phenotypic alter-

ations parallel those induced by exposure to helminth parasites. Thus, human monocytes

were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live

microfilariae (mf) of Brugia malayi–a causative agent of lymphatic filariasis. After 2 days of

co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expres-

sion of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated

(IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell

lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and

MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed,

monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1

and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased

the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation

and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that hel-

minth parasites and cancer cell lines are extraordinarily disparate, they share the ability to

alter the phenotype of human monocytes.
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Author summary

Both cancer cells and parasites establish a tissue microenvironment that allows for

immune evasion and may reflect functional alterations of various innate cells including

monocytes. In recent years, there has been a large body of evidence in the field of cancer

immunotherapy demonstrating that the immune system can be retrained to not only rec-

ognize tumor cells but also to eliminate them. Tumor immunology has advanced signifi-

cantly with the advent of newer tools of molecular immunology and identification of

tumor associated biomarkers. In fact, the concepts for immunotherapy as an effective way

to reawaken the immune response against tumors that evade the immune system may

apply to other diseases. Therefore, using similar approaches in infectious diseases, might

lead to activation of the immune system and reversal of immunological ignorance against

parasites. We strongly believe that a multidisciplinary approach would encourage cross-

talk between different areas of science and will foster and advance research. Here, we

investigate how cancer cell lines and helminth parasites shape the phenotype and function

of human monocytes. Both cancer cell lines and helminth parasite altered the expression

of selected genes associated with inflammatory, regulatory, or type 2 response and upregu-

lated immune checkpoints PDL1 and PDL2 in human monocytes. Our data suggest that

despite the fact that helminth parasites and cancer cell lines are different, they share the

ability to alter the phenotype of monocytes.

Introduction

A variety of mechanisms used by tumor cells to escape the host’s immune system are similar to

those used by some parasites. Both parasites and tumors have developed strategies to escape

the immune system by expanding T regulatory cells[1,2], by inducing the production of certain

inhibitory cytokines[3,4], or by altering the function of antigen presenting cells (APCs) that, in

turn, results in diminished ability of these cells to activate T cells[1,5,6].

Monocytes and macrophages are heterogeneous populations of cells that display high plas-

ticity and are essential for the host innate immune response. Consequently, a change in their

function contributes to alterations of immune function that may lead to dysregulation of

responses important in limiting cancer progression[7] and constraining some infectious dis-

eases. Based on responses to different stimuli, macrophages can be categorized into classically

activated M1 (type 1 or pro-inflammatory activated by LPS or IFN-γ (Interferon-gamma)), or

alternatively activated M2 (type-2 anti-inflammatory activated by IL-4 or IL-13)[8]. In fact,

both parasites and tumors alter the balance of these monocyte /macrophage sub-populations

[6,9–12].

When recruited to the tumor tissue, monocytes can differentiate into tumor associated

macrophages (TAM), a heterogenous population of myeloid cells with both antitumor (M1)

and pro-tumor activities (M2) (reviewed in[13]). In fact, TAMs have a wide range of functions

including those with beneficial effects, such as phagocytosis of tumor cells and production of

cytotoxic factors,[13,14] and the more deleterious effects, such as tumor- associated immune-

suppression through the expression of inhibitory immune checkpoints PDL1 (CD274) and

PDL2 (CD273)[15].

M2 macrophages with both anti-inflammatory and tissue repair functions[16,17], largely

driven by IL-4 and/or IL-13 can also be induced by helminth parasites[6,18]. Helminth-

induced M2 macrophages have been shown to play a role in control of Th1-type inflammation,

worm expulsion, and wound healing in murine models[19]. Interestingly, microfilariae (mf)
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of Brugia malayi, the bloodborne stage of one of the helminth parasites that cause lymphatic

filariasis in humans, alter monocyte populations somewhat differently in that both M1 and M2

phenotypes are induced[6,18,20,21]. Furthermore, monocyte dysfunction[20,22] of either sub-

set in filarial infection is one of the many mechanisms proposed for parasite antigen-specific T

cell hyporesponsiveness seen in humans with lymphatic filariasis.

Because the regulation of monocyte function plays a critical role in both helminth infection

and tumor progression, in the present study we assessed the similarities and differences

between parasite and cancer-induced alterations of both phenotype and function of human

monocytes in hopes of identifying potential new targets that can be exploited by host directed

therapeutics. Breast and ovarian cancers are considered to be among the leading types of can-

cer in North America and Europe [23,24]. Clinical data demonstrate a strong relationship

between increased monocyte/macrophage density and poor prognosis in breast and/or ovarian

cancers and glioblastoma [25,26]. In addition, tumor associated macrophages play an impor-

tant role in all three cancer types [27–29]. Therefore, in the present study we chose breast,

ovarian, and glioblastoma cancer cell lines to compare their effects on human monocytes to

that of helminth parasites.

Methods

Ethics statement

The elutriated monocytes and lymphocytes from leukopacks of healthy adult donors from

North America were collected by counterflow centrifugal elutriation under a protocol

approved by the Institutional Review Board (IRB) of the Department of Transfusion Medicine,

Clinical Center, National Institutes of Health (NIH; IRB 99-CC-0168). The healthy adult vol-

unteers were given informed written consent.

mf preparations

Live Brugia malayi mf (provided under contract with the University of Georgia, Athens, GA)

were collected by peritoneal lavage of infected jirds and separated from peritoneal cells by

Ficoll diatrizoate density centrifugation. The mf were then washed repeatedly in RPMI

medium with antibiotics and cultured overnight at 37˚C in 5% CO2 before use.

Cell lines

The breast cancer; MDA-MB-231 (MDA), ovarian cancer; OVCAR-3 (OVCAR), and glioblas-

toma; U87-MG (U87) cell lines were obtained from American Type Culture Collection

(ATCC) (Manassas, VA). MDA cells were cultured in Dulbecco’s Modified Eagle’s Medium

(DMEM, ATCC 30–2002) containing 10% heat–inactivated fetal bovine serum (Gemini Bio-

products, Sacramento, CA). OVCAR cells were cultured in Roswell park memorial institute

medium (RPMI-1640, ATCC 30–2001) containing 20% heat–inactivated fetal bovine serum.

U87 cells were cultured in Eagle’s Minimum Essential Medium (EMEM, ATCC 30–2003) con-

taining 10% heat–inactivated fetal bovine serum. All culture media contained 100 Units/ml

penicillin and 0.1-mg/ml streptomycin ([P/S] Biofluids, Inc, Rockville, MD). Cells were cul-

tured at 37˚ C in humidified air at 5% CO2 and were confirmed to be devoid of mycoplasma.

Prior to use, these cell lines were stained with 0.5uM, 5-chloromethylfluorescein diacetate

(Cell Tracker green CMFDA; Molecular probes) in serum free media for 30 min followed by

washing with PBS.
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In vitro exposure of monocytes to cancer cell lines and live mf

CMFDA labeled cancer cell lines (MDA, OVCAR and U87) were cultured for 24 hours prior

to co-culture with monocytes. Human monocytes were cultured at 50 × 106 per 6-well plate in

serum-free media RPMI 1640 medium supplemented with 20 mM glutamine (Lonza) P/S for

2 h, after which the medium was removed and the adherent cells were harvested. Monocytes

were then either cultured alone or exposed to live mf (50,000 per million cells to reflect physio-

logically relevant concentrations), or to three different CMFDA labeled cancer cell lines at a

1:2 (cancer cell lines: monocytes) ratio for 48hrs. For monocyte co-cultures with each cancer

cell lines, we chose the media used for culturing the relevant cancer cell line alone. Therefore,

for MDA cell line and the co-culture of monocytes and MDA (mon/MDA) DMEM complete

media; for OVCAR and co-culture of monocytes and OVCAR (mon/OVCAR) RPMI com-

plete media; and for U87 and co-culture of monocytes and U87 (mon/U87) EMEM complete

media was used. Furthermore, monocytes alone or monocytes exposed to mf were cultured in

DMEM complete media as there was no difference between the three-different media in

mRNA expression, cell surface expression or viability of monocytes (S1 Fig).

After 48hrs, the cells were harvested by cell scraping (Corning Costar) and washed once

with PBS (without Ca++/Mg++), counted monocytes were first incubated with human gamma-

globulin (Sigma) at 10 mg/ml for 10 min at 4˚C to inhibit binding of the monoclonal antibody

to Fc receptor (FcR) and were subsequently labeled with mouse phycoerythrin labeled anti-

CD45 mAb (eBioscience, San José, CA; Cat No. 12-9459-42), at saturating concentrations for

30 min at 4˚C. The cells were then washed twice with FACS medium and sorted on FACSAria

III, 6-laser, 15-parameter, cell sorter (Becton Dickinson, Sparks, MD) by gating on the expres-

sion of CD45 and lack of CMFDA (CD45+/CMFDA-). Sorted monocytes were then used for

gene expression or functional analysis.

Cytokine measurements

After 48hrs of monocytes co-culture with cancer cell lines or mf, exposed and unexposed sorted

monocytes were cultured in DMEM media overnight without any stimulation and the production

of TNF-α (Tumor necrosis factor-alpha), IP-10 (Interferon gamma-induced protein (CXCL10)),

IL-6, CCL4 (Macrophage inflammatory protein 1-β (MIP-1β)) and CCL22 (macrophage derived

chemokine (MDC)) in the culture supernatants were measured using a Multiplex human cyto-

kine/chemokine magnetic bead panel kit (EMD Millipore, Billerica, MA) and a Luminex 100/200

system (Luminex, Austin, TX). The lower limit for detection for these assays was 3.2 pg/ml.

Phagocytosis

Phagocytic activity of the human monocytes was assessed by a phagocytosis assay kit (Molecu-

lar probes; Invitrogen) with some modifications. Briefly, sorted monocytes (1.0 X106 cells/

well) were incubated with 108 inactivated E.coli Alexa 488 Bioparticles for 1 hr at 37˚ C, 5%

CO2 in serum free DMEM media. The cells were washed with PBS, incubated for 1 min with

0.4% trypan blue to quench any extracellular fluorescence, and washed twice with PBS. Intra-

cellular fluorescence intensity was quantified by flow cytometry. All experiments were done

with six replicates. Phagocytic activities of monocytes were expressed as percent phagocytosis

relative to that seen with controls.

Flow cytometry staining

Human monocytes were cultured alone or with mf or three different CMFDA-labeled cancer cell

lines (green; FITC channel) as mentioned above. After 48 hrs, cells were harvested, washed with
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PBS and incubated with 10 μl human IgG (10 mg/ml; Sigma-Aldrich, St. Louis, MO) for 10 min

at 4˚C to inhibit nonspecific binding through FcγRs and then incubated with marker-specific

mAb conjugated with PDL2- APC (eBioscience, Cat No. 17-5888-42), VCAM1(Vascular cell

adhesion molecule-1)-APC (Biolegend, Cat No. 305810), CD14-APC Cy7 (eBioscience, Cat No.

47-0149-42), CD45-Pacific blue (Biolegend, Cat No. 304022), CD206 (Mannose receptor)-Percp

efluor 710 (eBioscience, Cat No. 46-2069-42), PDL1-PE-Cy7 or PDL1-APC (eBioscience, Cat No.

25-5983-42 and Cat No. 17-5983-41 respectively), or CD163-PE (eBioscience, Cat No. 12-1639-

42), CD45-PE (eBioscience, Cat No. 12-9459-42) at saturating concentrations for 30 min at 4˚C

and washed twice with FACS medium. Monocyte cell populations (CD45+/CMFDA-) were then

identified and gated to measure the expression of cell surface markers.

Flow cytometric analysis

For flow cytometric analysis, 50,000 events were acquired per tube using a BD LSRII flow

cytometer (BD Biosciences, San Jose, CA). Compensation was performed in every experiment

using BD CompBeads (BD Biosciences) for single-color controls and unstained cells as nega-

tive controls. Data were analyzed using FlowJo Software (Tree Star, Ashland, OR). Nonviable

cells were excluded from our analysis on the basis of forward and side scatter. Fold upregula-

tion in Mean Fluorescence Intensity (MFI) was measured for all markers.

RNA preparation and real-time RT-PCR

Exposed and unexposed sorted monocytes were used for isolation of total RNA and RT-PCR

to measure gene expression. Total RNA was prepared from 8 to 15 independent donors using

an RNAEasy minikit (Qiagen). RNA (1 μg) from the cells was used to generate cDNA and

then assessed by standard TaqMan assays (Applied Biosystems Inc.) using an ABI 7900HT sys-

tem (Applied Biosystems, Inc.). Briefly, random hexamers were used to prime RNA samples

for reverse transcription using MultiScribe reverse transcriptase (Applied Biosystems Inc.),

after which PCR products for all genes, as well as an endogenous 18s rRNA control, were

assessed in triplicate or duplicate wells using TaqMan predeveloped assay reagents. The

threshold cycle (CT), defined as the PCR cycle at which a statistically significant increase in

reaction concentration is first detected, was calculated for the genes of interest and the 18S

control and used to determine relative transcript levels.

Relative transcript levels were determined by the formula 1/ΔCT, where ΔCT is the differ-

ence between the CT of the target gene and that of the corresponding endogenous 18S refer-

ence. Fold change in gene expression was measured using 2−−ΔΔCT, where ΔΔCT is the

difference between the ΔCT of the gene of interest in exposed monocytes and that of the unex-

posed control.

T cell proliferation and Granzyme A expression

Exposed or unexposed sorted monocytes were cultured with CellTrace carboxyfluorescein succi-

nimidyl ester (CFSE) (ThermoFisher Scientific, Cat No. C34570)- autologous and allogeneic

lymphocytes (1:1 monocyte/T cell ratio) either in media alone or with 10ug/ml of anti-CD3

(hOKT3) in 24 well tissue culture plates (Costar, Cambridge, MA). Blocking experiments were

done using anti-PDL1 (eBiosciences, Cat No. 16-5983-82) and isotype control IgG1 (eBios-

ciences, Cat No. 16–4714) at a final concentration of 10ug/ml. After 4 days of culture, CFSE-

labeled lymphocytes were harvested, and the proliferation of CD4+ and CD8+ T cells was mea-

sured by flow cytometry using a combination of APC conjugated anti-CD4 (BD Biosciences, Cat

No. 340672) and Alexa Fluor 700-conjugated anti-CD8 (eBiosciences, Cat No. 56-0086-42). The

cells were then analyzed by acquisition of 50,000 events/tube using a BD LSRII (BD Biosciences).
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Compensation was performed in every experiment using BD CompBeads (BD Bioscience) for

single-color controls and unstained cells. Nonviable cells were excluded from the analysis based

on forward and side scatter. CellTrace Violet labeled lymphocytes were further gated on expres-

sion of CD4+ or CD8+, and proliferation was measured by flow cytometry for the dilution of

fluorescent dye. Proliferation indices were calculated by using the FlowJo proliferation analysis

program (Tree Star, Ashland, OR). Granzyme A expression was measured in CD8+ T cells by

staining with pacific blue anti-granzyme A antibody (Biolegend, Cat No. 515407).

Statistical analysis

Unless noted otherwise, geometric means were used as a measure for central tendency. Omni-

bus2 normality test was performed to confirm the data is not normally distributed and then the

nonparametric Wilcoxon signed-rank test was used for paired group comparisons. All analyses

were performed using GraphPad Prism 6.0 (GraphPad Software, Inc., San Diego, CA).

Results

mRNA expression of selected genes associated with inflammation, type 2,

regulatory and angiogenesis in human monocytes after exposure to either

cancer cell lines or mf

To assess whether cancer cell lines and helminth parasites share similar features in shaping

human monocyte gene expression, human monocytes were either exposed to CMFDA- labeled

cancer cell lines (breast cancer; MDA-MB-231 (MDA), ovarian cancer; OVCAR-3 (OVCAR),

and glioblastoma; U87-MG (U87)) or to live mf of Brugia malayi for 48 hours, sorted for

CD45+/CMFDA- monocytes and assessed for mRNA expression by RT-PCR. To further assess

the phenotype of exposed monocytes, we selected genes associated with inflammatory

response (M1), type-2 response (type 2/M2), regulatory response (Reg) or responses associated

with angiogenesis (Ang) (Fig 1A and 1B and S2 Fig). Our results indicate that cancer cell lines

significantly upregulated genes associated with M1 monocytes including PDL1, TNF-α, IL-1β,

IL-6, IL-8, CCL3, and prostaglandin-endoperoxidase synthase 2 (PTGS2) (Fig 1A and S2 Fig).

The expression of genes associated with M2 monocytes (TGM2 (Transglutaminase 2), PDL2,

CD206, CCL13), regulatory monocytes (IL-10, TGF-β) and angiogenesis (MMP9 (Matrix

metallopeptidase-9), and VEGF (Vascular endothelial growth factor)) were significantly

induced in all three different cancer cell line- exposed monocytes when compared to unex-

posed monocytes (Fig 1A and S2 Fig). Although there were major differences between cancer

cell line exposed- and mf-exposed monocytes, mRNA expression of IL-1β, MMP9, and TGM2

was shown to be significantly upregulated in monocytes following exposure to either stimuli

compared to unexposed monocytes (Fig 1B).

Cancer cell lines and mf significantly upregulate the production of IP10

and CCL22 in human monocytes

We next measured monocyte cytokine production (Fig 2) after exposure to cancer cell lines or

mf. To further assess the phenotype of exposed monocytes, we selected cytokines associated

with inflammatory response (M1), type-2 response (type 2/M2), regulatory response or

responses associated with angiogenesis (Fig 2 and S1 Table). To this end, human monocytes

were either exposed to CMFDA- labeled cancer cell lines (MDA, OVCAR, and U87) or to live

mf of Brugia malayi for 48 hours, sorted and rested in media for an additional 24 hours follow-

ing which cytokine production was assessed in the culture supernatant. As seen in Fig 2, both

cancer cell lines and live mf significantly (p = 0.001) upregulated the production of IP-10 and

Comparing helminth and cancer cell lines in shaping monocytes

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006404 April 18, 2018 6 / 19

https://doi.org/10.1371/journal.pntd.0006404


CCL22, while IL-6 production was significantly upregulated only by cancer cell lines and not

by mf (Fig 2). Among cytokines/chemokines tested the production of TNF-α, CCL4 (Fig 2A),

IL-10 (Fig 2C), and VEGF (Fig 2D) was not affected by exposure to any of the stimuli.

Both mf and cancer cell lines induce the monocyte cell surface expression

of PDL1, PDL2, VCAM-1, and CD206

We then determined the phenotype of the monocytes following exposure to either live mf or

to the cancer cell lines. The basal expression of selected cell surface markers (M1, M2, inhibi-

tory) on either human monocytes or cancer cell lines suggest that human monocytes do not

express PDL2 (M2/inhibitory), VCAM-1 (M1), CD206 (M2), and have a low expression of

PDL1 (M1/inhibitory) and CD163 (M2) (Fig 3A, black lines). To our interest, after 48 hours

exposure to either of the three cancer cell lines, the expressions of PDL1 (p = 0.001), PDL2

(p = 0.003), VCAM-1 (p = 0.003), and CD206 (p = 0.003) on monocytes were significantly

upregulated (Fig 3A and 3B). Similar to cancer cell lines, but to a lesser extent, live mf signifi-

cantly upregulated the cell surface expression of each of these markers (p = 0.001) with the

exception of CD163 (Fig 3A and 3B). Longer exposure (5 days) of monocytes to mf further

induced the level of cell surface PDL1 (S3A and S3B Fig).

Cancer cell lines and MCSF (but not mf) significantly induce the

phagocytic ability of human monocytes

To compare the ability of cancer cell lines and mf to shape the phagocytic function of human

monocytes, we measured the ability of monocytes to take up fluorescently labeled E.coli following

Fig 1. mRNA expression of selected genes associated with inflammation, type 2, regulatory, and angiogenesis. Human monocytes were either

unexposed (Mon) or exposed to CMFDA-labeled three different cancer cell lines (MDA, OVCAR, U87), or to live mf of Brugia malayi for 48 hours. CD45+/

CMFDA- monocytes were sorted and mRNA levels were measured by TaqMan real-time PCR and normalized to the levels of 18S rRNA. A) Heat map of

differential expression of selected inflammatory, type-2, regulatory (Reg) and angiogenesis (Ang) related genes (geometric means of 1/delta CT; n = 10). The

intensity of blue to red denotes the low to high expression of genes respectively. B) mRNA expression of IL-1β, MMP-9 and TGM2. The data are expressed

as the geometric mean with 95% confidence interval of 1/delta CT (n = 10). � P<0.05, �� P<0.005.

https://doi.org/10.1371/journal.pntd.0006404.g001
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exposure to mf, or MDA (Fig 4), or OVCAR and U87 (S4 Fig). Our data clearly show that similar

to MCSF-treated monocytes, exposure to MDA (Fig 4, P = 0.01) or to the other two cancer cell

lines (S4 Fig) significantly induce the phagocytic ability of these cells. However, live mf did not

alter the ability of monocytes to phagocytose E. coli bioparticles (Fig 4).

Breast cancer cell line MDA significantly inhibit the proliferation of

allogeneic and autologous CD4+ T cells in a PDL1-dependent manner and

reduce the frequency of Granzyme A+ CD8+ T cells

The suppressive effects of tumor-associated macrophages on T cell proliferation have been

shown previously[30]. To assess whether these particular cancer cell lines or live mf alter the

ability of monocytes to drive T cell proliferation and mediator release, human monocytes were

cultured in media alone, or with CMFDA-labeled breast cancer cell lines or live mf of Brugia
malayi for 48hr. CD45+/CMFDA- sorted exposed and unexposed monocytes were then co-cul-

tured with CFSE-labeled allogeneic or autologous lymphocytes in the presence of anti-CD3 for

an additional 4 days. While exposure to mf did not alter the ability of monocytes to induce T

cell proliferation, exposure to MDA and the other two cancer cell lines (U87 and OVCAR; S5

Fig) significantly diminished their ability to promote allogeneic and autologous CD4+ (Fig 5A

and 5B), and allogeneic CD8+ (Fig 5A) T cell proliferation.

We next aimed to investigate the role of PDL1 in this diminished T cell proliferative activ-

ity. As shown in Fig 5C and 5E, blocking the PDL1 pathway significantly increased the

Fig 2. Cancer cell lines and mf significantly upregulate the production of IP-10 and CCL22 in human monocytes. Human monocytes were cultured in

media alone (Mon), or with CMFDA-labelled three different cancer cell lines (MDA, OVCAR, U87), or with live mf of Brugia malayi for 48hr. CD45+ /

CMFDA- monocytes were then sorted and cultured in media alone. Supernatants were collected after an additional 24 h and evaluated for levels of A)

inflammatory, B) Type 2, C) regulatory, or D) cytokines related to angiogenesis by Luminex. The data are expressed as the geometric mean with 95%

confidence interval of the fold change over unexposed monocytes (n = 5–12). � P< 0.05, ��P<0.005.

https://doi.org/10.1371/journal.pntd.0006404.g002
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proliferation of allogeneic CD4+ T cells, suggesting that the PDL1 upregulation in cancer cell

line exposed- (but not mf-exposed) monocytes plays an important role in T cell suppression.

Because regulation of cytolytic CD8+ T cells is crucial in controlling tumor progression and

growth particularly through the release of granzymes (reviewed in[31]), we studied the effect

of cancer cell line exposed monocytes on granzyme A release in CD8+ T cells. As shown in Fig

5D, MDA- and U87- exposed monocytes but not OVCAR- or mf-exposed monocytes signifi-

cantly decreased the percentage of Granzyme A+ allogeneic CD8+ T cells when compared to

the unexposed monocytes. Furthermore, longer exposure of monocytes to mf (5 days) did not

result in a decrease in allogeneic or autologous (α-CD3 dependent) CD4+ or CD8+ T cell pro-

liferation (S6A and S6B Fig). As well, the further increase in cell surface expression of PDL1 on

monocytes after 5 days exposure to mf (S3 Fig) did not result in inhibition of T cell prolifera-

tion (S6A and S6B Fig).

Discussion

Within most solid tumors, monocytes and macrophages are the major inflammatory infiltrates

that can be recruited to the tumor microenvironment by tumor-derived chemokines, cyto-

kines and other signals[32]. The majority of these infiltrating cells differentiate into TAMs pro-

moting cancer cell proliferation, immunosuppression, and angiogenesis[33–35]. While the

immunosuppressive TAMs are activated by IL-4 and IL-13 (Th2-associated cytokines), IL-10,

glucocorticoids and vitamin D3, and can exert functions similar to M2 macrophages[36],

recent findings suggest that some TAMs are Th1-skewed and resemble M1 macrophages[37].

In murine models, glioblastoma-associated monocytes/macrophages have shown to produce a

broad range of cytokines/chemokines with both anti- and pro-inflammatory properties[38].

However, in humans, the same monocytes have phenotypes that are largely anti-inflammatory

Fig 3. Cancer cell lines and mf significantly upregulates the cell surface expressions of PDL1, PDL2, CD206 and VCAM-1 on human monocytes. Human

monocytes were cultured in media alone, or with CMFDA-labeled three different cancer cell lines (MDA, OVCAR, U87), or with live mf of Brugia malayi for 48hr.

Cells were harvested and cell surface expression PDL1, PDL2, CD206, VCAM-1, and CD163 was measured using flow cytometry gated on CD45+/CMFDA-

monocytes. (A) One representative set (n = 15) of flow histograms demonstrating cell surface expression in unexposed human monocytes and after exposure to mf or

different cancer cell lines. (B). The data are expressed as the geometric mean with 95% confidence interval of the mean fluorescent intensity of unexposed and

exposed monocytes (n = 15). � P< 0.05, �� P<0.005.

https://doi.org/10.1371/journal.pntd.0006404.g003
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[39]. In addition, monocytes co-cultured with breast cancer cell lines have shown to have pro-

tumor patterns of activities[40]. Therefore, TAMs are not simply restricted to M1 and M2 phe-

notypes and can represent a spectrum depending on tumor type, location, and microenviron-

ment (reviewed in[41]).

In general, helminth parasites are shown to induce an M2 response in monocyte/macro-

phage populations (reviewed in[42]). Although, it has already been reported that both hel-

minths and tumors alter the function of monocytes/macrophages, there are no studies

assessing the similarities and differences between parasites and cancer cells in their effect on

the phenotype and function of these cells. Given that both parasites and tumors share features

designed to manipulate the host immune response, we aimed to study the similarities and dif-

ferences between them with respect to monocytes (S1 Table).

To do so, we established a comparison between three cancer cell lines (MDA, OVCAR, and

U87) and the circulating stage of the helminth parasite, Brugia malayi and then assessed the

phenotype and function of human monocytes after exposure to either cancer cell lines or para-

sites. While we have looked at gene expression and cytokine production of mf- and cancer cell

lines-exposed monocytes at various time points (5 or 7 days; S7 Fig), we chose 48 hours as mf

exert its profound effect on DC and monocytes at this time point[6,9,43,44].

Fig 4. Breast cancer cell line MDA and MCSF (but not mf) significantly induce the phagocytic ability of human

monocytes. Human monocytes were cultured in media alone, or with CMFDA-labeled MDA, or live mf of Brugia
malayi for 48hr. Cells were harvested and CD45+/CMFDA- monocytes were sorted and cultured to measure

phagocytosis of opsonized fluorescent- labeled E. coli bioparticles (see Materials and Methods). Results are shown as

the percentage of phagocytic monocytes (FITC labeled E. coli positive). Each circle represents an independent donor,

where closed circles represent unexposed monocytes and open circles represent monocytes exposed to either MCSF,

MDA, or live mf. � P< 0.05.

https://doi.org/10.1371/journal.pntd.0006404.g004
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In our hands, and in agreement with previous studies[45,46] upon exposure of monocytes

to cancer cell lines, both pro- and anti-inflammatory genes are induced (Fig 1, S2 Fig and S1

Table). In fact, all three-cancer cell lines significantly enhanced the monocyte mRNA expres-

sion of genes associated with inflammatory responses, Type-2 responses, regulatory responses,

and angiogenesis (Fig 1 and S2 Fig). The M2 differentiation of monocytes co-cultured with

breast cancer cell lines in transwell has been shown in the past[46]. In our studies, co-culture

of monocytes with the supernatant of cancer cell lines resulted in enhanced expression and fre-

quency of CD206 and PDL1 positive cells (S8 Fig).

Furthermore, cancer cell lines- exposed human monocytes demonstrated a significant

induction of TGF-β, PGE2 and IL-10 as compared to unexposed cells (Fig 1). These immuno-

suppressive cytokines are known to be produced by macrophages in the tumor microenviron-

ment to promote tumor growth by maintaining T regulatory cell differentiation[11,47].

Moreover, angiogenesis is a key event in tumor growth and progression, and TAMs are the

major cell types promoting this event by producing factors such as VEGF in the tumor micro-

environment[48,49]. For example, the interaction between monocytes/macrophages and

ovarian cancer cells results in an increased ability of endothelial cells to promote tumor pro-

gression through angiogenesis[33]. Here our data indicate that exposure of human monocytes

to all three-cancer cell lines results in significant induction of VEGF and MMP9 (Fig 1) sug-

gesting a phenotype similar to TAMs.

One of the major similarities between mf- and cancer cell line- exposed monocytes is the

significant upregulation in the mRNA levels of IL-1β (associated with inflammation or M1

Fig 5. Cancer cell lines significantly diminishes PDL1-dependent proliferation of allogeneic and autologous CD4+ T cells and significantly diminishes the

frequency of Granzyme A+ CD8+ T cells. Human monocytes were cultured in media alone, or with CMFDA-labeled MDA-MDA or live mf of Brugia malayi, for

48hr. Cells were harvested and CD45+/CMFDA- monocytes were sorted and co-cultured with CFSE-labeled A) allogeneic or B) autologous lymphocytes in the

presence of soluble anti-CD3 (10ug/ml) for an additional 4 days. Percent proliferation of CD4+ and CD8+ T cells was measured by flow cytometry (n = 7) either A

and B) in the absence of antibody or C) in the presence of isotype control (closed circle) or anti-PDL1 (open circle). Each line represents an independent donor. �,

P< 0.05. D) Frequency and MFI of allogeneic Granzyme A+ CD8+ T cells was measured by flow cytometry. The data are expressed as geometric mean of percent

decrease in frequency and MFI of Granzyme A+/CD8+ T cells. ND = No Decrease; �P< 0.05. E) One representative set (n = 7) of flow histograms demonstrating

proliferation of allogeneic CD4+ T cells either without antibody (first panel), or in the presence of isotype control or α-PDL1 (second and third panels).

https://doi.org/10.1371/journal.pntd.0006404.g005
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phenotype), MMP9 (associated with angiogenesis), and TGM2 (associated with M2 pheno-

type) (Fig 1B). However, the magnitude of this upregulation is less profound in mf-exposed

monocytes (Fig 1A and 1B).

Another similarity between cancer cell lines and mf is in their regulation of cytokine pro-

duction. For example, while neither (mf or cancer cell lines) induces the production of CCL4,

TNF-α, IL-10, or VEGF, they both significantly enhance the production of IP-10 and CCL22 in

human monocytes (Fig 2). Both IP-10 and CCL22 are involved in lymphocyte chemotaxis and

recruiting regulatory T cells to the tumor microenvironment[50,51]. IP-10 also binds endothe-

lial cells and exerts a potent angiogenic activity in tumor settings[52]. While the role of IP-10 in

T cell recruitment has been shown with intracellular parasites[53], the importance of this che-

mokine in helminth infection is still not fully understood. In humans, CCL22 and CCL18 are

the chemokines expressed by M2 macrophage[54,55] and mf of Brugia malayi upregulate the

mRNA expression of both chemokines[6] and also induce the production of CCL22 (Fig 2).

An important similarity between helminth parasites and cancer cell lines demonstrated

here is their ability to upregulate monocyte cell surface expression of inhibitory molecules

such as PDL1 and PDL2 (Fig 3). While unexposed monocytes have low expression of PDL1,

CD163, and CD206 (Fig 3A; black solid lines), exposure to mf, similar to those of cancer cell

lines, significantly upregulate the cell surface expression of PDL1 (inhibitory), PDL2 (M2/

inhibitory), CD206 (M2), and VCAM-1(M1) (Fig 3A and 3B). Interestingly, while the upregu-

lation in cell surface expression of PDL1 on monocytes was less profound with mf than with

cancer cell lines, longer exposure to this parasite further increased the level of PDL1 (S3 Fig).

PDL1 and PDL2 are the two ligands for a major immune-checkpoint receptor PD1

(CD279)[56,57]. The engagement of PD1 on T cells with its ligands (PDL1/PDL2) on APCs

inhibits kinases that are involved in T cell activation[56,58]. The majority of lymphocytes that

infiltrate tumor microenvironment express PD1 and acquire a phenotype of hyporesponsive-

ness[59,60]. On the other hand, PDL1 is shown to be on most melanoma, ovarian and many

other cancer types[61]. In addition to tumors, myeloid cells in tumor microenvironment such

as TAMs also express high levels of PDL1 and PDL2[62–67]. Therefore, blockade of this inhib-

itory pathway is essential in cancer immunotherapy (reviewed in[62]).

Our data suggest that monocytes that are exposed to MDA (Fig 5; and other cancer cell

lines, S5 Fig) have significantly decreased their ability to promote allogeneic CD4+ and CD8+

and autologous CD4+ T cell proliferation as compared to unexposed monocytes (Fig 5A and

5B), suggesting a suppressive phenotype. Interestingly, blocking PD1/PDL1 pathway with

anti-PDL1 mAb reversed the suppressed proliferation in allogenic CD4+ but not CD8+ T cells

that were co-cultured with MDA exposed monocytes (Fig 5C).

Similar to cancer settings, chronic filarial infection with continuous release of parasite anti-

gens is associated with a lack of CD4+ T cell proliferation and production of IFN-γ and IL-2

[68]. The role of PD1/PDL1 (PDL2) in regulating T cell response has also been extended to

several infections[69]. Recent studies have suggested that macrophage expression of PDL1 is

important in regulating T cell responses to influenza infection[70]. In acute malaria the induc-

tion of PD1+CTLA4+ effector T cells results in suppressive function and inhibition of other

CD4+ T cells[69]. In our study, one major difference between helminth parasites and cancer

cells is how they shape monocytes to promote T cell activation (Fig 5). In contrast to cancer

cells, exposure to mf did not diminish the ability of monocytes to promote T cell proliferation

(Fig 5A, 5B and 5C). Therefore, blocking PDL1 pathway in mf-exposed monocytes did not

have any effect on T cell proliferation. Furthermore, longer exposure of monocytes to mf (5

days, S6 Fig) does not inhibit T cell proliferation. While, it has been suggested that other inhib-

itory molecules such as CTLA4 can play a role in T cell hyporesponsiveness seen in filarial-

infected individuals[71], how PD1/PDL1 may play a role in this suppression is not known.
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The ability of cytotoxic lymphocytes to recognize and kill infected or transformed cells is an

important part of both innate and adaptive arms of the immune system. In fact cytolytic T lym-

phocytes are key players in current immunotherapies and promote apoptosis of cancer cells

through granule-mediated as well as receptor-mediated mechanisms (reviewed in[31]). Stimula-

tion of these cytolytic T cells through their receptors induces the activation of effector mechanisms

including the granule exocytosis pathway releasing granule-associated enzymes (granzymes) as

well as other factors resulting in target cell death[72]. Granzyme A and B are two important serine

proteases that are involved in lymphocyte mediated cytotoxicity[31]. In fact, it has been shown

that inhibition in the function of these cytolytic T lymphocytes such as CD8+ T cells by TAM

establishes a suppressive microenvironment for the infiltrating immune cells[73,74].

Here, we demonstrate that exposure of human monocytes to MDA and U87 cancer cells,

but not to OVCAR or mf (Fig 5D) significantly downregulated the percentage of Granzyme

A+ CD8+ T cells suggesting further suppressive function of these cancer cell associated mono-

cytes. In general, CD8+ T cells can play both effector and regulatory role in parasitic immunity

(reviewed in[75]). CD8+ T cells mediated killing activities have been mostly directed and dem-

onstrated against number of intracellular parasites that infect host cells[75]. How CD8+ T cells

are regulating immunity against extracellular parasites is not fully understood. In filarial infec-

tions, CD8+ T cells exhibited a unique transcriptome in chronically-infected patients when

compared to those with relatively acute infections, suggesting an importance of CD8+ cells in

this infection[76]. Immune suppression in variety of helminth infections involves regulatory T

cells[42]. For example, in onchocerciasis, Granzyme A/B expression was associated with Treg

induction and subsequent immune suppression[77]. Induction of Treg were shown both in

vitro[78,79] and in filarial-infected patients[80,81].

One important function of macrophages is their ability to phagocytose[82,83]. Macrophage

phagocytosis plays a major role in tumor immune surveillance[84] in that antibody- depen-

dent cellular phagocytosis mediated by macrophages contributes significantly to anti-tumor

activity[85]. Macrophages that are polarized within the tumor microenvironment have

increased phagocytic ability[86]. In the present study, exposure to MDA (Fig 4) and other can-

cer cell lines (S4 Fig) significantly induced the phagocytic ability of human monocytes to pha-

gacytose bioparticles, suggesting that human monocytes exposed to cancer cell lines in vitro

behave similarly to TAMs.

Our data suggest that despite the fact that helminth parasites and tumor cell lines are

extraordinarily disparate, they share the ability to alter the phenotype of human monocytes

although the nature of this alteration differed (see S1 Table). Nevertheless, similarities between

the two types of stimuli in eliciting macrophage phenotypes similar to that of TAMs were

observed, most notably in their ability to drive the surface expression of immune inhibitory

molecules such as PDL1. Finally, utilizing a multidisciplinary approach to understand the

mechanisms underlying immune evasion by both tumors and parasites could be beneficial to

our understanding in both fields.

Supporting information

S1 Table. Similarities and differences between cancer cell lines and filarial parasites in

shaping the phenotype and function of human monocytes.

(TIFF)

S1 Fig. Comparing media for monocyte cultures. Human monocytes were cultured in either

complete DMEM media, complete RPMI media, or complete EMEM media for 48 hours. Cells

were harvested, A) viability was measured using trypan blue exclusion, B) mRNA levels were

measured by TaqMan real-time PCR and normalized to the levels of 18S rRNA, and C) surface
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expression PDL1 and CD206 was measured using flow cytometry. The data are expressed as

the geometric mean (n = 2).

(TIFF)

S2 Fig. mRNA expression of selected genes associated with inflammation, type 2, regula-

tory, and angiogenesis. Human monocytes were either unexposed (Mon) or exposed to

CMFDA-labeled three different cancer cell lines (MDA, OVCAR, U87), or to live mf of Brugia
malayi for 48 hours. CD45+/CMFDA- monocytes were sorted and mRNA levels of selected

genes associated with A) inflammation, B) type 2, C) regulatory and D) angiogenesis were

measured by TaqMan real-time PCR and normalized to the levels of 18S rRNA. The data

are expressed as the geometric mean with 95% confidence interval of 1/delta CT (n = 10).
� P<0.05, �� P<0.005.

(TIFF)

S3 Fig. Longer exposure of monocytes to mf results in increased PDL1 surface expression.

Human monocytes were cultured in media alone or with live mf of Brugia malayi for 48 hours

or 5 days. Cells were harvested and cell surface expression of PDL1 was measured using flow

cytometry A) Flow histograms demonstrating cell surface expression in unexposed human

monocytes and after exposure to mf, (isotype control, shaded areas; solid black lines, unex-

posed monocytes (Mon); and solid red lines, mf-exposed monocytes (Mon/mf), B) The fre-

quency of PDL1+ cells and MFI of Mon and Mon/mf are shown. The data are expressed as the

geometric mean (n = 2).

(TIFF)

S4 Fig. Cancer cell lines induce the phagocytic ability of human monocytes. Human mono-

cytes were cultured in media alone, or with CMFDA-labeled MDA, or live mf of Brugia malayi
for 48hr. Cells were harvested and CD45+/CMFDA- monocytes were sorted and cultured to

measure phagocytosis of opsonized fluorescent- labeled E. coli bioparticles (see Materials and

Methods). A) Flow histograms demonstrating percentage of phagocytic cells, B) Bars are

shown as the percentage of phagocytic monocytes (FITC labeled E. coli positive).

(TIFF)

S5 Fig. Cancer cell lines-exposed monocytes diminish CD4+ T and CD8+ T cells prolifera-

tion. Human monocytes were cultured in media alone, or with CMFDA-labeled-OVCAR, or

CMFDA-labeled U87 for 48hr. Cells were harvested and CD45+/CMFDA- monocytes were

sorted and co-cultured with CFSE-labeled A) autologous or B) allogeneic lymphocytes in the

presence of soluble anti-CD3 (10ug/ml) for an additional 4 days. Percent proliferation of

CD4+ and CD8+ T cells was measured by flow cytometry either A and B) in the absence of

antibody or C and D) in the presence of isotype control or anti-PDL1. The data are expressed

as the geometric mean (n = 2).

(TIFF)

S6 Fig. Longer exposure of monocytes to mf does not inhibit T cell proliferation. Human

monocytes were cultured in media alone, or with live mf for 5 days. Cells were harvested and

co-cultured with CFSE-labeled A) autologous or B) allogeneic lymphocytes in the presence of

soluble anti-CD3 (10ug/ml) for an additional 4 days. Percent proliferation of CD4+ and CD8+

T cells was measured by flow cytometry either in the absence of antibody or in the presence of

isotype control or anti-PDL1. The data are expressed as the geometric mean (n = 2).

(TIFF)

S7 Fig. mRNA expression of selected genes associated with inflammation, type 2, regula-

tory, and angiogenesis following longer exposure. Human monocytes were either unexposed
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(Mon) or exposed to CMFDA-labeled three different cancer cell lines (MDA, OVCAR, U87),

for either 5 or 7 days. CD45+/CMFDA- monocytes were sorted and mRNA levels of selected

genes associated with A) inflammation, B) type 2, C) regulatory, and D) angiogenesis were

measured by TaqMan real-time PCR and normalized to the levels of 18S rRNA. The data are

expressed as the geometric mean of 1/delta CT (n = 2).

(TIFF)

S8 Fig. Exposure of monocytes to cancer cell line supernatants results in increased levels of

PDL1 and CD206. Human monocytes were cultured in media alone or either with MDA,

OVCAR, U87 cancer lines or supernatant from each cancer cell line for 24. Cells were har-

vested and cell surface expression PDL1 and CD206 was measured using flow cytometry (A)

The frequency and B) MFI are shown. The data are expressed as geometric mean (n = 2).

(TIFF)

S1 Graphical Abstract. Graphic to accompany the abstract.

(PPTX)
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