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Abstract

Gliomas are the most common primary brain tumor and high-grade gliomas the leading cause of 

brain tumor-related death in both children and adults. An appreciation for the crucial role of the 

nervous system in the tumor microenvironment is emerging for cancers in general, and the neural 

regulation of glioma progression has come into sharp focus. Here, we review what is known about 

the influence of active neurons on glioma pathobiology.

Gliomas, central nervous system cancers that resemble glial cells molecularly and 

morphologically, are among the most common primary brain tumors in adults and children. 

High-grade gliomas, a histopathologic class that encompasses devastating tumors such as 

glioblastoma, anaplastic astrocytoma, anaplastic oligodendroglioma and midline H3K27M 

mutant gliomas of childhood (Louis et al., 2016) such as diffuse intrinsic pontine glioma 

(DIPG), have a particularly poor prognosis and remain the primary cause of mortality from 

brain tumors in patients of all ages. Distinctive properties of the central nervous system 

during the periods of both postnatal neurodevelopment and adult neural plasticity establish a 

unique tumor microenvironment for these cancers. Understanding microenvironmental 

determinants of glioma growth and progression is thus a focus of current lines of research 

that aim to uncover new targets and strategies for treating the disease and addressing its high 

burden of morbidity and mortality. Prior work has endeavored to describe interactions of 

glioma cells with astrocytes, immune cells, and cells of the vascular system (Charles et al., 

2011; Pyonteck et al., 2013; Quail and Joyce, 2017; Silver et al., 2013). Emerging research 

now suggests that interactions with neurons, and the direct and indirect consequences of 
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neuronal activity, represent critically important determinants of glioma cell behavior, as 

well.

The concept of active neurons as important components of the tumor microenvironment 

recalls our understanding of neuronal activity as a key regulator of central nervous system 

development and plasticity. While the glioma cell of origin remains unconfirmed and openly 

debated, accumulating research suggests that glioma may arise from neural stem or 

precursor cells of the oligodendroglial lineage, specifically oligodendrocyte precursor cells 

(OPCs), pre-OPCs or earlier neural precursor cells (NPCs) (Galvao et al., 2014; Liu et al., 

2011; Monje et al., 2011; Wang et al., 2009; Nagaraja et al., 2017). The known influence of 

active neurons on the proliferation, differentiation, and/or function of the cells from which 

glioma is thought to arise suggest that parallel mechanisms could play a role in glial cancers 

if co-opted for the promotion of tumor growth and progression.

Activity-Dependent Glioma Growth

Electrical activity of neurons is known to locally and specifically influence the proliferation 

of myelinating cell precursors, as well as the promotion of circuit myelination by 

functionally mature oligodendrocytes generated downstream. This was first suggested by 

early studies demonstrating that OPC proliferation could be suppressed by silencing 

neuronal activity in the rat optic nerve, either surgically via nerve transection or chemically 

via exposure to tetrodotoxin (Barres and Raff, 1993). Using optogenetic control of premotor 

cortical neural activity in awake, behaving mammalian models, NPCs, pre-OPCs and OPCs 

were found to exhibit a brisk mitogenic response to optogenetically increased cortical 

activity, leading to downstream differentiation to functionally mature oligodendrocytes and 

myelination of the active circuit in an adaptive manner (Gibson et al., 2014). Similarly, 

optogenetic manipulation of cortical neuronal activity also leads to an increased rate of 

proliferation of primary patient-derived pediatric cortical glioblastoma cells xenografted into 

the cortex of a mammalian model (Venkatesh et al., 2015). This occurs in a specific manner 

proximal to the stimulated circuit, and leads to increased tumor burden when optogenetic 

stimulation is performed repeatedly over time.

Activity-Regulated Secretion of Neuroligin-3

While the mechanism by which neuronal activity leads to increased proliferation of OPCs 

remains to be determined, an unexpected mechanism was implicated in the observed 

mitogenic effect of neuronal activity on glioma in vivo. Optogenetic stimulation of cortical 

slices resulted in the activity-dependent secretion of factors into conditioned medium that, 

when exposed to glioma cells, demonstrated a broad mitogenic effect on a nine out of ten 

patient-derived high-grade glioma cultures tested, including diffuse intrinsic pontine glioma, 

adult and pediatric glioblastoma, and anaplastic oligodendroglioma (Venkatesh et al., 2015). 

Biochemical and proteomic analyses revealed that the synaptic protein neuroligin-3 

(NLGN3), secreted in an activity-regulated manner, was the primary factor responsible for 

the observed mitogenic effect, along with lesser contributions from known glioma mitogens, 

the neurotrophin BDNF (brain-derived neurotrophic factor) and GRP78 (78-kDa glucose-

regulated protein) (Venkatesh et al., 2015). Secreted NLGN3 activates the PI3K-mTOR 
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signaling pathway to increase glioma cell proliferation, and also leads to the expression of 

NLGN3 by glioma cells in a feed-forward, potentially autocrine/paracrine loop. 

Furthermore, NLGN3 expression was found to correlate inversely with overall survival in 

adult patients with glioblastoma, emphasizing the clinical significance of this mechanism in 

the human disease. This study provided compelling evidence that active neurons are an 

important component of the glioma microenvironment, introducing a new potential approach 

to glioma therapeutics.

Given the diversity of microenvironmental and cell-intrinsic mechanisms that may promote 

glioma growth, what is the relative contribution of activity-regulated NLGN3? To answer 

this question, patient-derived high-grade glioma cells were orthotopically xenografted to 

neuroligin-3 knock out mice or littermate neuroligin-3 WT controls. Strikingly, glioma 

xenografts fail to grow in the neuroligin-3 deficient brain, indicating an unexpected 

dependency on this molecule. Neuroligin-3 dependency is conserved across molecularly and 

clinically distinct glioma types including adult glioblastoma, pediatric glioblastoma and 

DIPG (Venkatesh et al, 2017). Detailed phosphoproteomic studies reveal that neuroligin-3 

stimulates numerous oncogenic signaling cascades in the glioma cell, with early activation 

of focal adhesion kinase and downstream activation not only of PI3K-mTOR but also SRC 

and RAS pathways (Venkatesh et al, 2017). In addition to these signaling consequences, 

neuroligin-3 also induces numerous gene expression changes in the glioma cell. The most 

intriguing changes include up-regulated expression of numerous synapse-associated genes. 

In addition to the previously described feed-forward expression of NLGN3, several 

glutamate receptor subunit genes and the BDNF receptor gene NTRK2 increase expression 

following NLGN3 exposure in glioma (Venkatesh et al, 2017). As well, NLGN3 induces 

tweety homologue-1 (TTHY1) expression, a protein that regulates tumor microtube network 

formation in glioma (Osswald et al., 2015; Jung et al, 2017). While the functional 

significance of these gene expression changes remain to be clarified, the complex 

downstream consequences of activity-regulated neuroligin-3 release in the tumor 

microenvironment indicate that our understanding is still nascent regarding this crucial 

molecule and its pathological roles in glioma.

Although there is much to learn about the mechanisms that account for the observed 

neuroligin-3 dependency in glioma, this activity-regulated molecule represents an important 

therapeutic target. Neuroligin-3 is cleaved at the membrane by the ADAM10 protease 

resulting in ectodomain release into the microenvironment (Venkatesh et al., 2017). 

Inhibiting ADAM10 prevents neuroligin-3 release and dramatically reduces the growth of 

patient-derived high-grade glioma orthotopic xenografts (Venkatesh et al., 2017), suggesting 

a new therapeutic strategy targeting this key neuron-glioma interaction.

Neurotrophins in the Glioma Microenvironment

The identification of BDNF as a contributor to activity-dependent glioma proliferation 

(Venkatesh et al., 2015) is consistent with prior work suggesting a role for neurotrophins in 

glioma cell survival and growth. Neurotrophins are a family of growth factor molecules in 

the nervous system that act as major regulators of neuronal function, survival, and 

maturation, both in development and plasticity; they also govern the proliferation, 
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differentiation and function of OPCs (Tsiperson et al.; VonDran et al.; Wong et al.). This role 

is coupled to neuronal activity, as BDNF is synthesized in an activity-dependent manner 

(Hong et al., 2008; Lindholm et al., 1994) and secreted in response to depolarization 

(Androutsellis-Theotokis et al., 1996; Goggi et al., 2003). BDNF mediates its effects by 

signaling via the high-affinity TrkB (NTRK2) receptor (Chao et al., 2003; Klein et al., 1991) 

and indeed, this pathway is also implicated in the mechanism by which BDNF promotes 

proliferation, survival, and migration of high-grade glioma cells in studies in vitro (Lawn et 

al., 2015; Xiong et al., 2013). In further support of a role of BDNF-TrkB signaling in the 

glioma microenvironment, many human glioma cells, particularly astrocytomas, express 

neurotrophins and their receptors (Assimakopoulou et al., 2007; Lawn et al., 2015; Wadhwa 

et al., 2003; Wang et al., 1998) and exhibit mutations in Trk genes, including frequently 

activating fusions of NTRK1, NTRK2, and NTRK3 in pediatric high-grade glioma (Wu et 

al., 2014), pilocytic astrocytoma (Jones et al., 2013) and less commonly in adult 

glioblastoma (Frattini et al., 2013), as well as NTRK1 and/or NTRK2 amplifications in 

about half of diffuse intrinsic pontine gliomas (DIPG) (Grasso et al., 2015). Whether 

gliomas exhibiting NTRK fusions or amplifications are differentially dependent on or 

responsive to activity-regulated neurotophins in the microenvironment is unknown and 

represents an area for further research. These early findings certainly suggest a potentially 

targetable role of activity-regulated neurotrophin signaling in glioma progression, although 

the therapeutic potential of disrupting BDNF-TrkB signaling in glioma remains to defined in 

the literature.

Neurotransmitters and Glioma Growth and Progression

Neuronal activity could potentially also influence glioma growth and progression via 

neurotransmitter release. Several studies to date have begun to investigate glioma cell 

response to neurotransmitters in order to identify potential new therapeutic targets. Glioma 

incidence is reduced in patients with history of long-term therapy with tricyclic 

antidepressants, which have broad neurotransmitter effects and are thought to act primarily 

via reuptake inhibition of serotonin and norepinephrine (Walker et al., 2011). Low-grade 

glioma-bearing mice treated with the tricyclic antidepressant imipramine exhibited 

prolonged survival, with decreased rate of tumor cell proliferation and reduced progression 

to high grade lesions; the mechanism of action appears to involve induction of autophagy, 

leading to apoptosis (Shchors et al., 2015). Glioblastoma cells express dopamine receptors 

(Dolma et al., 2016; Li et al., 2014), and in a proliferation screen performed on three patient-

derived glioma cell cultures exposed to a panel of neurotransmitter agonists, antagonists, and 

reuptake inhibitors, pharmacologic blockade of dopamine receptor D4 emerged as an 

effective and selective inhibitor of glioma cell proliferation via disruption of autophagy and 

downstream induction of apoptosis (Dolma et al., 2016). Glioma cells also express 

functional serotonin receptors (Mahe et al., 2004), but whether serotonergic signaling 

influences glioma growth or progression is less clear, as increased serotonin levels as a result 

of selective serotonin reuptake inhibitor (SSRI) therapy have not been shown to have a 

survival benefit in retrospective studies of patients with glioblastoma and comorbid 

depression (Caudill et al., 2011). It should be noted in all glioma studies pharmacologically 

manipulating neurotransmitter signaling in vivo that it is difficult to de-convolute the cell 
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autonomous effects on glioma from the non-cell autonomous effects on neuronal activity, 

and these dissecting the various possible effects of neurotransmitter signaling blockade in 

the glioma ecosystem should be an area of dedicated study.

It also remains to be seen whether GABA, the primary inhibitory neurotransmitter in the 

mature CNS, regulates glioma growth; low-grade astrocytomas and oligodendrogliomas 

cells do express functional GABAA receptors, and while the function of such signaling is 

largely unclear, it is notable that higher grade gliomas did not express GABA receptors, and 

glioma cell lines without GABA receptor expression exhibited unlimited proliferation in 

culture (Labrakakis et al., 1998). Indeed, GABAergic signaling to OPCs inhibits their 

proliferation and promotes differentiation to mature oligodendrocytes (Zonouzi et al., 2015), 

but it is yet unclear whether glioma cells respond to GABA in a similar manner. This raises 

the interesting unanswered question regarding the influence GABAergic interneurons may 

exert on glioma. Understanding the direct role that GABA signaling plays in glioma growth 

may elucidate additional therapeutic avenues to control disease progression.

Both glial progenitor cells and glioma cells express glutamate receptors (Gallo et al., 1994; 

Ishiuchi et al., 2002; Labrakakis et al., 1998), and furthermore, non-synaptic secretion of 

glutamate by glioblastoma cells has been directly observed in vitro (Ye and Sontheimer, 

1999) and supported by in vivo studies describing increased extracellular glutamate levels in 

brain tissue proximal to glioblastomas (Behrens et al., 2000). Glutamate has been found to 

promote glioblastoma cell survival, growth and migration via calcium influx-mediated 

activation of PI3K-Akt signaling through AMPA receptors (Ishiuchi et al., 2002; Ishiuchi et 

al., 2007; Takano et al., 2001). Accordingly, gliomas that secrete greater levels of glutamate 

also exhibit increased tumor growth in mammalian models (Takano et al., 2001). Thus, 

nonsynaptic secretion of glutamate by glioma cells appears to have an autocrine/paracrine 

function in enhancing the tumor growth, survival and progression. Neuronal glutamate 

release could further contribute to glioma progression, although the extent to which neuronal 

glutamate release contributes to glioma progression – and whether neuronal glutamate 

release would signal in the same way as glutamate secreted form glioma cells - has not yet 

been explored.

Influence of Glioma on Cortical Excitability

Emerging work also suggests that the influence of active neurons on glioma cells may 

actually represent one facet of a bidirectional relationship (Figure 1). Of note, glutamate 

secretion by glioma cells contributes to hyperexcitability of neural circuits in the glioma 

microenvironment, including promotion of seizure activity (Buckingham et al., 2011; 

Campbell et al., 2012). This suggests that gliomas may actually enhance their own growth 

and progression not only via direct autocrine/paracrine effects of nonsynaptic secreted 

glutamate, but also by enhancing local neural activity, inducing an increase in subsequent 

release of activity-dependent mitogens by other cell types in the microenvironment. This 

may be a factor underlying the well-known clinical feature of seizure activity among human 

glioma patients, particularly in those with glioblastoma. Increased cortical excitability may 

also occur as gliomas progress and tumor cell behavior evolves. A recent study identified 

functionally diverse subgroups of astrocytes whose gene expression profiles match with 
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those of apparently analogous populations in glioma (John Lin et al., 2017). In a transgenic 

mouse model of glioma, the emergence of a subpopulation of glioma cells with particularly 

synaptogenic properties was observed as tumors progressed, which correlated with the onset 

of clinical seizure activity in the tumor-bearing mice, suggesting that increased and/or 

altered synaptogenesis due to shifting predominance of tumor cell phenotypes may underlie 

the cortical hyperexcitability seen in later-stage glioma in this model (John Lin et al., 2017). 

Interestingly, this increased excitability also correlated with enhanced migratory behavior of 

the glioma cells, suggesting a possible link between synaptic neuronal activity and 

promotion of infiltration, though this association has yet to be directly tested. Additional 

work is also needed to demonstrate whether seizure activity as well as physiologic cortical 

activity similarly promotes glioma growth. Furthermore, as clinically apparent seizures are 

more common in individuals with low-grade gliomas and oligodendrogliomas than those 

with astrocytomas, it will be important to determine if these glioma types promote cortical 

hyperexcitability via similar mechanisms.

Conclusion

Gliomas thus join an ever-increasing number of cancers for which neural regulation of the 

tumor microenvironment plays a key role in malignancy (for review, please see (Venkatesh 

and Monje, 2017). A fascinating model is emerging from the literature to date, suggesting 

multiple mechanisms by which active neurons may promote the growth and progression of 

glioma, including activity-regulated neurotransmitter, growth factor, and NLGN3 release 

into the glioma microenvironment. Furthermore, as glioma remodels its microenvironment 

in order to promote hyperexcitability of local circuits, the resultant increase in neuronal 

activity may contribute even further to various activity-dependent mechanisms of tumor 

growth and progression. While additional work is needed to elucidate the nature of many of 

these mechanisms, the important influence of neuronal activity on glial precursor cell growth 

and behavior during development and plasticity may suggest parallel interactions between 

active neurons and glioma cells. A better understanding of this underrecognized aspect of 

the glioma microenvironment, and the degree to which glioma cells may co-opt or diverge 

from physiological activity-dependent processes, may reveal promising new approaches to 

developing therapeutics for the treatment of this devastating group of neural cancers.
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Highlights

* Neuronal activity promotes glioma growth

* Gliomas increase neuronal excitability and promote seizures

* Bidirectional communication between gliomas and neurons in the tumor 

microenvironment drives a cycle of malignancy
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Figure 1. Bidirectional signaling between neurons and gliomas promote glioma growth
Neuronal activity promotes glioma proliferation and growth through activity-regulated 

secretion of brain-derived neurotrophic factor (BDNF), soluble neuroligin-3 (NLGN3), 

glutamate, dopamine and likely other factors. In turn, gliomas encourage neuronal activity 

through glutamate release, promoting synaptogenesis, and possibly additional mechanisms.
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