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Abstract

Spatial process models for analyzing geostatistical data entail computations that become 

prohibitive as the number of spatial locations become large. This article develops a class of highly 

scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based 

inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial 

process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. 

We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework 

and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be 

executed without storing or decomposing large matrices. The floating point operations (flops) per 

iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial 

scalability. We illustrate the computational and inferential benefits of the NNGP over competing 

methods using simulation studies and also analyze forest biomass from a massive U.S. Forest 

Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary 

materials for this article are available online.
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1. Introduction

With the growing capabilities of Geographical Information Systems (GIS) and user-friendly 

software, statisticians today routinely encounter geographically referenced datasets 

containing a large number of irregularly located observations on multiple variables. This has, 

in turn, fueled considerable interest in statistical modeling for location-referenced spatial 

data; see, for example, the books by Stein (1999), Moller and Waagepetersen (2003), 

Schabenberger and Gotway (2004), and Cressie and Wikle (2011), and Banerjee, Carlin, and 
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Gelfand (2014) for a variety of methods and applications. Spatial process models introduce 

spatial dependence between observations using an underlying random field, {w(s) : s ∈ }, 

over a region of interest , which is endowed with a probability law that specifies the joint 

distribution for any finite set of random variables. For example, a zero-centered Gaussian 

process ensures that w = (w(s1), w(s2) …, w(sn))′ ~ N(0, C(θ)), where C(θ) is a family of 

covariance matrices, indexed by an unknown set of parameters θ. Such processes offer a rich 

modeling framework and are being widely deployed to help researchers comprehend 

complex spatial phenomena in the sciences. However, model fitting usually involves the 

inverse and determinant of C(θ), which typically require ~ n3 floating point operations 

(flops) and storage of the order of n2. These become prohibitive when n is large and C(θ) 

has no exploitable structure.

Broadly speaking, modeling large spatial datasets proceeds from either exploiting “low-

rank” models or using sparsity. The former attempts to construct spatial processes on a 

lower-dimensional subspace (see, e.g., Higdon 2001; Kammann and Wand 2003; Rasmussen 

and Williams 2005; Stein 2007, 2008; Banerjee et al. 2008; Crainiceanu et al. 2008; Cressie 

and Johannesson 2008; Finley, Banerjee, and McRoberts 2009) by regressing the original 

(parent) process on its realizations over a smaller set of r ≪ n locations (“knots” or 

“centers”). The algorithmic cost for model fitting typically decreases from O(n3) to O(nr2 + 

r3) ≈ O(nr2) flops since n ≫ r. However, when n is large, empirical investigations suggest 

that r must be fairly large to adequately approximate the parent process and the nr2 flops 

become exorbitant (see Section 5.1). Furthermore, low-rank models perform poorly when 

neighboring observations are strongly correlated and the spatial signal dominates the noise 

(Stein 2014). Although bias-adjusted low-rank models tend to perform better (Finley, 

Banerjee, and McRoberts 2009; Banerjee et al. 2010; Sang and Huang 2012), they increase 

the computational burden.

Sparse methods include covariance tapering (see, e.g., Furrer, Genton, and Nychka 2006; 

Kaufman, Scheverish, and Nychka 2008; Du, Zhang, and Mandrekar 2009; Shaby and 

Ruppert 2012), which introduces sparsity in C(θ) using compactly supported covariance 

functions. This is effective for parameter estimation and interpolation of the response 

(“kriging”), but it has not been fully developed or explored for more general inference on 

residual or latent processes. Introducing sparsity in C(θ)−1 is prevalent in approximating 

Gaussian process likelihoods using Markov random fields (e.g., Rue and Held 2005), 

products of lower-dimensional conditional distributions (Vecchia 1988, 1992; Stein, Chi, and 

Welty 2004), or composite likelihoods (e.g., Bevilacqua and Gaetan 2014; Eidsvik et al. 

2014). However, unlike low-rank processes, these do not, necessarily, extend to new random 

variables at arbitrary locations. There may not be a corresponding process, which restricts 

inference to the estimation of spatial covariance parameters. Spatial prediction (“kriging”) at 

arbitrary locations proceeds by imputing estimates into an interpolator derived from a 

different process model. This may not reflect accurate estimates of predictive uncertainty 

and is undesirable.

Our intended inferential contribution is to offer substantial scalability for fully process-based 

inference on underlying, perhaps completely unobserved, spatial processes. Moving from 

finite-dimensional sparse likelihoods to sparsity-inducing spatial processes can be 
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complicated. We first introduce sparsity in finite-dimensional probability models using 

specified neighbor sets constructed from directed acyclic graphs. We use these sets to extend 

these finite-dimensional models to a valid spatial process over uncountable sets. We call this 

process a nearest-neighbor Gaussian process (NNGP). Its finite-dimensional realizations 

have sparse precision matrices available in closed form. While sparsity has been effectively 

exploited by Vecchia (1988), Stein, Chi, and Welty (2004), Emory (2009), Gramacy and 

Apley (2014), Gramacy, Niemi, and Weiss (2014), and Stroud, Stein, and Lysen (2014) for 

approximating expensive likelihoods cheaply, a fully process-based modeling and inferential 

framework has, hitherto, proven elusive. The NNGP fills this gap and enriches the inferential 

capabilities of existing methods by subsuming estimation of model parameters, prediction of 

outcomes, and interpolation of underlying processes into one highly scalable unifying 

framework.

To demonstrate its full inferential capabilities, we deploy the NNGP as a sparsity-inducing 

prior for spatial processes in a Bayesian framework. Unlike low-rank processes, the NNGP 

always specifies nondegenerate finite dimensional distributions making it a legitimate proper 

prior for random fields and is applicable to any class of distributions that support a spatial 

stochastic process. It can, therefore, model an underlying process that is never actually 

observed. The modeling provides structured dependence for random effects, for example, 

intercepts or coefficients, at a second stage of specification where the first stage need not be 

Gaussian. We cast a multivariate NNGP within a versatile spatially varying regression 

framework (Gelfand et al. 2003; Banerjee et al. 2008) and conveniently obtain entire 

posteriors for all model parameters as well as for the spatial processes at both observed and 

unobserved locations. Using a forestry example, we show how the NNGP delivers process-

based inference for spatially varying regression models at a scale where even low-rank 

processes, let alone full Gaussian processes, are unimplementable even in high-performance 

computing environments.

Here is a brief outline. Section 2 formulates the NNGP using multivariate Gaussian 

processes. Section 3 outlines Bayesian estimation and prediction within a very flexible 

hierarchical modeling setup. Section 4 discusses alternative NNGP models and algorithms. 

Section 5 presents simulation studies to highlight the inferential benefits of the NNGP and 

also analyzes forest biomass from a massive USDA dataset. Finally, Section 6 concludes the 

article with a brief summary and pointers toward future work.

2. Nearest-Neighbor Gaussian Process

2.1 Gaussian Density on Sparse Directed Acyclic Graphs

We will consider a q-variate spatial process over ℜd. Let w(s) ~ GP(0, C(·, · | θ)) denote a 

zero-centered q-variate Gaussian process, where w(s) ∈ ℜq for all s ∈  ⊆ ℜd. The process 

is completely specified by a valid cross-covariance function C(·, · | θ), which maps a pair of 

locations s and t in  ×  into a q × q real-valued matrix C(s, t) with entries cov{wi(s), 

wj(t)}. Here, θ denotes the parameters associated with the cross-covariance function. Let 

= {s1, s2, …, sk} be a fixed collection of distinct locations in , which we call the reference 
set. So, w  ~ N(0, C (θ)), where w  = (w(s1)′, w(s2)′, …, w(sk)′)′ and C (θ) is a 

positive definite qk × qk block matrix with C(si, sj) as its blocks. Henceforth, we write C
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(θ) as C , the dependence on θ being implicit, with similar notation for all spatial 

covariance matrices.

The reference set  need not coincide with or be a part of the observed locations, so k need 

not equal n, although we later show that the observed locations are a convenient practical 

choice for . When k is large, parameter estimation becomes computationally cumbersome, 

perhaps even unfeasible, because it entails the inverse and determinant of C . Here, we 

benefit from expressing the joint density of w  as the product of conditional densities, that 

is,

p(w𝒮) = p(w(s1)) p(w(s2) ∣ w(s1))…p(w(sk) ∣ w(sk − 1), …, w(s1)), (1)

and replacing the larger conditioning sets on the right-hand side of (1) with smaller, 

carefully chosen, conditioning sets of size at most m, where m ≪ k (see, e.g., Vecchia 1988; 

Stein, Chi, and Welty 2004; Gramacy and Apley 2014; Gramacy, Niemi, and Weiss 2014). 

So, for every si ∈ , a smaller conditioning set N(si) ⊂  \ {si} is used to construct

p∼(w𝒮) = ∏
i = 1

k
p(w(si) ∣ wN(si)

), (2)

where wN(si) is the vector formed by stacking the realizations of w(s) over N(si).

Let N  = {N(si); i = 1, 2, …, k} be the collection of all conditioning sets over . We can 

view the pair { , N } as a directed graph  with  = {s1, s2, …, sk} being the set of nodes 

and N  the set of directed edges. For every two nodes si and sj, we say sj is a directed 

neighbor of si if there is a directed edge from si to sj. So, N(si) denotes the set of directed 

neighbors of si and is, henceforth, referred to as the “neighbor set” for si. A “directed cycle” 

in a directed graph is a chain of nodes si1, si2, …, sib such that si1 = sib and there is a directed 

edge between sij and sij+1 for every j = 1, 2, …, b − 1. A directed graph with no directed 

cycles is known as a “directed acyclic graph.”

If  is a directed acyclic graph, then p̃(w ), as defined above, is a proper multivariate joint 

density (see online Appendix A1 or Lauritzen (1996) for a similar result). Starting from a 

joint multivariate density p(w ), we derive a new density p̃(w ) using a directed acyclic 

graph . While this holds for any original density p(w ), it is especially useful in our 

context, where p(w ) is a multivariate Gaussian density and  is sufficiently sparse. To be 

precise, let CN(si) be the covariance matrix of wN(si) and let CsiN(si) be the q × mq cross-

covariance matrix between the random vectors w(si) and wN(si). Standard distribution theory 

reveals
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p∼(w𝒮) = ∏
i = 1

k
N(w(si) ∣ Bsi

wN(si)
, Fsi

), (3)

where Bsi
= Csi, N(si)

CN(si)
−1  and Fsi

= C(si, si) − Csi, N(si)
CN(si)

−1 CN(si), si
. Appendix A2 (available 

online) shows that p̃(w ) in (3) is a multivariate Gaussian density with covariance matrix C̃

, which, obviously, is different from C . Furthermore, if N(si) has at most m members for 

each si in , where m ≪ k, then C∼𝒮
−1 is sparse with at most km(m + 1)q2/2 nonzero entries. 

Thus, for a very general class of neighboring sets, p̃(w ) defined in (2) is the joint density 

of a multivariate Gaussian distribution with a sparse precision matrix.

Turning to the neighbor sets, choosing N(si) to be any subset of {s1, s2, …, si−1} ensures an 

acyclic  and, hence, a valid probability density in (3). Several special cases exist in 

likelihood approximation contexts. For example, Vecchia (1988) and Stroud, Stein, and 

Lysen (2014) specified N(si) to be the m nearest neighbors of si among s1, s2, …, si−1 with 

respect to Euclidean distance. Stein, Chi, and Welty (2004) considered nearest as well as 

farthest neighbors from {s1, s2, …, si−1}. Gramacy and Apley (2014) offered greater 

flexibility in choosing N(si), but may require several approximations to be efficient.

All of the above choices depend upon an ordering of the locations. Spatial locations are not 

ordered naturally, so one imposes order by, for example, ordering on one of the coordinates. 

Of course, any other function of the coordinates can be used to impose order. However, the 

aforementioned authors have cogently demonstrated that the choice of the ordering has no 

discernible impact on the approximation of (1) by (3). Our own simulation experiments (see 

Appendix A5, available online) concur with these findings; inference based upon p̃(w ) is 

extremely robust to the ordering of the locations. This is not entirely surprising. Clearly, 

whatever order we choose in (1), p(w ) produces the full joint density. Note that we reduce 

(1) to (2) based upon neighbor sets constructed with respect to the specific ordering in (1). A 

different ordering in (1) will produce a different set of neighbors for (2). Since p̃(w ) 

ultimately relies upon the information borrowed from the neighbors, its effectiveness is often 

determined by the number of neighbors we specify and not the specific ordering.

In the following section, we will extend the density p̃(w ) to a legitimate spatial process. 

We remark that our subsequent development holds true for any choice of N(si) that ensures 

an acyclic . In general, identifying a “best subset” of m locations for obtaining optimal 

predictions for si is a nonconvex optimization problem, which is difficult to implement and 

defeats our purpose of using smaller conditioning sets to ease computations. Nevertheless, 

we have found Vecchia’s choice of m-nearest neighbors from {s1, s2, …, si−1} to be simple 

and to perform extremely well for a wide range of simulation experiments. In what ensues, 

this will be our choice for N(si) and the corresponding density p̃(w ) will be referred to as 

the “nearest neighbor” density of w .
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2.2 Extension to a Gaussian Process

Let u be any location in  outside . Consistent with the definition of N(si), let N(u) be the 

set of m-nearest neighbors of u in . Hence, for any finite set  = {u1, u2, …, ur} such that 

 ∩  is empty, we define the nearest neighbor density of w  conditional on w  as

p∼(w𝒰 ∣ w𝒮) = ∏
i = 1

r
p(w(ui) ∣ wN(ui)

) . (4)

This conditional density is akin to (2) except that all the neighbor sets are subsets of . This 

ensures a proper conditional density. Indeed (2) and (4) are sufficient to describe the joint 

density of any finite set over the domain . More precisely, if  = {v1, v2, …, vn} is any 
finite subset in , then, using (4) we obtain the density of w  as

p∼(w𝒱) = ∫ p∼(w𝒰 ∣ w𝒮) p∼(w𝒮) ∏
{si ∈ 𝒮\𝒱}

d(w(si))

where 𝒰 = 𝒱\𝒮 .

(5)

If  is empty, then (4) implies that p̃(w  | w ) = 1 in (5). If  \  is empty, then the 

integration in (5) is not needed.

These probability densities, defined on finite topologies, conform to Kolmogorov’s 

consistency criteria and, hence, correspond to a valid spatial process over  (see Appendix 

A3, available online). So, given any original (parent) spatial process and any fixed reference 

set , we can construct a new process over the domain  using a collection of neighbor sets 

in . We refer to this process as the “nearest neighbor process” derived from the original 

parent process. If the parent process is GP(0, C(·, · | θ)), then

p∼(w𝒰 ∣ w𝒮) = ∏
i = 1

r
N(w(ui) ∣ Bui

wN(ui)
, Fui

) = N(B𝒰w𝒮, F𝒰) (6)

for any finite set  = {u1, u2, …, ur} in  outside , where Bui and Fui are defined 

analogous to (3) based on the neighbor sets N(ui), F  = diag(Fu1, Fu2, …, Fur), and B  is a 

sparse nq × kq matrix with each row having at most mq nonzero entries (see Appendix A4, 

available online).

For any finite set  in , p̃(w ) is the density of the realizations of a Gaussian process over 

 with cross-covariance function
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C∼(v1, v2; θ) =

C∼si, s j
, if v1 = si and v2 = s j are both in 𝒮,

Bv1
C∼N(v1), s j

if v1 ∉ 𝒮 and v2 = s j ∈ 𝒮,

Bv1
C∼N(v1), N(v2)Bv2

′ + δ(v1 = v2)Fv1
, if v1 and v2 are noth in 𝒮

(7)

where v1 and v2 are any two locations in , C̃
A,B denotes submatrices of C̃  indexed by the 

locations in the sets A and B, and δ(v1=v2) is the Kronecker delta. Appendix A4 (available 

online) also shows that C̃(v1, v2 | θ) is continuous for all pairs (v1, v2) outside a set of 

Lebesgue measure zero.

This completes the construction of a well-defined nearest neighbor Gaussian process, 

NNGP(0, C̃(·, · | θ)), derived from a parent Gaussian process, GP(0, C(·, · | θ)). In the 

NNGP, the size of , that is, k, can be as large, or even larger than the size of the dataset. 

The reduction in computational complexity is achieved through sparsity of the NNGP 

precision matrices. Unlike low-rank processes, the NNGP is not a degenerate process. It is a 

proper, sparsity-inducing Gaussian process, immediately available as a prior in hierarchical 

modeling, and, as we show in the next section, delivers massive computational benefits.

3. Bayesian Estimation and Implementation

3.1 A Hierarchical Model

Consider a vector of l dependent variables, say y(t), at location t ∈  ⊆ ℜd in a spatially 

varying regression model,

y(t) = X(t)′β + Z(t)′w(t) + ε(t), (8)

where X(t)′ is the l × p matrix of fixed spatially referenced predictors, w(t) is a q × 1 spatial 

process forming the coefficients of the l × q fixed design matrix Z(t)′, and ε(t) ∼iid N(0, D) is 

an l × 1 white-noise process capturing measurement error or micro-scale variability with 

dispersion matrix D, which we assume is diagonal with entries τ j
2, j = 1, 2, …, l. The matrix 

X(t)′ is block diagonal with p = ∑i = 1
l pi, where the 1 × pi vector xi(t)′, including perhaps 

an intercept, is the ith block for each i = 1, 2, …, l. The model in (8) subsumes several 

specific spatial models. For instance, letting q = l and Z(t)′ = Il×l leads to a multivariate 

spatial regression model, where w(t) acts as a spatially varying intercept. On the other hand, 

we could envision all coefficients to be spatially varying and set q = p with Z(t)′ = X(t)′.

For scalability, instead of a customary Gaussian process prior for w(t) in (8), we assume w(t) 
~ NNGP(0, C̃(·, · | θ)) derived from the parent GP(0, C(·, · | θ)). Any valid isotropic cross-

covariance function (see, e.g., Gelfand and Banerjee 2010) can be used to construct C(·, · | 

θ). To elucidate, let  = {t1, t2, …, tn} be the set of locations where the outcomes and 
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predictors have been observed. This set may, but need not, intersect with the reference set 

= {s1, s2, …, sk} for the NNGP. Without loss of generality, we split up  into * and , 

where * =  ∩  = {si1, si2, …, sir} with sij = tj for j = 1, 2, …, r and  =  \  = {tr+1, 

tr+2, …, tn}. Since  ∪  =  ∪ , we can completely specify the realizations of the 

NNGP in terms of the realizations of the parent process over  and , hierarchically, as w
| w  ~ N(B w , F ) and w  ~ N(0, C̃ ). For a full Bayesian specification, we further 

specify prior distributions on β, θ, and the τ j
2’s. For example, with customary prior 

specifications, we obtain the joint distribution

p(θ) × ∏
j = 1

l
IG(τ j

2 ∣ aτ j
, bτ j

) × N(β ∣ μβ, Vβ) × N(w𝒰 ∣ B𝒰w𝒮, F𝒰) × N(w𝒮 ∣ 0, C∼𝒮)

× ∏
i = 1

n
N(y(ti) ∣ X(ti)′β + Z(ti)′w(ti), D),

(9)

where p(θ) is the prior on θ and IG(τ j
2 ∣ aτ j

, bτ j
) denotes the inverse Gamma density.

3.2 Estimation and Prediction

To describe a Gibbs sampler for estimating (9), we define y = (y(t1)′, y(t2)′, …, y(tn)′)′, 

and w and ε similarly. Also, we introduce X = [X(t1) : X(t2) : …: X(tn)]′, Z = diag(Z(t1)′, 

…, Z(tn)′), and Dn = Cov(ε) = diag(D, …, D). The full conditional distribution for β is 

N(Vβ
∗ μβ

∗, Vβ
∗), where Vβ

∗ = (Vβ
−1 + X′Dn

−1X)−1, μβ
∗ = (Vβ

−1μβ + X′Dn
−1(y − Zw)). Inverse 

Gamma priors for the τ j
2’s leads to conjugate full conditional distribution 

IG(aτ j
+ n

2 , bτ j
+ 1

2(y ∗ j − X ∗ jβ − Z ∗ jw)′(y ∗ j − X ∗ jβ − Z ∗ jw), where y*j refers to the n × 1 

vector containing the jth coordinates of the y(ti)’s, and X*j and Z*j are the corresponding 

fixed and spatial effect covariate matrices, respectively. For updating θ, we use a random 

walk Metropolis step with target density p(θ) × N(w |0, C̃ ) × N(w  | B w , F ), where

N(w𝒮 ∣ 0, C∼𝒮) = ∏i = 1
k N(w(si) ∣ Bsi

wN(si)
, Fsi

) and

N(w𝒰 ∣ B𝒰w𝒮, F𝒰) = ∏i = r + 1
n N(w(ti) ∣ Bti

wN(ti)
, Fti

) .

(10)

Each of the component densities under the product sign on the right-hand side of (10) can be 

evaluated without any n-dimensional matrix operations.

Since the components of w  | w  are independent, we can update w(ti) from its full 

conditional N(Vtiμti, Vti) for i = r + 1, r + 2, …, n where Vti
= (Z(ti)D

−1Z(ti)′ + Fti
−1)−1

 and 

μti
= Z(ti)D

−1(y(ti) − X(ti)′β) + Fti
−1Bti

wN(ti)
. Finally, we update the components of w
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individually. For any two locations s and t in , if s ∈ N(t) and is the lth component of N(t), 
that is, say s = N(t)(l), then define Bt,s as the l × l submatrix formed by columns (l − 1)q + 1, 

(l − 1)q + 2, …, lq of Bt. Let U(si) = {t ∈  ∪  | si ∈ N(t)} and for every t ∈ U(si) define, 

at,si = w(t) − Σs∈N(t),s≠si Bt,sw(s). Then, for i = 1, 2, …, k, we have the full conditional wsi | · 

~ N(Vsiμsi, Vsi), where 

Vsi
= (In(si ∈ 𝒮∗)Z(si)D

−1Z(si)′ + Fsi
−1 + ∑t ∈ U(si)

Bt, si
′ Ft

−1Bt, si
)−1, μsi

= In(si ∈ 𝒮∗)Z(si)D
−1(y

(si) − X(si)′β) + Fsi
−1Bsi

wN(si)
+ ∑t ∈ U (si)

Bt, si
′ Ft

−1at, si

, and In(·) denotes the indicator function. Hence, the w’s can also be updated without 

requiring storage or factorization of any n × n matrices.

Turning to predictions, let t be a new location where we intend to predict y(t) given X(t) and 

Z(t). The Gibbs sampler for estimation also generates the posterior samples w ∪  | y. So, 

if t ∈  ∪ , then we simply get samples of y(t) | y from N(X(t)′β + Z(t)′w(t), D). If t is 

outside  ∪ , then we generate samples of w(t) from its full conditional N(Btw , Ft) and 

subsequently generate posterior samples of y(t) | y similar to the earlier case.

3.3 Computational Complexity

Implementing the NNGP model in Section 3.2 reveals that one entire pass of the Gibbs 

sampler can be completed without any large matrix operations. The only difference between 

(9) and a full geostatistical hierarchical model is that the spatial process is modeled as an 

NNGP prior as opposed to a standard GP. For comparisons, we offer rough estimates of the 

flop counts to generate θ and w per iteration of the sampler. We express the computational 

complexity only in terms of the sample size n, size of the reference set k, and the size of the 

neighbor sets m as other dimensions are assumed to be small. For all locations, t ∈  ∪ , 

Bt, and Ft can be calculated using O(m3) flops. So, from (10) it is easy to see that p(θ | ·) can 

be calculated using O((n + k)m3) flops. All subsequent calculations to generate a set of 

posterior samples for w and θ require around O((n + k)m2) flops.

So, the total flop counts is of the order (n + k)m3 and is, therefore, linear in the total number 

of locations in  ∪ . This ensures scalability of the NNGP to large datasets. Compare this 

with a full GP model with a dense correlation matrix, which requires O(n3) flops for 

updating w in each iteration. Simulation results in Section 5.1 and online Appendix A6 

indicate that NNGP models with usually very small values of m (≈10) provide inference 

almost indistinguishable to full geostatistical models. Therefore, for large n, this linear flop 

count is drastically less and linearity with respect to k ensures a feasible implementation 

even for k ≈ n.

This offers substantial scalability over low-rank models where the computational cost is 

quadratic in the number of “knots,” limiting the size of the set of knots. Also, the full 

geostatistical model requires storage of the n × n distance matrix, which can potentially 

exhaust storage resources for large datasets. An NNGP model only requires the distance 

matrix between neighbors for every location, thereby storing n + k small matrices, each of 

order m × m.
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3.4 Model Comparison and Choice of  and m

As elaborated in Section 2, given any parent Gaussian process and any fixed reference set of 

locations , we can construct a valid NNGP. The resulting finite dimensional likelihoods of 

the NNGP depend upon the choice of the reference set  and the size of each N(si), that is, 

m. Choosing the reference set is similar to selecting the knots for a predictive process. 

Unlike the number of “knots” in low-rank models, the size of  does not thwart 

computational scalability. Since the flop count in an NNGP model only increases linearly 

with the size of , the number of locations in  can be large, with more flexible choices for 

.

Points over a grid across the entire domain seem to be a plausible choice for . For 

example, we can construct a large  using a dense grid to improve performance without 

adversely affecting computational costs. Another, perhaps even simpler, option for large 

datasets is to simply fix  = , the set of observed locations. This choice reduces 

computational costs even further by avoiding additional sampling of w  in the Gibbs 

sampler. Our empirical investigations (see Section 5.1) reveal that choosing  =  delivers 

inference almost indistinguishable from choosing  to be a grid over the domain for large 

datasets.

Stein, Chi, and Welty (2004) and Eidsvik et al. (2014) proposed using a sandwich variance 

estimator for evaluating the inferential abilities of neighbor-based pseudo-likelihoods. Shaby 

(2012) developed a post-sampling sandwich variance adjustment for posterior credible 

intervals of the parameters for quasi-Bayesian approaches using pseudo-likelihoods. 

However, the asymptotic results used to obtain the sandwich variance estimators are based 

on assumptions that are hard to verify in spatial settings with irregularly placed data points. 

Moreover, we view the NNGP as an independent model for fitting the data and not as an 

approximation to the original GP. Hence, we refrain from such sandwich variance 

adjustments. Instead, we can simply use any standard model comparison metrics such as 

deviance information criterion (DIC; Spiegelhalter et al. 2002), GPD score (Gelfand and 

Ghosh 1998), or root mean squared prediction error/root mean square error of coefficient of 

variation (RMSPE/RMSECV; Yeniay and Goktas 2002) to compare the performance of 

NNGP and any other candidate model. The same model comparison metrics are also used 

for selecting m. However, as we illustrate later in Section 5.1, usually a small value of m 
between 10 and 15 produces performance at par with the full geostatistical model. While 

larger m may be beneficial for massive datasets, perhaps under a different design scheme, it 

will be much smaller than the number of knots in low-rank models for comparable inference 

(see Section 5.1).

4. Alternate NNGP Models and Algorithms

4.1 Block Update of w  Using Sparse Cholesky

The Gibbs’ sampling algorithm detailed in Section 3.2 is extremely efficient for large 

datasets with linear flop counts per iteration. However, it can sometimes experience slow 

convergence issues due to sequential updating of the elements in w . An alternative to 
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sequential updating is to perform block updates of w . We choose  =  so that si = ti for 

all i = 1, 2, …, n and we denote w  = w  by w. Then,

w ∣ · N(V𝒮Z′Dn
−1(y − Xβ), V𝒮),

where V𝒮 = (Z′Dn
−1Z + C∼𝒮

−1)
−1

.

(11)

Recall that C∼𝒮
−1 is sparse. Since Z and Dn are block diagonal, V𝒮

−1 retains the sparsity of 

C∼𝒮
−1. So, a sparse Cholesky factorization of V𝒮

−1 will efficiently produce the Cholesky 

factors of V . This will facilitate block updating of w in the Gibbs sampler.

4.2 NNGP Models for the Response

Another possible approach involves NNGP models for the response y(s). If w(s) is a 

Gaussian process, then so is y(s) = Z(s)′w(s) + ε (without loss of generality we assume β = 

0). One can directly use the NNGP specification for y(s) instead of w(s). That is, we derive 

y(s) ~ NNGP(0, Σ̃(·, ·)) from the parent Gaussian process GP(0, Σ(·, · | θ)). The Gibbs 

sampler analogous to Section 3 now enjoys the additional advantage of avoiding full 

conditionals for w. This results in a Bayesian analogue for Vecchia (1988) and Stein, Chi, 

and Welty (2004) but precludes inference on the spatial residual surface w(s). Modeling w(s) 

provides additional insight into residual spatial contours and is often important in identifying 

lurking covariates or eliciting unexplained spatial patterns. Vecchia (1992) used the nearest 

neighbor approximation on a spatial model for observations (y) with independent 

measurement error (nuggets) in addition to the usual spatial component (w). However, it 

may not be possible to recover w using this approach. For example, a univariate stationary 

process y(s) with a nugget effect can be decomposed as y(s) = w(s) + ε(s) (letting β = 0) for 

some w(s) ~ GP(0, C(·, · | θ)) and white-noise process ε(s). If y = w + ε, where w ~ N(0, C), 

ε ~ N(0, τ2In), then cov(y) = C + τ2I = Σ, all eigenvalues of Σ are greater than τ2, and cov(w 
| y) = τ2In − τ4Σ−1. For y(s) ~ NNGP(0, Σ̃(·, ·)), however, the eigenvalues of Σ̃ may be less 

than τ2, so τ2In − τ4Σ̃−1 need not be positive definite for every τ2 > 0 and p(w | y) is no 

longer well defined.

A different model is obtained by using an NNGP prior for w, as in (9), and then integrating 

out w. The resulting likelihood is N(y | Xβ, Σy), where Σy = ZC̃ Z′ + Dn and the Bayesian 

specification is completed using priors on β, τ j
2’s, and θ as in (9). This model drastically 

reduces the number of variables in the Gibbs sampler, while preserving the nugget effect in 

the parent model. We can generate the full conditionals for the parameters in the 

marginalized model as follows: 

β ∣ y,ϕ N((Vβ
−1 + X′∑y

−1X)−1(Vβ
−1μβ + X′∑y

−1y), (Vβ
−1 + X′∑y

−1X)−1). It is difficult to factor 

out τ j
2’s from ∑y

−1, so conjugacy is lost with respect to any standard prior. Metropolis block 

updates for θ are feasible for any tractable prior p(θ). This involves computing 
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X′∑y
−1X, X′∑y

−1y, and (y − Xβ)′∑y
−1(y − Xβ). Since 

∑y
−1 = Dn

−1 − Dn
−1Z(C∼𝒮

−1 + Z′Dn
−1Z)

−1
Z′Dn

−1 = Dn
−1 − Dn

−1ZV𝒮Z′Dn
−1, where V  is given by 

(11), a sparse Cholesky factorization of V𝒮
−1 will be beneficial. We draw posterior samples 

for w from p(w ∣ y) = ∫ p(w ∣ θ, β, {τ j
2}, y)p(θ, β, {τ j

2} ∣ y) using composition sampling—we 

draw w(g) from p(w ∣ θ(g), β(g), {τ j
2 (g)}, y) one-for-one for each sampled parameter.

Using block updates for w  in (9) and fitting the marginalized version of (9) both require an 

efficient sparse Cholesky solver for V𝒮
−1. Note that computational expenses for most sparse 

Cholesky algorithms depend on the precise nature of the sparse structure (mostly on the 

bandwidth) of C∼𝒮
−1 (see, e.g., Davis 2006). The number of flops required for Gibbs sampling 

and prediction in this marginalized model depends upon the sparse structure of C∼𝒮
−1 and 

may, sometimes, heavily exceed the linear usage achieved by the unmarginalized model with 

individual updates for wi. Therefore, a prudent choice of the precise fitting algorithms 

should be based on the sparsity structure of C∼𝒮
−1 for the given dataset.

4.3 Spatiotemporal and GLM Versions

In spatiotemporal settings where we seek spatial interpolation at discrete time points (e.g., 

weekly, monthly, or yearly data), we write the response (possibly vector-valued) as yt(s) and 

the random effects as wt(s). Desired inference includes spatial interpolation for each time 

point. Spatial dynamic models incorporating the NNGP are easily formulated as below:

yt(s) = Xt(s)′βt + ut(s) + εt(s), εt(s) ∼iid N(0, D)
βt = βt − 1 + ηt, ηt ∼iid N(0, ∑η), β0 N(m0, ∑0)
ut(s) = ut − 1(s) + wt(s), wt(s) ∼ind NNGP(0, C∼( · , · ∣ θt)) .

(12)

Thus, one retains exactly the same structure of process-based spatial dynamic models, for 

example, as in Gelfand, Banerjee, and Gamerman (2005), and simply replaces the 

independent Gaussian process priors for wt(s) with independent NNGPs to achieve 

computational tractability.

The above is illustrative of how attractive and extremely convenient the NNGP is for model 

building. One simply writes down the parent model and subsequently replaces the full GP 

with an NNGP. Being a well-defined process, the NNGP ensures a valid spatial dynamic 

model. Similarly NNGP versions of dynamic spatiotemporal Kalman-filtering (as, e.g., in 

Wikle and Cressie 1999) can be constructed.

Handling non-Gaussian (e.g., binary or count) data is also straightforward using spatial 

generalized linear models (GLMs; Diggle, Tawn, and Moyeed 1998; Lin et al. 2000; 

Kammann and Wand 2003; Banerjee, Carlin, and Gelfand 2014). Here, the NNGP provides 

structured dependence for random effects at the second stage. First, we replace E[y(t)] in (8) 
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with g(E(y(t))), where g(·) is a suitable link function such that η(t) = g(E(y(t))) = X(t)′β + 

Z(t)′w(t). In the second stage, we model the w(t) as an NNGP. The benefits of the 

algorithms in Sections 3.2 and 3.3 still hold, but some of the alternative algorithms in 

Section 4 may not apply. For example, we do obtain tractable marginalized likelihoods by 

integrating out the spatial effects.

5. Illustrations

We conduct simulation experiments and analyze a large forestry dataset. Additional 

simulation experiments are detailed in Appendices A5 through A9 (available online). 

Posterior inference for subsequent analysis were based upon three chains of 25,000 

iterations (with a burn-in of 5000 iterations). All the samplers were programmed in C++ and 

leveraged Intel Math Kernel Library’s (MKL) threaded BLAS and LAPACK routines for 

matrix computations on a Linux workstation with 384 GB of RAM and two Intel Nehalem 

quad-Xeon processors.

5.1 Simulation Experiment

We generated observations using 2500 locations within a unit square domain from the model 

(8) with q = l = 1 (univariate outcome), p = 2, Z(t)′ = 1 (scalar), the spatial covariance 

matrix C(θ) = σ2R(φ), where R(φ) is a n × n correlation matrix, and D = τ2 (scalar). The 

model included an intercept and a covariate x1 drawn from N(0, 1). The (i, j)th element of 

R(φ) was calculated using the Matérn function

ρ(ti, t j; ϕ) = 1
2ν − 1Γ(ν)

(‖t j − t j‖ϕ)ν𝒦v(‖ti − t j‖ϕ); ϕ > 0, ν > 0, (13)

where ||ti − tj|| is the Euclidean distance between locations ti and tj, φ = (φ, ν) with φ 
controlling the decay in spatial correlation and ν controlling the process smoothness, Γ is 

the usual Gamma function, while ν is a modified Bessel function of the second kind with 

order ν (Stein 1999). Evaluating the Gamma function for each matrix element within each 

iteration requires substantial computing time and can obscure differences in sampler run 

times; hence, we fixed ν at 0.5, which reduces (13) to the exponential correlation function. 

The first column in Table 1 gives the true values used to generate the responses. Figure 2(a) 

illustrates the w(t) surface interpolated over the domain.

We then estimated the following models from the full data: (i) the full Gaussian process (full 
GP); (ii) the NNGP with m = {1, 2, …, 25} for  ≠  and  = ; and (iii) a Gaussian 

predictive process (GPP)model (Banerjee et al. 2008) with 64 knots placed on a grid over 

the domain. For the NNGP with  ≠ , we considered 2000 randomly placed reference 

locations within the domain. The 64 knot GPP was chosen because its computing time was 

comparable to that of NNGP models. We used an efficient marginalized sampling algorithm 

for the Full GP and GPP models as implemented in the spBayes package in R (Finley, 

Banerjee, and Gelfand, in press). All the models were trained using 2000 of the 2500 
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observed locations, while the remaining 500 observations were withheld to assess predictive 

performance.

For all models, the intercept and slope regression parameters, β0 and β1, were given flat 
prior distributions. The variance components σ2 and τ2 were assigned inverse Gamma IG(2, 

1) and IG(2, 0.1) priors, respectively, and the spatial decay φ received a uniform prior U(3, 

30), which corresponds to a spatial range between approximately 0.1 and 1 units.

Parameter estimates and performance metrics for the NNGP (with m = 10 and m = 20), GPP, 

and the full GP models are provided in Table 1. All model specifications produce similar 

posterior median and 95% credible intervals estimates, with the exception of φ in the 64 knot 

GPP model. Larger values of DIC and D suggest that the GPP model does not fit the data as 

well as the NNGP and full GP models. The NNGP  =  models provide DIC, GPD scores 

that are comparable to those of the full GP model. These fit metrics suggest the NNGP  ≠ 

 models provide better fit to the data than that achieved by the full GP model, which is 

probably due to overfitting caused by a very large reference set . The last row in Table 1 

shows computing times in minutes for one chain of 25,000 iterations reflecting on the 

enormous computational gains of NNGP models over full GP model.

Turning to out-of-sample predictions, the Full model’s RMSPE and mean width between the 

upper and lower 95% posterior predictive credible interval is 1.2 and 2.12, respectively. As 

seen in Figure 1, comparable RMSPE and mean interval width for the NNGP  =  model 

is achieved within m ≈ 10. There is negligible difference between the predictive 

performances of the NNGP  ≠  and  =  models. Both the NNGP and full GP model 

have better predictive performance than the predictive process models when the number of 

knots is small, for example, 64. All models showed appropriate 95% credible interval 

coverage rates.

Figure 2(b)–2(f) illustrates the posterior median estimates of the spatial random effects from 

the Full GP, NNGP (  = ) with m = 10 and m = 20, NNGP (  ≠ ) with m = 10, and 

GPP models. These surfaces can be compared to the true surface depicted in Figure 2(a). 

This comparison shows: (i) the NNGP models closely approximates the true surface and that 

estimated by the full GP model, and (ii) the reduced-rank predictive process model based on 

64 knots greatly smooths over small-scale patterns. This last observation highlights one of 

the major criticisms of reduced-rank models (Stein 2014) and illustrates why these models 

often provide compromised predictive performance when the true surface has fine spatial 

resolution details. Overall, we see the clear computational advantage of the NNGP over the 

full GP model, and both inferential and computational advantage over the GPP model.

5.2 Forest Biomass Data Analysis

Information about the spatial distribution of forest biomass is needed to support global, 

regional, and local scale decisions, including assessment of current carbon stock and flux, 

bio-feedstock for emerging bio-economies, and impact of deforestation. In the United States, 

the Forest Inventory and Analysis (FIA) program of the USDA Forest Service collects the 

data needed to support these assessments. The program has established field plot centers in 

permanent locations using a sampling design that produces an equal probability sample 

Datta et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2018 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Bechtold and Patterson 2005). Field crews recorded stem measurements for all trees with 

diameter at breast height (DBH; 1.37 m above the forest floor) of 12.7 cm or greater. Given 

these data, established allometric equations were used to estimate each plot’s forest biomass. 

For the subsequent analysis, plot biomass was scaled to metric tons per ha then square root 

transformed. The transformation ensures that back transformation of subsequent predicted 

values have support greater than zero and helps to meet basic regression models 

assumptions.

Figure 3(a) illustrates the georeferenced forest inventory data consisting of 114, 371 forested 

FIA plots measured between 1999 and 2006 across the conterminous United States. The two 

blocks of missing observations in the Western and Southwestern United States correspond to 

Wyoming and New Mexico, which have not yet released FIA data. Figure 3(b) shows a 

deterministic interpolation of forest biomass observed on the FIA plots. Dark blue indicates 

high forest biomass, which is primarily seen in the Pacific Northwest, Western Coastal 

ranges, Eastern Appalachian Mountains, and in portions of New England. In contrast, dark 

red indicates regions where climate or land use limit vegetation growth.

A July 2006 Normalized Difference Vegetation Index (NDVI) image from the MODerate-

resolution Imaging Spectroradiometer (MODIS; http://glcf.umd.edu/data/ndvi) sensor was 

used as a single predictor. NDVI is calculated from the visible and near-infrared light 

reflected by vegetation, and can be viewed as a measure of greenness. In this image, Figure 

3(c), dark green corresponds to dense vegetation whereas brown identifies regions of sparse 

or no vegetation, for example, in the Southwest. NDVI is commonly used as a covariate in 

forest biomass regression models; see, for example, Zhang and Kondraguanta (2006). 

Results from these and similar studies show a positive linear relationship between forest 

biomass and NDVI. The strength of this relationship, however, varies by forest tree species 

composition, age, canopy structure, and level of reflectance. We expect a space-varying 

relationship between biomass and NDVI, given tree species composition and disturbance 

regimes generally exhibit strong spatial dependence across forested landscapes.

The memory in our workstation was insufficient for storage of distance matrices required to 

fit a Full GP or GPP model. Subsequently, we explore the relationship between forest 

biomass and NDVI using a nonspatial model, an NNGP space-varying intercept (SVI) model 

(i.e., q = l = 1 and Z(t) = 1) in (8), and an NNGP spatially varying coefficients (SVC) 

regression model with l = 1, q = p = 2, and Z(t) = X(t) in (8). The reference sets for the 

NNGP models were again the observed locations and m was chosen to be 5 or 10. The 

parent process w(t) is a bivariate Gaussian process with an isotropic cross-covariance 

specification C(ti, tj | θ) = AΓ(φ)A′, where A is 2 × 2 lower-triangular with positive 

diagonal elements, Γ is 2 × 2 diagonal with ρ(ti, tj; φb) (defined in (13)) as the bth diagonal 

entry, b = 1, 2, and φb = (φb, νb)′ (see, e.g., Gelfand and Banerjee 2010).

For all models, the intercept and slope regression parameters were given flat prior 

distributions. The variance components τ2 and σ2 were assigned inverse Gamma IG(2, 1) 

priors, the SVC model cross-covariance matrix AA′ followed an inverse-Wishart IW(3, 

0.1), and the Matérn spatial decay and smoothness parameters received uniform prior 

supports U (0.01, 3) and U (0.1, 2), respectively. These prior distributions on φ and ν 
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correspond to support between approximately 0.5 and 537 km. Candidate models are 

assessed using the metrics described in Section 3.4, and inference drawn from mapped 

estimates of the regression coefficients and out-of-sample prediction.

Parameter estimates and performance metrics for NNGP with m = 5 are shown in Table 2. 

The corresponding numbers form = 10 were similar. Relative to the spatial models, the 

nonspatial model has higher values of DIC and D, which suggests NDVI alone does not 

adequately capture the spatial structure of forest biomass. This observation is corroborated 

using a variogram fit to the nonspatial model’s residuals; Figure 3(d). The variogram shows 

a nugget of ~0.42, partial sill of ~0.05, and range of ~150 km. This residual spatial 

dependence is apparent when we map the SVI model spatial random effects as shown in 

Figure 3(e). This map, and the estimate of a nonnegligible spatial variance σ2 in Table 2, 

suggests the addition of a spatial random effect was warranted and helps satisfy the model 

assumption of uncorrelated residuals.

The values of the SVC model’s goodness-of-fit metrics suggest that allowing the NDVI 

regression coefficient to vary spatially improves model fit over that achieved by the SVI 

model. Figure 4(a) and 4(b) shows maps of posterior estimates for the spatially varying 

intercept and NDVI, respectively. The clear regional patterns seen in Figure 4(b) suggest the 

relationship between NDVI and biomass does vary spatially—with stronger positive 

regression coefficients in the Pacific Northwest and northern California areas. Forests in the 

Pacific Northwest and northern California are dominated by conifers and support the 

greatest range in biomass per unit area within the entire conterminous United States. The 

other strong regional pattern seen in Figure 4(b) is across western New England, where near 

zero regression coefficients suggest that NDVI is not as effective at discerning differences in 

forest biomass. This result is not surprising. For deciduous forests, NDVI can explain 

variability in low to moderate vegetation density. However, in high biomass deciduous 

forests, like those found across western New England, NDVI saturates and is no longer 

sensitive to changes in vegetation structure (Wang et al. 2005). Hence, we see a higher 

intercept in this region but lower slope coefficient on NDVI.

Figure 4(c) and 4(d) maps each location’s posterior predictive median and the range between 

the upper and lower 95% credible interval, respectively, from the SVC model. Figure 4(c) 

shows strong correspondence with the deterministic interpolation of biomass in Figure 3(b). 

The prediction uncertainty in Figure 4(d) provides a realistic depiction of the model’s ability 

to quantify forest biomass across the United States.

We also used prediction mean squared error (PMSE) to assess predictive performance. We 

fit the candidate models using 100,000 observations and withheld 14,371 for validation. 

PMSE for the nonspatial, SVI, and SVC models was 0.52, 0.41, and 0.42, respectively. 

Lower PMSE for the spatial models, versus the nonspatial model, corroborates the results 

from the model fit metrics and further supports the need for spatial random effects in the 

analysis.
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6. Summary and Conclusions

We regard the NNGP as a highly scalable model, rather than a likelihood approximation, for 

large geostatistical datasets. It significantly outperforms competing low-rank processes such 

as the GPP, in terms of inferential performance and scalability. A reference set  and the 

resulting neighbor sets (of size m) define the NNGP. Larger m’s would increase costs, but 

there is no apparent benefit to increasing m for larger datasets (see Appendix A6, available 

online). While some sensitivity to m and the choice of points in  is expected, our results 

indicate that inference is very robust with respect to  and very modest values of m (< 20) 

typically suffice. Larger reference sets may be needed for larger datasets, but its size does 

not thwart computations. In fact, the observed locations are a convenient choice for the 

reference set.

A potential concern with this choice is that if the observed locations have large gaps, then 

the resulting NNGP may be a poor approximation of the full Gaussian process. This arises 

from the fact that observations at locations outside the reference set are correlated via their 

respective neighbor sets and large gaps may imply two very near points have very different 

neighbor sets leading to low correlation. Our simulations in Appendix A7 (available online) 

indeed reveal that in such a situation, the NNGP covariance field is very flat at points in the 

gap. However, even with this choice of  the NNGP model performs at par with the full GP 

model as the latter also fails to provide strong information about observations located in 

large gaps. Of course, one can always choose a grid over the entire domain as  to construct 

an NNGP with covariance function similar to the full GP (see Figure A.5, available online). 

Another choice for  could be based upon configurations for treed Gaussian processes 

(Gramacy and Lee 2008).

Our simulation experiments revealed that estimation and kriging based on NNGP models 

closely emulate those from the true Matérn GP models, even for slow decaying covariances 

(see Appendix A8, available online). The Matérn covariance function is monotonically 

decreasing with distance and satisfies theoretical screening conditions, that is, the ability to 

predict accurately based on a few neighbors (Stein 2002). This, perhaps, explains the 

excellent performance of NNGP models with Matérn covariances. We also investigated the 

performance of NNGP models using a wave covariance function, which does not satisfy the 

screening conditions, in a setting where a significant proportion of nearest neighbors had 

negative correlation with the corresponding locations. The NNGP estimates were still close 

to the true model parameters and the kriged surface closely resembled the true surface (see 

Appendix A9, available online).

Most wave covariance functions (like the damped cosine or the cardinal sine function) 

produce covariance matrices with several small eigenvalues. The full GP model cannot be 

implemented for such models because the matrix inversion is numerically unstable. The 

NNGP model involves much smaller matrix inversions and can be implemented in some 

cases (e.g., for the damped cosine model). However, for the cardinal sine covariance, the 

NNGP also faces numerical issues as even the small m × m covariance matrices are 

numerically unstable. Bias-adjusted low-rank GPs (Finley, Banerjee, and McRoberts 2009) 

possess a certain advantage in this aspect as the covariance matrix is guaranteed to have 
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eigen values bounded away from zero, although stable computations will usually require full 

Cholesky decompositions.

Apart from being easily extensible to multivariate and spatiotemporal settings with 

discretized time, the NNGP can fuel interest in process-based modeling over graphs. 

Examples include networks, where data arising from nodes are posited to be similar to 

neighboring nodes. It also offers new modeling avenues and alternatives to the highly 

pervasive Markov random field models for analyzing regionally aggregated spatial data. 

Also, there is scope for innovation when space and time are jointly modeled as processes 

using spatiotemporal covariance functions. One will need to construct neighbor sets both in 

space and time and effective strategies, in terms of scalability and inference, will need to be 

explored. Comparisons with alternate approaches (see, e.g., Katzfuss and Cressie 2012) will 

also need to be made. Finally, a more comprehensive study on the alternate algorithms and 

parameterizations for faster Markov chain Monte Carlo convergence, including direct 

methods for executing sparse Cholesky factorizations (see Section 4), is being undertaken. 

More immediately, we plan to migrate our lower-level C++ code to the existing spBayes 

package (Finley, Banerjee, and Gelfand, in press) in the R statistical environment (http://

cran.r-project.org/web/packages/spBayes) to facilitate wider user accessibility to NNGP 

models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the associate editor and anonymous reviewers for their suggestions. We also express our gratitude to 
Professors Michael Stein and Noel Cressie for discussions, which helped to enrich this work.

Funding

The work of the first three authors was partially supported by federal grants NSF/DMS 1106609 and NIH/NIGMS 
RC1-GM092400-01. The work of the second author was partially supported by NSF/DMS-1513654. The work of 
the third author was partially supported on by NSF grants EF-1137309, EF-1241874, EF-1253225, and 
DMS-1513481, as well as NASA Carbon Monitoring System grants, and the work of the fourth author was 
supported in part by NSF grant CM60934595.

References

Banerjee, S., Carlin, BP., Gelfand, AE. Hierarchical Modeling and Analysis for Spatial Data. 2. Boca 
Raton, FL: Chapman & Hall/CRC; 2014. 

Banerjee S, Finley AO, Waldmann P, Ericcson T. Hierarchical Spatial Process Models for Multiple 
Traits in Large Genetic Trials. Journal of the American Statistical Association. 2010; 105:506–521. 
[PubMed: 20676229] 

Banerjee S, Gelfand AE, Finley AO, Sang H. Gaussian Predictive Process Models for Large Spatial 
Datasets. Journal of the Royal Statistical Society, Series B. 2008; 70:825–848.

Bechtold, WA., Patterson, PL. The Enhanced Forest Inventory and Analysis National Sample Design 
and Estimation Procedures (SRS-80). Asheville, NC: U.S. Department of Agriculture, Forest 
Service, Southern Research Station; 2005. 

Bevilacqua M, Gaetan C. Comparing Composite Likelihood Methods Based on Pairs for Spatial 
Gaussian Random Fields. Statistics and Computing. 2014; 25:877–892.

Datta et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2018 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cran.r-project.org/web/packages/spBayes
http://cran.r-project.org/web/packages/spBayes


Crainiceanu CM, Diggle PJ, Rowlingson B. Bivariate Binomial Spatial Modeling of Loa Loa 
Prevalence in Tropical Africa. Journal of the American Statistical Association. 2008; 103:21–37.

Cressie NAC, Johannesson G. Fixed Rank Kriging for Very Large Data Sets. Journal of the Royal 
Statistical Society, Series B. 2008; 70:209–226.

Cressie, NAC., Wikle, CK. Statistics for Spatio-Temporal Data. Hoboken, NJ: Wiley; 2011. 

Davis, TA. Direct Methods for Sparse Linear Systems. Philadelphia, PA: Society for Industrial and 
Applied Mathematics; 2006. 

Diggle PJ, Tawn JA, Moyeed RA. “Model-Based Geostatistics” (with discussion). Applied Statistics. 
1998; 47:299–350.

Du J, Zhang H, Mandrekar VS. Fixed-Domain Asymptotic Properties of Tapered Maximum 
Likelihood Estimators. Annals of Statistics. 2009; 37:3330–3361.

Eidsvik J, Shaby BA, Reich BJ, Wheeler M, Niemi J. Estimation and Prediction in Spatial Models 
With Block Composite Likelihoods. Journal of Computational and Graphical Statistics. 2014; 
23:295–315.

Emory X. The Kriging Update Equations and Their Application to the Selection of Neighboring Data. 
Computational Geosciences. 2009; 13:269–280.

Finley AO, Banerjee S, Gelfand AE. spBayes for Large Univariate and Multivariate Point-Referenced 
Spatio-Temporal Data Models. Journal of Statistical Software. 2015; 63:1–28.

Finley AO, Banerjee S, McRoberts RE. Hierarchical Spatial Models for Predicting Tree Species 
Assemblages Across Large Domains. Annals of Applied Statistics. 2009; 3:1052–1079. [PubMed: 
20352037] 

Furrer R, Genton MG, Nychka DW. Covariance Tapering for Interpolation of Large Spatial Datasets. 
Journal of Computational and Graphical Statistics. 2006; 15:503–523.

Gelfand, AE., Banerjee, S. Multivariate Spatial Process Models. In: Gelfand, AE.Diggle, PJ.Fuentes, 
M., Guttorp, P., editors. Handbook of Spatial Statistics. Boca Raton, FL: Chapman & Hall/CRC; 
2010. p. 495-516.

Gelfand AE, Banerjee S, Gamerman D. Spatial Process Modelling for Univariate and Multivariate 
Dynamic Spatial Data. Environmetrics. 2005; 16:465–479.

Gelfand AE, Ghosh SK. Model Choice: A Minimum Posterior Predictive Loss Approach. Biometrika. 
1998; 85:1–11.

Gelfand AE, Kim H-J, Sirmans C, Banerjee S. Spatial Modeling With Spatially Varying Coefficient 
Processes. Journal of the American Statistical Association. 2003; 98:387–396.

Gramacy, RB., Apley, DW. Local Gaussian Process Approximation for Large Computer Experiments. 
2014. Available at http://arxiv.org/abs/1303.0383

Gramacy RB, Lee H. Bayesian Treed Gaussian Process Models With an Application to Computer 
Experiments. Journal of the American Statistical Association. 2008; 103:1119–1130.

Gramacy, RB., Niemi, J., Weiss, RM. Massively Parallel Approximate Gaussian Process Regression. 
2014. Available at http://arxiv.org/abs/1310.5182

Higdon, D. Technical Report. Institute of Statistics and Decision Sciences, Duke University; Durham. 
NC: 2001. Space and Space Time Modeling Using Process Convolutions. 

Kammann EE, Wand MP. Geoadditive Models. Applied Statistics. 2003; 52:1–18.

Katzfuss M, Cressie N. Bayesian Hierarchical Spatio-Temporal Smoothing for Very Large Datasets. 
Environmetrics. 2012; 23:94–107.

Kaufman CG, Scheverish MJ, Nychka DW. Covariance Tapering for Likelihood-Based Estimation in 
Large Spatial Data Sets. Journal of the American Statistical Association. 2008; 103:1545–1555.

Lauritzen, SL. Graphical Models. Oxford, UK: Clarendon Press; 1996. 

Lin X, Wahba G, Xiang D, Gao F, Klein R, Klein B. Smoothing Spline ANOVA Models for Large 
Data Sets With Bernoulli Observations and the Randomized GACV. Annals of Statistics. 2000; 
28:1570–1600.

Moller, J., Waagepetersen, RP. Statistical Inference and Simulation for Spatial Point Processes. 1. Boca 
Raton, FL: Chapman & Hall/CRC; 2003. 

Rasmussen, CE., Williams, CKI. Gaussian Processes for Machine Learning. 1. Cambridge, MA: The 
MIT Press; 2005. 

Datta et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2018 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1303.0383
http://arxiv.org/abs/1310.5182


Rue, H., Held, L. Gaussian Markov Random Fields: Theory and Applications. Boca Raton, FL: 
Chapman & Hall/CRC; 2005. 

Sang H, Huang JZ. A Full Scale Approximation of Covariance Functions for Large Spatial Data Sets. 
Journal of the Royal Statistical Society, Series B. 2012; 74:111–132.

Schabenberger, O., Gotway, CA. Statistical Methods for Spatial Data Analysis. 1. Boca Raton, FL: 
Chapman & Hall/CRC; 2004. 

Shaby, BA. The Open-Faced Sandwich Adjustment for MCMC Using Estimating Functions. 2012. 
Available at http://arxiv.org/abs/1204.3687

Shaby BA, Ruppert D. Tapered Covariance: Bayesian Estimation and Asymptotics. Journal of 
Computational and Graphical Statistics. 2012; 21:433–452.

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian Measures of Model Complexity and 
Fit. Journal of the Royal Statistical Society, Series B. 2002; 64:583–639.

Stein, ML. Interpolation of Spatial Data: Some Theory for Kriging. 1. New York: Springer; 1999. 

Stein ML. The Screening Effect in Kriging. Annals of Statistics. 2002; 30:298–323.

Stein ML. Spatial Variation of Total Column Ozone on a Global Scale. Annals of Applied Statistics. 
2007; 1:191–210.

Stein ML. A Modeling Approach for Large Spatial Datasets. Journal of the Korean Statistical Society. 
2008; 37:3–10.

Stein ML. Limitations on Low Rank Approximations for Covariance Matrices of Spatial Data. Spatial 
Statistics. 2014; 8:1–19.

Stein ML, Chi Z, Welty LJ. Approximating Likelihoods for Large Spatial Data Sets. Journal of the 
Royal Statistical Society, Series B. 2004; 66:275–296.

Stroud, JR., Stein, ML., Lysen, S. Bayesian and Maximum Likelihood Estimation for Gaussian 
Processes on an Incomplete Lattice. 2014. Available at http://arxiv.org/abs/1402.4281

Vecchia AV. Estimation and Model Identification for Continuous Spatial Processes. Journal of the 
Royal Statistical Society, Series B. 1988; 50:297–312.

Vecchia AV. A New Method of Prediction for Spatial Regression Models With Correlated Errors. 
Journal of the Royal Statistical Society, Series B. 1992; 54:813–830.

Wang Q, Adiku S, Tenhunen J, Granier A. On the Relationship of NDVI with Leaf Area Index in a 
Deciduous Forest Site. Remote Sensing of Environment. 2005; 94:244–255.

Wikle C, Cressie NAC. A Dimension-Reduced Approach to Space-Time Kalman Fltering. Biometrika. 
1999; 86:815–829.

Yeniay O, Goktas A. A Comparison of Partial Least Squares Regression With Other Prediction 
Methods. Hacettepe Journal of Mathematics and Statistics. 2002; 31:99–111.

Zhang X, Kondraguanta S. Estimating Forest Biomass in the USA Using Generalized Allometric 
Models and MODIS Land Products. Geophysical Research Letters. 2006; 33:L09402.

Datta et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2018 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1204.3687
http://arxiv.org/abs/1402.4281


Figure 1. 
Choice of m in NNGP models: out-of-sample root mean squared prediction error (RMSPE) 

and mean width between the upper and lower 95% posterior predictive credible intervals for 

a range of m for the univariate synthetic data analysis.
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Figure 2. 
Univariate synthetic data analysis: interpolated surfaces of the true spatial random effects 

and posterior median estimates for different models.
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Figure 3. 
Forest biomass data analysis: (a) locations of observed biomass, (b) interpolated biomass 

response variable, (c) NDVI regression covariate, (d) variogram of nonspatial model 

residuals, and (e) surface of the SVI model random spatial effects posterior medians. 

Following our FIA data-sharing agreement, plot locations depicted in (a) have been “fuzzed” 

to hide the true coordinates.
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Figure 4. 
Forest biomass data analysis using SVC model: (1) posterior medians of the intercept, (b) 

NDVI regression coefficients, (c) median of biomass posterior predictive distribution, and 

(d) range between the upper and lower 95% percentiles of the posterior predictive 

distribution.
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Table 2

Forest biomass data analysis parameter estimates and computing time in hours for candidate models. 

Parameter posterior summary 50 (2.5, 97.5) percentiles.

Nonspatial NNGP Space-varying intercept NNGP Space-varying coefficients

β0 1.043 (1.02, 1.065) 1.44 (1.39, 1.48) 1.23 (1.20, 1.26)

βNDVI 0.0093 (0.009, 0.0095) 0.0061 (0.0059, 0.0062) 0.0072 (0.0071, 0.0074)

σ2 — 0.16 (0.15, 0.17) —

AA1, 1′ — — 0.24 (0.23, 0.24)

AA2, 1′ — — −0.00088 (−0.00093,−0.00083)

AA2, 2′ — — 0.0000052 (0.0000047, 0.0000056)

τ2 0.52 (0.51, 0.52) 0.39 (0.39, 0.40) 0.39 (0.38, 0.40)

φ1 — 0.016 (0.015, 0.016) 0.022 (0.021, 0.023)

φ2 — — 0.030 (0.029, 0.031)

ν1 — 0.66 (0.64, 0.67) 0.92 (0.90, 0.93)

ν2 — — 0.92 (0.89, 0.93)

pD 2.94 6526.95 4976.13

DIC 250137 224484.2 222845.1

G 59765.30 42551.08 43117.37

P 59667.15 47603.47 46946.49

D 119432.45 90154.55 90063.86

Time — 14.53 41.35
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