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Abstract

The synthesis and redox properties are presented for the electron-rich bis(monothiolate)s 

Fe2(SR)2-(CO)2(dppv)2 for R = Me ([1]0), Ph ([2]0), CH2Ph ([3]0). Whereas related derivatives 

adopt C2-symmetric Fe2(CO)2P4 cores, [1]0–[3]0 have Cs symmetry resulting from the 

unsymmetrical steric properties of the axial vs equatorial R groups. Complexes [1]0–[3]0 undergo 

1e− oxidation upon treatment with ferrocenium salts to give the mixed valence cations 

[Fe2(SR)2(CO)2(dppv)2]+. As established crystallographically, [3]+ adopts a rotated structure, 
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characteristic of related mixed valence diiron complexes. Unlike [1]+ and [2]+ and many other 

[Fe2(SR)2L6]+ derivatives, [3]+ undergoes C–S bond homolysis, affording the diferrous sulfido-

thiolate [Fe2(SCH2Ph)(S)(CO)2(dppv)2]+ ([4]+). According to X-ray crystallography, the first 

coordination spheres of [3]+ and [4]+ are similar, but the Fe–sulfido bonds are short in [4]+. The 

conversion of [3]+ to [4]+ follows first-order kinetics, with k = 2.3 × 10−6 s−1 (30 °C). When the 

conversion is conducted in THF, the organic products are toluene and dibenzyl. In the presence of 

TEMPO, the conversion of [3]+ to [4]+ is accelerated about 10×, the main organic product being 

TEMPO-CH2Ph. DFT calculations predict that the homolysis of a C–S bond is exergonic for 

[Fe2(SCH2Ph)2(CO)2(PR3)4]+ but endergonic for the neutral complex as well as less substituted 

cations. The unsaturated character of [4]+ is indicated by its double carbonylation to give 

[Fe2(SCH2Ph)(S)(CO)4(dppv)2]+ ([5]+), which adopts a bioctahedral structure.

Graphical Abstract

INTRODUCTION

Organometallic radicals have received continuous attention for decades.1–3 Within the area 

of enzymology, a prominent organometallic radical is the Hox resting state in the [FeFe]-

hydrogenases. Featuring an S = 1/2 Fe(II)Fe(I) center, this state is exceptionally well 

characterized,4 as are low molecular weight synthetic models.5 Briefly, one Fe center is 

pentacoordinate, typically assigned as Fe(I), with a “rotated” geometry, whereas the other Fe 

center, assigned as Fe(II), is octahedral. The strikingly unsymmetrical structure presents a 

vacant coordination site adjacent to the amine cofactor substrate activation.

The Hox active site and its models exhibit three kinds of Fe-centered reactions: reduction to 

Fe(I)Fe(I) derivatives, binding of CO, and activation of dihydrogen in the presence of a 

second redox agent6,7 (Scheme 1). This report describes a new kind of reaction of the Hox-

like center: their fragmentation with release of organic radicals.

This report begins with experiments probing the reactivity of bis(monothiolate)s 

[Fe2(SR)2(CO)2(dppv)2]n+ (dppv = cis-1,2-bis(diphenylphosphino)ethylene). The properties 

of the related dithiolates have been exhaustively studied,5 but the substituted 

bis(monothiolate)s have been rarely described,8,9 and mixed valence derivatives have not 

been characterized.

The radical reactions of iron monothiolates are potentially relevant to the biosynthesis of the 

[2Fe]H center (the active site) in the [FeFe]-hydrogenases.10–12 The pathway proceeds via a 

ferrous cysteinate-cyanide “Complex B” assembled within the multifunctional enzyme 

HydG. Complex B is transferred to HydF, a scaffold where the enzyme HydE probably 

operates on cysteinate to produce the adt cofactor (Scheme 2). Since HydE is a radical-SAM 

enzyme, radical reactions of diiron monothiolates are implicated.
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RESULTS

Preparative Background

The displacement of four CO ligands by a pair of dppv groups has been applied to the 

preparation of chelating dithiolato complexes, e.g., Fe2[S2-(CH2)n](CO)2(dppv)2. In this 

work, the two dppv were installed for the first time on bis(monothiolate) complexes 

Fe2(SMe)2(CO)2(dppv)2 ([1]0), Fe2(SPh)2(CO)2(dppv)2 ([2]0), and 

Fe2(SCH2Ph)2(CO)2(dppv)2 ([3]0). For the preparation of alkylthiolato complexes [1]0 and 

[3]0 from the corresponding Fe2(SR)2(CO)6 derivatives, either of two methods proved 

suitable: one-pot UV-irradiation or a two-pot process that involves isolation of the 

intermediate Fe2(SR)2-(CO)4(dppv) by a thermal reaction, which is converted to the 

dicarbonyl in a separate photochemical reaction.

The preparation of [2]0 proved more complicated as indicated by a recent report.13 The 

intermediate Fe2(SPh)2-(CO)4(dppv) could be efficiently prepared, but its reaction with 

dppv produced significant amounts of Fe(SPh)2(CO)2-(dppv) and Fe(CO)3(dppv). 

Phenylthiolate is a more weakly bridging ligand than alkylthiolates; hence Fe2(SPh)2(CO)4-

(dppv) is more susceptible to rupture of the diiron unit. The preparation of 

Fe2(SPh)2(CO)2(dppv)2 was achieved by an inefficient photochemical route.

The Fe(I)Fe(I) complexes [1]0, [2]0, and [3]0 are green-brown solids with good solubility in 

dichloromethane. Solutions appear completely stable at room temperature. The 31P NMR 

spectra, consisting of two signals, remain unchanged over a broad range of temperatures, 

indicating relatively rigid structures. Two CH2R singlets are also observed in the 1H NMR 

spectrum recorded on CD2Cl2 (but not C6D6) solutions (R = Ph, H). The observation of 

methylene singlets for [3]0 is indicative of a plane of symmetry, since alternative geometries 

would result in diastereotopic signals. The rigidity reflects the high barriers for the axial-

equatorial inversion of the μ-SR groups, which are known to be slow to invert on NMR time 

scales.14 The unsymmetrical disposition of the thiolate substituents induces the two dppv 

ligands to adopt a symmetrical arrangement. Thus, [1]0–[3]0 have a rigid Cs-symmetric 

Fe2(SR)2(CO)2P4 core as the result of the presence of axial and equatorial thiolates.14 By 

contrast, for the complexes Fe2[(SCH2)2X](CO)2(dppv)2 (X = CH2, O, NH, nothing), the 
31P NMR spectra exhibit only a single signal near room temperature. Such compounds adopt 

a C2-symmetric Fe2(SR)2 core wherein the two dppv ligands undergo a degenerate 

oscillatory motion (Scheme 3).15

Stereorigidity was also evident for Fe2(SR)2(CO)4(dppv), intermediates in the syntheses of 

[1]0–[3]0. Specifically, room temperature NMR spectra of the Fe2(SR)2(CO)4(dppv) (R = 

Me, CH2Ph, Ph) also indicate that the Fe(CO)(dppv) center is rigid on the NMR time scales. 

The 31P NMR spectra consist of two doublets. The 1H NMR spectrum of Fe2(SCH2Ph)2-

(CO)4(dppv) exhibits four equally intense AB quartets, indicative of the diastereotopicity of 

the methylene protons. By contrast, only singlets are observed for each of these methylene 

groups in the 1H NMR spectrum of [3]0 (Scheme 4).

Crystallographic analysis confirmed the distinctive stereochemistry of [3]0. The thiolate 

substituents are indeed axial-equatorial (Figure 1). The two dppv ligands are apical-basal as 
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is normal, but they are eclipsed, which is rarely observed. Correspondingly the CO ligands 

are cis-dibasal. The observed isomer appears to be stabilized by avoidance of a steric clash 

between the equatorial μ-SR group with the arylphosphine ligands.16

Oxidation of [1]0 and [3]0 with FcBF4 afforded [1]BF4 and [3]BF4 (Fc+ = ferrocenium). 

Samples of [3]BF4 were obtained in analytical purity, while [1]+ was examined 

spectroscopically. FT-IR spectra of [1]BF4 and [3]BF4 are very similar. The oxidations were 

accompanied by a color change from red-brown to green. The IR spectrum also changed 

significantly, including the appearance of a lower energy band near 1904 cm−1 (CH2Cl2 

solution) assigned to the semibridging CO ligand. This value is typical for Fe(II)Fe(I)/

Fe(I)Fe(I) couples for complexes of the type Fe2(dithiolate)(CO)2(dppv)2.5

The salt [3]BF4 was characterized by X-ray crystallography (Figure 2). The geometry of the 

diiron center is similar to those of related 33e− [Fe2(SR)2(CO)6–xLx]+ complexes,17–19 

which are often referred to as “Hox models”.5 Thus, one Fe center adopts a “rotated 

geometry” with an open apical coordination site trans to the Fe–Fe vector. One CO ligand is 

semibridging (Fe(2)–C–O angle = 171.8(2)°). This ligand gives rise to the νCO band 

observed at 1904 cm−1 in the FT-IR spectrum. The dppv on the nonrotated Fe center spans 

apical-basal sites, retaining the stereochemistry (relative to the axial-equatorial SCH2Ph 

groups) seen in [3]0. The average C–S distances are relatively unaffected by the oxidation, 

being 1.855(2) vs 1.847(2) Å for the neutral and cation, respectively.

Conversion of [Fe2(SCH2Ph)2(CO)2(dppv)2]+ to [Fe2(SCH2Ph)(S)(CO)2(dppv)2]+

When monitored by FT-IR spectroscopy, solutions of [1]BF4 are stable for days at room 

temperature. In contrast, C6D6 solutions of [3]BF4 decompose under the same conditions. 

The principal product is [Fe2-(SCH2Ph)(S)(CO)2(dppv)2]+ ([4]+, Scheme 5). ESI-MS 

measurements support the formula. The complex is diamagnetic, judging from its well-

resolved 1H and 31P NMR spectra. The 1H spectrum is simple, consistent with a single 

isomer. The 31P NMR spectrum shows signals at δ101.7 and 85.6, also consistent with a 

single isomer. In situ examination of the conversion of [3]+ into [4]+ by 31P NMR 

spectroscopy revealed that CH2Cl2, BF4
−, and traces of water interfere with the reaction. 

These contaminants give [Fe2(SCH2Ph)2(X)(CO)2-(dppv)2]+ (X = OH, Cl, F), as further 

indicated by ESI-MS analysis (the complex [Fe2(SCH2Ph)2(Cl)(CO)2(dppv)2]+ was further 

identified by X-ray crystallography as its BF4
− salt). Complexes of the type [Fe2(SR)2(Cl)

(CO)6–x(PR3)x]+ are well-known.20

To minimize side reactions involving counterions and chlorinated solvent, the decomposition 

of [3]+ was examined as its BArF
4
− salt in THF and in benzene. IR spectra for [3]BF4 and 

[3]BArF
4 are identical in the νCO region. The decomposition in dry benzene-d6 gave 

principally [4]+, obtained in 55% yield over the course of 3 days at room temperature. Some 

insoluble material is observed, pointing to other degradation pathways that parallel the [3]+ 

→ [4]+ conversion. Solutions of [4]BArF
4 are stable in benzene and CH2Cl2, so the modest 

yields are not attributable to the instability of [4]+.

The debenzylation of [3]+ appears to follow a radical pathway. Together with [4]+, dibenzyl 

and toluene were observed as coproducts when the reaction was conducted in THF (THF-h8 
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as well as THF-d8). Using an internal integration standard, the combined yields of dibenzyl 

and toluene were approximately 60%, which is consistent with the yield of [4]+. When 

conducted in C6D6, the reaction is slower and toluene was not observed, only dibenzyl (58% 

yield). When measured by 31P NMR spectroscopy, the appearance of [4]+ followed first-

order kinetics with a half-life of about 80 h.

Further support for the radical pathway was provided by the finding that the conversion of 

[3]+ to [4]+ was accelerated 10× in the presence of 1 equiv of TEMPO. The yield of [4]+, 

evaluated by in situ 1H NMR analysis vs an internal integration standard, improved to 

almost 80%. This finding suggests that the diminished yield in the TEMPO-free [3]+ → [4]+ 

reaction results from attack of •CH2Ph on [3]+ or on [4]+. From the TEMPO-induced 

reaction, TEMPO-CH2Ph was isolated in 61% yield.

In control tests, solutions of [1]+, [3]0, and [4]+ were unreactive toward TEMPO over the 

course of days at room temperature. Qualitatively, the rate of the [3]+ + TEMPO reaction is 

unaffected by excess TEMPO. This finding is consistent with a rate-limiting homolysis 

reaction, followed by efficient trapping (Scheme 6).

Crystallographic Characterization of [Fe2(SCH2Ph)(S)-(CO)2(dppv)2]+

X-ray crystallographic analysis of [4]BF4 confirmed the presence of only one benzyl group, 

which takes an equatorial orientation (Figure 3). In terms of its Fe2S2L6 core, [4]+ resembles 

[3]0. The Fe–S distances are disparate: Fe–sulfido distances are 2.1643(7) and 2.1275(7) Å, 

0.1 Å shorter than the Fe–SCH2Ph distances, which are 0.1 Å longer. The Fe–S(R) bond 

lengths in complexes of the type [Fe2(SR)2(CO)6–xLx]z are relatively insensitive to oxidation 

state, as shown by comparison of [3]0 and [3]+. The short Fe–sulfide distance is attributed to 

steric effects as well as Fe–S π-bonding. The S–Fe–S angles (85.24, 85.53°) are more open 

than in [3]0 and [3]+, which average 80.5° and 78.7°, respectively.

Cyclic Voltammetry of [Fe2(SR)(S)(CO)2(dppv)2]+

The cyclic voltammogram of [4]+ in CH2Cl2 solution exhibits one reversible one-electron 

reduction wave at −1.1 V (Figure 4). For all couples, the current ratios, ipc/ipa, were >0.9. 

When compared to the [3]+/0 couple, this value indicates that S2− stabilizes the oxidized 

state by 300 mV vs PhCH2S−. The data show that SCH2Ph substituents are nearly 100 mV 

less reducing that the analogous SMe complex (Table 1).

DFT Calculations on C–S Homolysis in [Fe2(SCH2Ph)2-(CO)6–x(PMe3)x]]0/+

Method Validation—The pure GGA functional BP86 has been widely adopted when 

dealing with hydrogenase-inspired Fe2S2 compounds, since it has proven to reliably 

reproduce their structural, spectroscopic, and redox parameters.21–26 Further calibration of 

the method was performed taking into account the reference compound 3. The potential of 

the couple [3]+/0 (in CH2Cl2) has been estimated at the BP86 level to be −0.800 V. The close 

match of this value to the experimental value of 0.81 V suggests that the pure functional 

BP86 can accurately describe the electronic structure of both S = 0 and 1/2 spin states of this 

class of compounds. Moreover, FT-IR νCO bands of both [3]0 and [3]+ simulated at the 
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BP86 level are predicted to be 1895, 1855 cm−1 (exp. 1899, 1855 cm−1) and 1950, 1899 cm
−1 (exp. 1942, 1904 cm−1).

To further validate our choice of functional, since we are dealing with chemical processes 

involving changes of spin multiplicity, we also tested the performance of a hybrid functional 

(namely, the GGA functional B3LYP). For the [3]+/0 redox potential, the calculated value is 

−1.231 V, which is far from the experimental value. In addition, to account for the effect of 

dispersive forces on the homolysis process, we completed the DFT picture by including 

results obtained at the B97-D/TZVP level. The B97-D functional, which has been developed 

to a priori include noncovalent interaction effects, has provided the best match with 

experimental data among “dispersion-based” approaches such as BP86-D3/TZVP and M06-

L/TZVP schemes (for further details, see the DFT Methods section and the Supporting 

Information). Fe–Fe and Fe–S(avg) distances for 3 (eclipsed geometry structure) are very 

similar when optimized with BP86 vs B97-D (respectively, Fe–Fe: 2.665 and 2.625 Å and 

Fe–S(avg): 2.296 and 2.287 Å), although this distance is quite elongated with respect to the 

crystallographic result.

Results—To systematically clarify the effect of redox potential on the homolysis of the S–

C bonds in diiron(I) μ-benzylthiolates, calculations examined the impact of replacing pairs 

of CO ligands with pairs of PMe3 ligands. In the parent complex Fe2(SCH2Ph)2(CO)6, the 

C–S bond dissociation free energy (BDFE) is only 27.3 kcal/mol at the BP86/TZVP level, 

and 29.6 kcal/mol at the B97-D/TZVP one (Figure 5). For comparison, the BDEs for HS-

CH2Ph and HS-CH3 are 61.7(1.5) and 74.7(1.5) kcal/mol (298 K), respectively.27

The C–S bond in [Fe2(SCH2Ph)2(CO)6–x(PMe3)x]0 is weakened upon replacement of CO 

ligands by PMe3. Each PR3-for-CO substitution weakens the C–S bond by about 4–7 kcal/

mol, depending on the level of theory. One-electron oxidation of the diiron complexes 

further weakens the C–S bond. At the BP86 level, the effect of oxidation is predicted to be 

greatest for the hexacarbonyl (23.7 vs 7.4 kcal/mol) and smallest for the tetraphosphine 

derivatives Fe2(SCH2Ph)2-(CO)6–x(PMe3)x (5.2 vs −2.5 kcal/mol) and Fe2(SCH2Ph)2-

(CO)2(dppv)2 (1.2 vs −8.4 kcal/mol). When dispersion forces are considered (B97-D), the 

effect of oxidation is predicted to be almost constant upon CO vs P substitutions (about 16–

18 kcal/mol). DFT results are qualitatively consistent with experimental observations. 

Indeed, the overall scenario remains unchanged when switching from BP86 (without 

dispersion) to B97-D (dispersion including) methods: the C–S bond is weakened by 

increasing the number of phosphine ligands and upon oxidation, becoming thus very labile 

for cationic tetra-substituted species, which is experimentally observed to spontaneously 
undergo C–S homolysis. In contrast, the complexes Fe2(SCH2Ph)2(CO)6, 

Fe2(SCH2Ph)2(CO)4(dppv), and Fe2(SCH2Ph)2(CO)2(dppv)2 were thermally stable. 

Attempts to prepare Fe2(SCH2Ph)2(CO)2(PMe3)4 were unsuccessful.

Calculations were also performed to gain mechanistic insight. Information on spin density 

distribution and SOMO is presented in Tables 2 and 3 for S = 1/2 FeIFeII species [5]0 and 

the rotated and unrotated isomers of [4]+. For [5]0, the inorganic sulfur carries most of the 

unpaired electron fraction.
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Focusing on the mixed valence species related to [3]+, going from electron-poor to electron-

rich derivatives does not affect the spin density distribution, which remains heavily localized 

on the rotated Fe. In fact, in the more electron-rich complexes, the unpaired electron is even 

more localized (the rotated Fe). The contribution of the rotated Fe to the SOMO increases 

when going from (CO)6 to (CO)4(PMe3)2, but little effect is observed in going from 

(CO)4(PMe3)2 to (CO)2(PMe3)4. We note that a small fraction of the SOMO in 

[Fe2(SCH2Ph)2-(CO)2(PMe3)4]+ is localized on the sulfur of the equatorial thiolate, but the 

one that does not undergo homolysis (Figure 6).

Carbonylation of [4]+

With 32 valence electrons, [4]+ is highly coordinatively unsaturated. Indeed, in solution, [4]+ 

binds not 1, but 2 equiv of CO (Scheme 7). The reaction occurs rapidly at room temperature 

at 1 atm. Previous examples of double carbonylation of metal complexes (without ligand 

displacement) are invariably associated with insertion of one CO into a metal–carbon bond.
28 The dicarbonylation of [5]+ is reversible. When the decarbonylation was monitored by 

FT-IR spectroscopy, intermediates were not detected. The 31P NMR and IR spectra of [5]+ 

indicate multiple isomers.

In terms of its structure, [5]+ consists of an edge-shared bioctahedron (Figure 7). The Fe⋯Fe 

distance elongates from 2.7453(5) Å in [4]+ to 3.588(3) Å in [5]+. The Fe–S distances, both 

to the thiolate and especially the sulfide, are strongly affected, elongating to ca. 2.32 Å from 

2.26 and 2.14 Å, respectively. Two octahedral Fe(II) centers are bridged by the dithiolate. 

For one Fe center, the two CO ligands are trans, and for the other center, the CO ligands are 

cis. Compounds of the type Fe(pdt)(CO)2(diphosphine) often exist as mixtures of isomers.29

DISCUSSION

Hundreds of bis(monothiolate) complexes are known of the type Fe2(SR)2(CO)6;30 however, 

their substituted derivatives Fe2(SR)2(CO)6–xLx have received little attention. These 

substituted complexes are shown to adopt novel stereochemistry, a consequence of the axial-

equatorial disposition of the organic substituents on sulfur. These substituted derivatives 

oxidize at mild potentials, which led to the discovery that the benzyl derivative [3]+ has a 

labile C–S bond.

Mechanism and Implications of the Dealkylation of [3]+

The finding that the benzyl derivative [3]+ is more labile than the methyl and phenylthiolates 

is reasonable in view of the relative bond dissociation energies of the HS–CH2Ph, HS– CH3, 

and HS–Ph bonds, which are 258.2 (6.3), 312.5 (4.2), 367.8 (6.3) kJ/mol.27

Regarding the mechanism of desulfurization, a free-radical pathway is indicated. The 

evidence includes diagnostic products (dibenzyl, toluene), the accelerating effect of 

TEMPO, and the nonreactivity of the SMe and SPh derivatives. The pathway for formation 

of CH2Ph radicals from [3]+ involves two geometric processes: (i) a small twisting of the 

“rotated” Fe(dppv)(CO) center to an octahedral geometry observed in [4]+ and (ii) breaking 

of the C–S bond (Scheme 8). The unrotation of mixed valence Fe(II)Fe(I) dithiolates is 

nearly barrierless in the few cases that have been investigated.31 When monitored by FT-IR 
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and NMR spectroscopies, the conversion of [3]+ into [4]+ produced no detected 

intermediates.

The conversion of [3]+ → [4]+ is an example of a well-defined desulfurization of a thiolate 

by a metal complex. In this case, well-defined means that the precursor and products are 

well characterized and the reaction proceeds in good yields with good stoichiometry. The 

homolysis of C–S bonds is implicated in hydrodesulfurization (HDS) catalysis. The closest 

model for HDS of a thiol involves the reaction of an organoMo-Co cluster (eq 1).32,33

[(C5H5)Mo]2[Co(CO)2]2S3 + RSH [(C5H5)Mo]2[Co(CO)2]2S4 + RH (1)

For eq 1 and related reactions,32–34 the discrete desulfurization step has not been observed. 

With regard to the conversion [3]+ → [4]+, our results point to two aspects of complexes 

and catalysts that facilitate C–S homolysis: (i) the significantly weakened C–S bond in 

bridging thiolate ligands and (ii) the requirement for redox-active metals that can 

accommodate the conversion Mn(μ-SR) → Mn(μ-S) + R•. The qualitative weakening of C–S 

bonds is implicated for a variety of tri-and tetrametallic complexes.32,33,35

New Members of [Fe2(SR)2–x(S)xL6]z Series

With [Fe2(SR)2(CO)6]0 as the best known members, organometallic 2Fe-2S complexes can 

be organized according to their oxidation states (Figure 8). The anions [Fe2(S)2–

x(SH)x(CO)6](2–x)− are equivalent to [Fe2(SR)2(CO)6]0 with regards to the oxidation state of 

Fe.30,36–38 A mixed valence subset of this family take the form [Fe2(SR)2L6]+, manifested in 

synthetic models for the Hox state of the [FeFe]-hydrogenases.17–19 The diferrous members, 

i.e., [Fe2(SR)2–x(S)xL6](2–x)+, have not been observed previously but are represented by 

[4]+.

SUMMARY

This report describes the properties of the bis(monothiolate)s [Fe2(SR)2(CO)2(dppv)2]n+, 

rare complexes of the type [Fe2(SR)2(CO)6–xLx]n+. The related chelating dithiolates have 

been heavily studied.5 Studies on the redox properties of bis(monothiolate)s are rare. 

Similarities obviously exist between the bis(monothiolate)s and the chelating dithiolates: the 

νCO band positions in the IR spectra and the E1/2 values are comparable. The distinguishing 

features of the bis-(monothiolate)s arise from the unsymmetrical disposition of the SR 

groups. The two Fe(CO)(PR3)2 centers are related by mirror symmetry. This unsymmetrical 

steric field rigidifies these [Fe(I)]2 complexes.

The second advance in this work is the discovery that [Fe2(SCH2Ph)2(CO)2(dppv)2]+ is 

prone to homolysis of one C–S bond. According to DFT analysis, the C–S bond in these μ-

thiolate complexes is weakened, especially in more electron-rich derivatives. Oxidation of 

these complexes further weakens the C–S bond. According to our calculations, C–S bond 

strength follows the order HS-CH2Ph (61.7 kcal/mol) < Fe2(SCH2Ph)2(CO)6 < 
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Fe2(SCH2Ph)2(CO)2(PMe3)4 < [Fe2-(SCH2Ph)2(CO)2(PMe3)4]+ or [Fe2(SCH2Ph)2(CO)2-

(dppv)2]+, independent of the level of theory.

The third area of discovery involves the product of the C–S homolysis, the 32 e complex 

[Fe2(SCH2Ph)(S)(CO)2- (dppv)2]+. This complex, which is of the type [Fe2(SR)(S)L6]+, is 

unprecedented within the otherwise well-studied realm of low-spin 2Fe-2S compounds.30 

The unusual character of the new sulfido-thiolate is shown by its unique ability to undergo 

reversible double decarbonylation.

EXPERIMENTAL SECTION

Materials and Methods

General procedures have been described previously.21 Reagents were used as received.39 

Literature routes were followed to prepare Fe2(SMe)2(CO)6, Fe2(SCH2Ph)2(CO)6,40,41 and 

Fe2(SPh)2(CO)6.42 Photochemical reactions were conducted in Pyrex flasks; the light source 

was an array of 100 W LEDs emitting at 365 nm.

Cyclic voltammograms were recorded using a CH Instruments 760D Electrochemical 

workstation (Austin, TX). A standard three electrodes configuration was employed using 

glassy carbon (3 mm diameter) as the working electrode, a Pt wire as a counter electrode, 

and a “no leak” Ag/AgCl reference electrode (Warner Instruments, Hamden, CN). These 

reference electrodes have been calibrated after each experiment by adding ferrocene to the 

solution and recording its half-wave potential.

Fe2(SMe)2(CO)2(dppv)2 ([1]0)—A mixture of 0.10 g (0.27 mmol) of Fe2(SMe)2(CO)6 

and 0.106 g (0.27 mmol) of dppv in 10 mL of benzene was heated at reflux for 2 h. The 

solvent was removed in vacuum; the residue was extracted into 2 mL of CH2Cl2. The 

product, Fe2(SMe)2(CO)4(dppv), precipitated as a light-brown solid upon the addition of 20 

mL of pentane. Yield: 0.168 g (88%). A mixture of 0.10 g (0.14 mmol) of 

Fe2(SMe)2(CO)4(dppv) and 0.055 g (0.14 mmol) of dppv in 90 mL of toluene was irradiated 

at 365 nm until the conversion was complete (~2 h) as indicated by IR spectroscopy. Solvent 

was removed under vacuum, and the resulting residue was extracted into 2 mL of CH2CI2. 

Upon addition of 30 mL of pentane, the product precipitated as a green-brown solid. Yield: 

0.125 g (85%). Anal. Calcd for C56H50Fe2O2P4S2·1.5CH2Cl2: C, 58.15; H, 4.32. Found: C, 

58.34; H, 4.42. 1H NMR (500 MHz, CD2Cl2): δ 7.88–6.89, (m, 44H, 8C6H5, 2CH═CH), 

0.26, 0.86 (s, 6H, 2CH3). 31P NMR (202 MHz, CD2Cl2): δ 89.2(d, Jp-p = 20 Hz), 85.6 (d, 

Jp-p = 20 Hz). IR (CH2Cl2): νCO = 1896, 1861 cm−1.

Fe2(SPh)2(CO)2(dppv)2 ([2]0)—A solution of 0.10 g (0.2 mmol) of Fe2(SPh)2(CO)6 in 

10 mL of toluene was treated with a solution of 0.015 g (0.2 mmol) of Me3NO in 2 mL of 

CH3CN. After 15 min, 0.056 g (0.2 mmol) of dppv was added to the mixture, which was 

then stirred for 2 h. Solvent was removed under vacuum, and the resulting solid residue was 

extracted into 2 mL of CH2CI2. Upon addition of 30 mL of pentane to the reaction mixture, 

the product precipitated as a green-brown solid. Yield: 0.145 g (86%). A solution of 0.10 g 

(0.12 mmol) of Fe2(SPh)2(CO)4(dppv) and 0.047 g (0.12 mmol) of dppv in 90 mL of 

toluene was irradiated at 365 nm until the conversion was complete (~2 h) as indicated by IR 
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spectroscopy. The solvent was removed under vacuum, and the resulting dark residue was 

washed with 10 mL of Et2O to remove other organoiron compounds. The residue was 

extracted into 2 mL of CH2CI2. Upon dilution of this extract with 30 mL of pentane, the 

product precipitated as a green-brown solid. Yield: 0.049 g (35%). Anal. Calcd for 

C66H54Fe2O2P4S2·CH2Cl2: C, 63.68; H, 4.47. Found: C, 63.53; H, 4.32. 1H NMR (500 

MHz, CD2Cl2): δ 8.15–6.23, (m, 10C6H5, 2CH═CH). 31P NMR (202 MHz, CD2Cl2): δ 
94.0(d, Jp-p = 20 Hz), 81.3 (d, Jp-p = 20 Hz). IR (CH2Cl2): νCO = 1900, 1851 cm−1.

Fe2(SCH2Ph)2(CO)2(dppv)2 ([3]0)—A mixture of 0.10 g (0.19 mmol) of 

Fe2(SCH2Ph)2(CO)6 and 0.15 g (0.38 mmol) of dppv in 90 mL of toluene was irradiated at 

365 nm until the conversion was complete (~2 h) as indicated by IR spectroscopy. Solvent 

was removed under vacuum, and the resulting solid residue was extracted into 2 mL of 

CH2CI2. Addition of 30 mL of pentane precipitated a green-brown solid. Yield: 0.12 g 

(52%). Syntheses of related Fe2(SR)2(CO)2(dppv)2 complexes typically proceed in yields 

near 80%. We verified that Fe2(SR)2(CO)2(dppv)2 is sensitive to UV irradiation, which may 

explain the modest yields. 1H NMR (500 MHz, CD2Cl2): δ 7.86–5.97, (m, 54H, C6H5, 

CH═CH), 2.14, 2.23 (s, 4H, 2CH2). 31P NMR (202 MHz, CD2Cl2): δ 85.7(d, Jp-p = 20 Hz), 

80.3 (d, Jp-p = 20 Hz). IR (CH2Cl2): νCO = 1899, 1855 cm−1. Single crystals were grown by 

slow diffusion of hexane into a CH2CI2 solution.

[Fe2(SCH2Ph)2(CO)2(dppv)2]BF4 ([3]BF4)—A stirred solution of 75 mg (0.06 mmol) 

of [3]0 in 3 mL of CH2CI2 at −40 °C was treated dropwise with a solution of 17 mg (0.06 

mmol) of FcBF4 in 3 mL of CH2CI2. Within a few min., the solution color changed from 

green brown to dark green. The solution was concentrated to ~1 mL. A dark-green solid 

precipitated upon addition of 20 mL of pentane to this solution. Yield: 72 mg (90%). IR 

(CH2Cl2): νCO = 1942, 1904 cm−1. Anal. Calcd for C68H58Fe2O2P4S2BF4·CH2Cl2: C, 

60.11; H, 4.39. Found: C, 60.48; H, 4.42. Crystals were grown by slow diffusion of hexane 

into a CH2CI2 solution.

[Fe2(SCH2Ph)(S)(CO)2(dppv)2]BF4 ([4]BF4)—A solution of 26 mg (0.02 mmol) of 

[3]BF4 in 3 mL of CH2CI2 was treated with a solution of 3 mg (0.02 mmol) of TEMPO in 1 

mL of CH2CI2. After 4 h, the solution changed from dark green to dark red. The solution 

was concentrated to ~1 mL. A dark-red solid precipitated upon the addition of 20 mL of 

pentane to this concentrated solution. Yield: 18 mg (75%). 1H NMR (500 MHz, CD2Cl2): δ 
8.20–6.87, (m, 49H, C6H5, 2CH═CH), 3.67 (s, 2H, CH2). 31P NMR (202 MHz, CD2Cl2): δ 
101.7 (t, Jp-p = 20 Hz), 85.6 (t, Jp-p = 20 Hz). IR (CH2Cl2): νCO = 1958, 1936 cm−1. ESI-

MS: m/z 1115.2 [M – BF4]+. Crystals were grown by slow diffusion of hexanes into a 

CH2CI2 solution. Characterization of TEMPO-CH2Ph: Yield: 3 mg (61%). 1H NMR (500 

MHz, CD2Cl2): 7.27–7.38 (m, 5H, C6H5), 4.81 (s, 2H, Ph- CH2), 1.42–1.59 (m, 6H, 

CH2CH2CH2), 1.15, 1.26 (2s, 12H, CH3).43 HR ESI-MS: m/z 248.2003 [M + H] C16H25NO 

Calcd: 248.2014.

[Fe2(SCH2Ph)(S)(CO)4(dppv)2]BF4 ([5]BF4)—A solution of [4]BF4 (12 mg, 0.01 

mmol) in 1 mL of CH2CI2 was purged with CO. After 1 min, the solution color changed 

from dark red to bright red, and the IR spectrum indicated a complete conversion. Yield: 
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~9.5 mg (80%). FT-IR (CH2Cl2): νCO = 2016, 1989, 1945, 1898 cm−1. 1H NMR (500 MHz, 

CD2Cl2): δ 8.05–6.56, (m, 49H, 9C6H5, 2CH═CH); 3.38, 3.35, 3.27, 3.15, 3.13 (m, 2H, 

CH2). 31P NMR (202 MHz, CD2Cl2): δ 88.6, 85.6, 84.9, 75.9, 74.4, 72.3, 71.8, 55.0. Anal. 

Calcd for C63H51Fe2O4P4S2BF4.1.5CH2Cl2: C, 56.0 (55.90); H, 4.08 (3.93). Crystals of 

[5]BF4 were grown by diffusion of CO-saturated hexane into the CH2Cl2 solution at room 

temperature. Purging a solution of [5]BF4 with N2 results in a color change from bright red 

to dark red and the appearance of IR bands characteristic of [4]+.

DFT Methods

Density Functional Theory (DFT) computations have been carried out with the 

TURBOMOLE 7.2 programs suite,44 by using the pure functional BP8645,46 and an all-

electron valence triple-ζ basis set with polarization functions on all atoms (TZVP).47 This 

level of theory, which has proved to reliably reproduce structures, spectroscopic properties, 

and reactivity of hydrogenase-mimics,21–25 has been further validated by reproducing 

experimental IR bands and redox potential for the [3]+/0 (vide infra). In addition, 

computations regarding the S–C bond homolysis process have been also performed with the 

GGA functional B97-D, developed by Grimme to account for noncovalent interactions.48

Alternative approaches, such as Grimme’s empirical dispersion corrections (BP86-D3)49 and 

the use of Truhlar’s M06-L functional,50 have been also tested for the prediction of S–C 

homolysis energies. Results indicate that, while absolute ΔG values are quite sensitive to the 

functional choice, the overall picture predicted by the BP86 method is retained, independent 

of the level of theory. Indeed, S–C homolysis is always predicted to be facilitated upon 

oxidation and by increasing the number of P-ligands. Only results, however, obtained at the 

BP86/TZVP and B97-D/TZVP levels are indicative for a process that is spontaneous only 
for FeIIFeI tetra-substituted derivatives, in agreement with experiments. Hybrid functionals 

have not been used to evaluate homolysis ΔG’s, mainly because of their poor performances 

in reproducing redox potentials which has been verified in the present investigation (see 

values obtained with the B3LYP13–15 functional in the SI).45,51,52

The resolution-of-identity (RI)53 technique has been applied to speed up calculations. 

Geometry optimizations have been performed by means of energy gradient techniques, and 

full vibrational analysis has been carried out to further characterize each stationary point. 

The homolysis products [Fe2(SCH2Ph)(S)L6]0 have been treated as unrestricted open-shell 

doublets (S = 1/2), while [Fe2(SCH2Ph)(S)- L6]0 as overall unrestricted open-shell singlet (S 
= 0), following the Broken Symmetry (BS) approach.54,55 This approximation allows the 

treatment of antiferromagnetic spin couplings in the framework of the unrestricted 

formalism, by localizing opposite spins of the mono-determinant wave function in different 

parts of the molecule. High spin solutions have not been considered since they correspond to 

high energy structures. Free energy (ΔG) values have been obtained from the electronic KS-

SCF energy considering three contributions to the total partition function (Q), qtranslational, 

qrotational, qvibrational, assuming that Q can be written as the product of them.56 To evaluate 

enthalpy and entropy contributions, the values for temperature and pressure have been set to 

298.15 K and 1 bar, respectively. The scaling factor for the SCF wavenumbers was set either 

to 0.9914 (default value in the TURBOMOLE).44 Solvent was modeled according to the 
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conductor-like screening model (COSMO)57,58 by considering a polarizable continuum 

medium with ε = 8.93 (CH2Cl2). Solvent effects have been included in the evaluation of 

homolysis for [3]0 and [3]+, their FT-IR νCO bands, and the potential of the [3]+/0 couple. 

The latter has been computed using the equation ΔG°solv(SCF) = −nFE°, where ΔG°solv refers 

to the free energy difference (respectively) between the optimized reduced and the oxidized 

structures (including an implicit solvent model), n is the number of electrons involved in the 

redox process, F is the Faraday constant, and E° is the standard absolute redox potential 

(which has subsequently been referred to the Fc+/Fc couple absolute potential, computed at 

the same level of theory). Both ΔE°solv and ΔG°solv have been used since it has been shown 

that the inclusion of entropic correction does not necessarily provide a better match of Fe2S2 

experimental redox potentials.26 The computed redox potentials for [3]+/0 are E°(ΔE°solv) = 

−0.800 V and E°(ΔG°solv) = −0.731 V for BP86, E°(ΔE°solv) = −0.867 V and E°(ΔG°solv) = 

−0.799 V for B97-D, E°(ΔE°solv) = −1.126 V and E°(ΔG°solv) = −1.050 V for M06-L. 

Computed values at other levels of theory can be found in the Supporting Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure of Fe2(SCH2Ph)2(CO)2(dppv)2 ([3]0) with 50% probability ellipsoids and 

hydrogen atoms removed for clarity. Selected bond distances (Å): Fe1–C1, 1.7500(15), 

1.7381(15); Fe–P, 2.1735(4)–2.2144(4); Fe–S, 2.2566(4)–2.2933(4); Fe1–Fe2, 2.5840(3).
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Figure 2. 
Structure of [Fe2(SCH2Ph)2(CO)2(dppv)2]+ ([3]+) with 50% probability ellipsoids and 

hydrogen atoms removed for clarity. Selected bond distances (Å): Fe1–C1, 1.752(2); Fe1–

P2, 2.2035(6); Fe1–P1, 2.2487(6); Fe1–S2, 2.2504(6); Fe1–S1, 2.2894(5); Fe1– Fe2, 

2.6012(4); Fe2–C2, 1.775(2); Fe2–P4, 2.2232(6); Fe2–P3, 2.2263(6); Fe2–S2, 2.2319(5); 

Fe2–S1, 2.2895(5).
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Figure 3. 
Structure of the cation in the salt [Fe2(SCH2Ph)(S)-(CO)2(dppv)2]BF4 ([4]BF4) with 50% 

probability ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond distances (Å): 

Fe–C, 1.769(3), 1.766(3); Fe1–S2, 2.1643(7); Fe2–S2, 2.1275(7); Fe1–S1, 2.2476(7); Fe2–

S1, 2.2707(7); Fe1–P1, 2.1656(7); Fe1–P2, 2.2356(7); Fe2–P3, 2.2078(7); Fe2–P4, 

2.2249(7); Fe1–Fe2, 2.7453(5).
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Figure 4. 
Cyclic voltammograms of 2. 7 mM o f [Fe2(SBn)2(CO)2(dppv)2] ([3]0, black), [3]+ (blue), 

and [4]0 (red) in CH2Cl2 solutions with 0.125 M [Bu4N]PF6 electrolyte (scan rate = 100 

mV/s). The presence of a small amount of [4]+ is evident in the sample of [3]+.
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Figure 5. 
Relative free energies (kcal/mol at 298 K) associated with the homolytic cleavage of the S–C 

bond in the series of [Fe2(SCH2Ph)2(CO)6–x(PMe3)x]z (x = 0, 2, 4) as well as 

[Fe2(SCH2Ph)2(CO)2(dppv)2]z ([3]z). Both Fe(I)Fe(I) (z = 0) and Fe(II)Fe(I) (z = 1) redox 

states are considered.
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Figure 6. 
SOMOs for [Fe2(SCH2Ph)2(CO)4(PMe3)2]+ and [Fe2(SCH2Ph)2(CO)2(PMe3)4]+ (BP86/

TZVP optimized structures). Isosurface boundary = 0.05 au.
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Figure 7. 
Structure of [Fe2(SBn)(S)(CO)4(dppv)2]+ ([5]+) with 50% probability ellipsoids and 

hydrogen atoms omitted for clarity. Selected bond distances (Å): Fe1–C27, 1.8125(16); 

Fe1–C28, 1.8171(16); Fe1–P1, 2.2263(4); Fe1–P2, 2.2521(4); Fe1–S2, 2.3256(4); Fe1– S1, 

2.3432(4); Fe2–C37, 1.7916(15); Fe2–C36, 1.7985(16); Fe2– P4, 2.2494(4); Fe2–P3, 

2.3059(4); Fe2–S1, 2.3336(4); Fe2–S2, 2.3398(4).
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Figure 8. 
Structure of known and hypothetical Fe2(S)2L6]z complexes in various oxidation states and 

degrees of alkylation.
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Scheme 1. 
Selected Reactions of [Fe2(SR)2(CO)L5]+ (L = CO, PR3)
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Scheme 2. 
Radical Reactions Implicated in the Biosynthesis of the [2Fe]H Center
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Scheme 3. 
Bis(monothiolates) Fe2(SR)2(CO)2(dppv)2 Are More Rigid Stereochemically (Top) than the 

Related Chelating Dithiolates Fe2[(SCH2)2X](CO)2(dppv)2, Which Undergo Degenerate 

Racemizationa

aPh groups on phosphorus omitted for clarity.
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Scheme 4. 
Stereochemistry of Methylene Groups in Two Isomers of Fe2(SCH2R)2(CO)2(dppv)2 (the 

Isomer on the Left Is Not Observed) and Fe2(SCH2R)2(CO)4(dppv)a

aPh groups on phosphorus omitted for clarity.
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Scheme 5. 
Oxidation of [1]0–[3]0 and Debenzylation of [3]+
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Scheme 6. 
Reaction of [3]+ with TEMPO
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Scheme 7. 
Double Carbonylation of [4]+. Only the Crystallographically Verified Isomer of [5]+ Is 

Showna

aPh groups omitted for clarity.
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Scheme 8. 
Two Pathways for Debenzylation of [Fe2(SCH2Ph)2(CO)2(PMe3)4]+
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Table 1

Reduction Potentials for [4]+, [3]+, [2]+, and [1]+ as Well as the Related 1,3-Propanedithiolate (pdt2−) 

Complex

couple potential, V vs Fc+/0 ipa/ipc

[Fe2(SMe)2(CO)2(dppv)2]+/0 −0.90 1

[Fe2(SPh)2(CO)2(dppv)2]+/0 −0.85 1

[Fe2(SCH2Ph)2(CO)2(dppv)2]+/0 −0.81 1

[Fe2(pdt)(CO)2(dppv)2]+/0 −0.83 1

[Fe2(SCH2Ph)(S)(CO2(dppv)2])+/0 −1.1 0.95
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