
SHORT COMMUNICATION

Roles of auxin and ethylene in aerenchyma formation in sugarcane roots
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de S~ao Paulo, S~ao Paulo, Brazil

ARTICLE HISTORY
Received 15 November 2017
Revised 7 December 2017
Accepted 13 December 2017

ABSTRACT
Although the cross-talk between auxin and ethylene has been described during plant development, the
role played by auxin upon gene expression during aerenchyma formation is poorly understood. Root
aerenchyma formation results from the opening of gas spaces in the cortex. It is part of a developmental
program (constitutive) or due to ethylene treatment or abiotic stress (induced) such as flooding and
nutrient starvation. This process relies on programmed cell death and cell wall modifications. Here we
followed development of aerenchyma formation in sugarcane along 5 cm from the root apex. As a
constitutive process, the aerenchyma formation was observed in the cortex from the 3rd cm onwards. This
occurred despite 1-methylcyclepropene (1-MCP) treatment, an inhibitor of ethylene perception. However,
this process occurred while ethylene (and auxin) levels decreased. Within the aerenchyma formation zone,
the concentration of ethylene is lower in comparison to the concentration in maize. Besides, the ratio
between both hormones (ethylene and auxin) was around 1:1. These pieces of evidence suggest that
ethylene sensitivity and ethylene-auxin balance may play a role in the formation of aerenchyma.
Furthermore, the transcriptional analysis showed that genes related to cell expansion are up-regulated
due to 1-MCP treatment. Our results help explaining the regulation of the formation constitutive
aerenchyma in sugarcane.
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The aerenchyma is characterized by enlarged and interconnected
intercellular spaces filled with gas.1,2 They can be schizogenous
and lysigenous. Whereas in the former, cells separate from one
another without cell death, the second includes cell expansion, sep-
aration, cell death and cell wall modifications.2,3,4 Aerenchyma can
be constitutive, i.e., its formation is included in the developmental
program, or induced by abiotic stresses such as nutritional starva-
tion and hypoxia.5 In sugarcane, the development of aerenchyma
is constitutive.2,6 Its formation seems to be a result of different
combinations of developmental modules,7 which are activated by
plant hormones and the environment. Leite et al. (2017) reported
that cell wall modifications in sugarcane roots produce a compos-
ite that apparently seals the gas spaces. They seem to function as
chambers where gasses can be stored and used for respiration by
the remaining living cells in the roots.

The level and tissue sensitivity to ethylene are responsible
for triggering aerenchyma formation.8 In at least two species
possessing constitutive aerenchyma (Juncus effusus and Oryza
sativa) the role of ethylene has been demonstrated through the
use of 1-methylcyclopropene (1-MCP), a substance that blocks
the ethylene receptors in plants.9,10 Justin & Armstrong, (1991)
reported the effect of the exogenous application of a synthetic
auxin on aerenchyma formation in maize roots. However, the
auxin interplay with ethylene has been neglected so far.

Here we report the levels of ethylene and auxin in root seg-
ments of sugarcane and discuss the possibility that their inter-
play has a role in aerenchyma formation in sugarcane. To our
knowledge, this is the first report that shows both hormones
measured at the same time during aerenchyma formation.

Roots were sectioned into five segments,2 and aerenchyma
was present from S3 onwards in control and 1-MCP treatment
(Fig. 1). No significant differences were found. Ethylene and
auxin levels were measured for all five root segments
(Table 1).12,13

To assess the role of ethylene in aerenchyma formation in
sugarcane root development, the inhibitor 1- methylcyclopro-
pene (1-MCP) (EthylBloc, AgroFresh) was applied to roots at
every 48 h from May/2012 to August/2012. Plant growth, root
harvesting, and aerenchyma area calculation were performed as
reported by Leite et al. (2017).

1-MCP affected the proportions between ethylene and auxin
within the root segments. In S1 and S2, 1-MCP treated roots
displayed proportionally lower ethylene concentration. Ethyl-
ene and auxin levels decreased 2.5-fold during the S1-S2 transi-
tion in 1-MCP treated roots, whereas within control plants
they were kept constant (Table 1). These differences led to a
higher auxin-ethylene ratio on S1 and S2 in 1-MCP plants
compared to control (Fig. S1). On the following root segments
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(S3-S5), the level of both hormones decreased, reaching an
auxin:ethylene ratio closer to 1:1. Indeed, Gunawardena et al.
(2001) highlighted that in maize, aerenchyma does not develop
in lateral roots emergence sites – we confirmed that for sugar-
cane (results not shown) -, where high auxin and ethylene lev-
els are required.14

There is much literature on the interplay between ethylene
and auxin. Ethylene signaling increases auxin biosynthesis and
transport during root growth.15 As a result, auxin tends to
repress root elongation and affect cell wall extensibility.16 Ethyl-
ene levels can be decreased by 1-MCP treatment17 what results
in the mediation of IAA-aminoacid conjugation.18,19 Thus, it is
likely that the relatively lower ethylene levels observed in S1 and
S2 in 1-MCP treated sugarcane roots could lead to increased free
auxin concentration in S1 (Fig. S1 and Table 1). As both hor-
mones decrease at slightly different rates and reach a ratio near
to 1:1 from S3 onwards, it is possible that hormone balance
could be important for aerenchyma development.

Whereas the ethylene levels in maize correlate positively
with the aerenchyma area,20,21 in sugarcane, aerenchyma devel-
opment, and ethylene levels are inversely correlated (r2 D
¡0.96). Thus, it is possible that the constitutive nature of sugar-
cane root aerenchyma might be due to an intrinsic higher sensi-
tivity to ethylene. This possibly explains our finding that 1-
MCP failed to block aerenchyma formation in roots of
sugarcane.

Microarray and qPCR validation22 showed transcriptional
alterations. The primers used are listed in Table S2. Around
89% of the qPCR profiles confirmed the microarray results
(Table S3-S7). Three expansins were among the up-regulated
transcripts in 1-MCP treatment (Table S3, S4 & S5). These pro-
teins are related to the stability of hydrogen bonds between
xyloglucan and cellulose.23 Thus, expansin action plays a key
role in cell expansion.

Although xyloglucan occurs in small proportions in sugar-
cane walls,2,24 it might be important in the control of cell wall
architecture by holding macrofibrils together in the wall.25 It is,
therefore, possible that expansins play a role in the cortex cell
expansion in maize and sugarcane. However, the fact that 1-
MCP treated roots displayed higher expression of expansins is
contradictory, since this protein normally leads to expansion
due to some cell wall loosening during development. The
higher auxin level observed closer to the root tip (S1 and S2)
suggests that this hormone might be involved in triggering the
expression of cell expansion-related genes that are key elements
in the cellular processes that take place before aerenchyma for-
mation.7,26 Indeed, Yoo et al., (2015) identified several tran-
scripts related to auxin-mediated gene regulation during
aerenchyma formation. However, differently from the previ-
ously observed positive correlation between auxin and aeren-
chyma in maize roots,11 in sugarcane, we found an inverse
correlation (r2 D ¡0.96) between the hormone and aeren-
chyma formation.

Although more evidence has to be produced, our result sug-
gest that the ratio between the hormones might be important
in aerenchyma development of sugarcane roots. Such an inter-
play probably occurs through the expression of target genes
related to cell expansion and programed cell death. Sensitivity
to ethylene, rather than its concentration, is probably responsi-
ble for the sugarcane aerenchyma constitutive character.
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Table 1. Ethylene and free IAA levels along the segments in plants treated with
1-MCP.

Ethylene1 Free-iAA2

Segment Control 1-MCP Control 1-MCP

S1 0,25 § 0,02 a 0,12 § 0,01 a 12,16 § 2,04 a 18,85§ 2,60 a
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S5 0,06 § 0,01 b 0,06 § 0,01 c 5,39 § 1,02 c 5,90§ 0,20 b

a,b,c significant differences (p < 0.1) between root segments. Bold numbers indicate
significant differences (p < 0.1) between treatments.
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