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Abstract

Objective—Several neuroimaging studies have demonstrated that the ventral temporal cortex 

contains specialized regions that process visual stimuli. This study investigated the spatial and 

temporal dynamics of electrocorticographic (ECoG) responses to different types and colors of 

visual stimulation that were presented to four human participants, and demonstrated a real-time 

decoder that detects and discriminates responses to untrained natural images.

Approach—ECoG signals from the participants were recorded while they were shown colored 

and greyscale versions of seven types of visual stimuli (images of faces, objects, bodies, line 

drawings, digits, and kanji and hiragana characters), resulting in 14 classes for discrimination 

(experiment I). Additionally, a real-time system asynchronously classified ECoG responses to 

faces, kanji and black screens presented via a monitor (experiment II), or to natural scenes (i.e., 

the face of an experimenter, natural images of faces and kanji, and a mirror) (experiment III). 

Outcome measures in all experiments included the discrimination performance across types based 

on broadband γ activity.

Main Results—Experiment I demonstrated an offline classification accuracy of 72.9% when 

discriminating among the seven types (without color separation). Further discrimination of grey 

versus colored images reached an accuracy of 67.1%. Discriminating all colors and types (14 

classes) yielded an accuracy of 52.1%. In experiment II and III, the real-time decoder correctly 

detected 73.7% responses to face, kanji and black computer stimuli and 74.8% responses to 

presented natural scenes.
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Significance—Seven different types and their color information (either grey or color) could be 

detected and discriminated using broadband γ activity. Discrimination performance maximized for 

combined spatial-temporal information. The discrimination of stimulus color information provided 

the first ECoG-based evidence for color-related population-level cortical broadband γ responses in 

humans. Stimulus categories can be detected by their ECoG responses in real time within 500 ms 

with respect to stimulus onset.

1. Introduction

Real-time detection and discrimination of visual perception could lead to improved human-

computer interfaces, and may also provide the foundations for new communication tools for 

people with serious neurological disorders such as amyotrophic lateral sclerosis (ALS).

Substantial research based primarily on functional magnetic resonance imaging (fMRI) has 

shown that categorization of visual perception is implemented by the brain across different 

regions on the ventral temporal cortex. Most notably, areas on or around the fusiform gyrus 

are well known to process face stimuli (Collins and Olson, 2014; Halgren et al., 1999; 

Kadosh and Johnson, 2007; Kanwisher et al., 1997), and can be used to discriminate visual 

stimuli of different categories (Grill-Spector and Weiner, 2014). The left fusiform gyrus is 

known to process visually presented words (Cohen et al., 2000; McCandliss et al., 2003) and 

the inferior temporal gyrus has been shown to play an important role in recognition of 

numerals (Shum et al., 2013).

The neural basis of face perception has also been investigated with electrocorticographic 

(ECoG) recordings. Initial work in this area investigated ECoG evoked responses to faces 

versus scrambled faces (Allison et al., 1994), faces versus non-faces (Allison et al., 1999), 

and more diverse stimuli including faces versus parts of faces versus scaled and rotated faces 

(McCarthy et al., 1999) and faces versus bodies (Engell and McCarthy, 2014a). In addition 

to investigating traditional evoked potentials, whose physiological origin is complex and 

unresolved (Kam et al., 2016; Makeig et al., 2002; Mazaheri and Jensen, 2006, 2008), other 

studies have suggested that ECoG activity in the broadband γ (70–170 Hz) range is a 

general indicator of cortical population-level activity during auditory (Crone et al., 2001; 

Edwards et al., 2005; Potes et al., 2014, 2012), language (Chang et al., 2011; Edwards et al., 

2010, 2009; Kubanek et al., 2013; Leuthardt et al., 2012; Pei, Barbour, Leuthardt and 

Schalk, 2011; Pei, Leuthardt, Gaona, Brunner, Wolpaw and Schalk, 2011), sensori-motor 

(Crone et al., 1998; Kubanek et al., 2009; Miller et al., 2007; Schalk et al., 2007; Wang et 

al., 2012), attention (Gunduz et al., 2011, 2012; Ray et al., 2008), and memory (Jensen et al., 

2007; Maris et al., 2011; Sederberg et al., 2007; Tort et al., 2008; van Vugt et al., 2010) 

tasks. Physiologically, broadband γ has been shown to be a direct reflection of the average 

firing rate of neurons directly underneath the electrode (Manning et al., 2009; Miller et al., 

2009; Ray and Maunsell, 2011; Whittingstall and Logothetis, 2009), and has been shown to 

drive the BOLD signal identified using fMRI (Engell et al., 2012; Jacques et al., 2016; 

Logothetis et al., 2001; Mukamel et al., 2005; Niessing et al., 2005). Hence, more recent 

studies of visual perception investigated ECoG broadband responses to faces and other 

objects (Engell and McCarthy, 2011, 2014a,b; Ghuman et al., 2014; Lachaux et al., 2005; 
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Tsuchiya et al., 2008), and used them to predict the N200 evoked response (Engell and 

McCarthy, 2011), or to predict the onset and identity of visual stimuli (Miller et al., 2016).

Different studies investigated the degree to which faces or other objects can be decoded from 

brain signals in individual trials. These offline studies reported detection performance of 

85% for recognized faces on the ventral temporal cortex (VTC) (Tsuchiya et al., 2008), 

90.4% for faces and objects (Gerber et al., 2016), 96% for faces and houses (Miller et al., 

2016), and about 60% for animals, chairs, faces, fruits and vehicles (Liu et al., 2009). 

Another study reported 69% online accuracy in a target selection task of two overlaying 

images (Cerf et al., 2010). ECoG’s high signal-to-noise ratio even supports significant 

discrimination of two different faces or two different expressions of one face in single trials 

(Ghuman et al., 2014). One study decoded twelve categories (excluding faces) during an 

object naming task with a mean rank accuracy of 76% (i.e., in a list of 100 objects, ranked 

by their probability to be selected by the classifier, the target object appears on position 24 

on average) with a chance level of 50% (Rupp et al., 2017). Another study decoded 24 

different categories with an accuracy of 25% (chance level 4.2%) (Majima et al., 2014).

The present study extends this large body of work via three experiments that decode type 

and color information in experiment I (offline), and (in real time) decode different computer-

based stimuli in experiment II and natural image stimuli in experiment III. Specifically, 

ECoG signals were recorded in four patients while they were shown both color and 

greyscale versions of seven different types of visual stimuli (photos of faces, objects and 

bodies, images of line drawings and digits, and kanji and hiragana characters), thus creating 

a total of 14 stimulus classes. Experiment I investigated the spatial and temporal activity 

reflecting responses to visual stimulation in terms of discrimination performance at 

individual instants and sites, and classified across all types and colors in single trials. In 

addition, a real-time system was implemented to identify presented faces or kanji characters 

on a computer screen (experiment II), natural scenes with real faces (i.e., the faces of two 

experimenters and a mirror) and printed faces and kanji characters (experiment III).

2. Methods

2.1. Subjects

Four patients with epilepsy at Asahikawa Medical University (A and D) and The University 

of Tokyo Hospital (B and C) participated in this study. Each patient was temporarily 

implanted with subdural electrode grids to localize seizure foci and underwent neuro-

monitoring prior to resective brain surgery. The grids consisted of platinum electrodes with 

an exposed diameter of 1.5–3.0 mm and an inter-electrode distance of 5–10 mm. After grid 

placement, each subject had postoperative computed tomography (CT) imaging to identify 

electrode locations in conjunction with preoperative magnetic resonance imaging (MRI). 

Table 1 provides an overview of the subjects and their clinical profiles. The study was 

approved by the institutional review boards of Asahikawa Medical University and The 

University of Tokyo Hospital. All subjects gave informed consent prior to the experiment.

Figure 1 shows the subjects’ reconstructed brain models and indicates implanted electrode 

locations (dots). Each subject’s brain model was reconstructed in FreeSurfer (Martinos 
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Center for Biomedical Imaging, Cambridge, USA) using pre-operative T1-weighted MRI 

data (Dale et al., 1999). Then pre-operative MRI data were co-registered to post-operative 

CT scans using SPM (Wellcome Trust Centre for Neuroimaging, London, UK) to localize 

electrode positions on the cortex (Penny et al., 2007). Finally, the resulting 3D cortical 

models and electrode locations were visualized in NeuralAct (Kubanek and Schalk, 2015).

2.2. Data Acquisition

ECoG signals were recorded at the bed-side with a DC-coupled g.HIamp biosignal amplifier 

(g.tec medical engineering, Austria) after neuro-monitoring was completed – prior to 

resective surgery. Data were digitized with 24-bit resolution at 2,400 Hz for offline 

assessment and 1,200 Hz for real-time processing, synchronized with stimulus presentation 

using a photo diode, and stored using the g.HIsys real-time processing library (g.tec medical 

engineering GmbH, Austria). Ground (GND) and reference (REF) were located in dorsal 

parietal cortex (i.e., distant from task-related electrodes in the temporal lobe).

2.3. Experimental Procedure

The three experiments in this study are illustrated in Figure 2. Experiment I assessed neural 

responses to visual stimuli using offline analysis. We also obtained online accuracies during 

real-time visual perception tasks, where the subjects looked at monitor-based stimuli in 

experiment II and natural images in experiment III.

During the assessment (experiment I) subjects A, B and C observed stimuli that were 

presented on a computer screen, which was placed about 80 cm in front of the subject. The 

stimuli were about 20 cm in size, and consisted of seven types ((i) Body, (ii) Face, (iii) Digit, 
(iv) Hira (Hiragana), (v) Kanji, (vi) Line and (vii) Object), all seven of which were shown in 

color (Color) or greyscale (Grey). This led to a total of 14 different classes for 

discrimination, which were presented sequentially in random order. Kanji and hiragana 

characters are components of the Japanese writing system and corresponded to the subjects’ 

native language. Experiment I in Figure 2 illustrates examples from 20 different stimuli for 

each class and shows the timeline of four out of 560 trials in the visual stimulation 

paradigm. Each trial consisted of a 200 ms presentation period and a subsequent black 

screen for 600–800 ms.

Experiment II employed real-time decoding of stimuli shown on a monitor, including images 

of faces and kanji characters, and an additional black screen as a new type. Thus, the three 

possible classification outcomes were Face, Kanji, and Idle (i.e., neither Face nor Kanji, see 

Figure 2, experiment II). Two subjects (A and D) participated in this discrimination 

experiment and were asked to observe a sequence of 30 (subject D) or 40 (subject A) stimuli 

of each type in randomized order with a presentation time of 400 ms each. Inter-stimulus-

intervals (ISI) showed a black screen for 2.0–3.3 s. Each subject performed two runs (a total 

of 3 classes · 30 trials · 2 runs = 180 trials for subject D and 3 · 40 · 2 = 240 trials for subject 

A), one for calibration and another to validate the real-time decoding performance.

Subject A also participated in experiment III, a real-world scenario with natural stimuli (see 

Figure 2, experiment III), in which one of the people attending the experiment presented the 

subject with kanji characters and faces printed on pieces of paper, a mirror and two 
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experimenters’ faces – who appeared in front of the subject. A computer classified Face, 

Kanji and Idle in real time, and provided visual feedback about that type via a monitor next 

to the subject, by displaying a face, a kanji character or a black screen. The monitor output 

was not visible to the subject, but was recorded by a video camera that taped the experiment 

at a rate of 30 FPS for later synchronization of stimulus onset with ECoG data and for 

quantification of the decoder’s performance. Frames of the video were synchronized with 

ECoG data based on the decoder output (i.e., the first video frame showing a kanji character 

on the monitor corresponded to the sample time at which the decoder classified a Kanji 
stimulus).

2.4. Signal Processing for Assessment

Figure 4 illustrates the feature extraction and classification method for assessment in 

experiment I. Recorded ECoG signals were denoted as x[m] (digitized multi-channel data at 

time m) and underwent a 2 Hz Butterworth high-pass (HP) filter (4th order) to remove DC 

drifts. Visual inspection of filtered data left 182, 247 and 246 channels (after exclusion of 

artifactual signals like epileptic activity, etc.) for subsequent processing for subjects A-C, 

respectively. A common average reference (CAR) montage re-referenced the signals (Liu et 

al., 2015) and a 110–140 Hz bandpass (BP) filter (Butterworth low and high pass filter, each 

of 4th order) extracted broadband γ activity. Given the time-frequency maps in Figure 3, this 

band turned out to be most discriminant for individual classes. Next, the signals were 

temporally stabilized by computing the variance σx̃[n] based on 20 ms (50% overlap) epochs 

of x̃ [m], and further normalized by log-transformation. This provided the output metric 

y[n], where n was an instant of the down sampled signals (fs = 100 Hz). Data from each 

channel were further z-scored based on all samples of the baseline periods of all trials (−300 

to 0 ms pre-stimulus interval), generating standardized data z[n]. Information in z[n] was 

used to identify reactive ECoG locations and to discriminate ECoG responses to the visual 

stimulus types.

Channels were considered for classification only if the standardized data z[n] of any class 

was significantly higher for the task period compared to the baseline period. Thus, a 

Wilcoxon rank-sum test compared the average z-scores of a stimulus type’s baseline periods 

(−300 to 0 ms pre-stimulus interval) with the average z-scores of the corresponding active 

periods (100 to 400 ms post-stimulus interval). This test was performed for each stimulus 

type and if a significant response was found (p < 0.01, Bonferroni corrected for the number 

of channels and tested stimulus types) the channels were considered for further analysis.

Standardized responses z[n] in selected channels (highlighted with red balls in Figure 1) 

were discriminated by a pattern recognition approach. To do this, the assessment data were 

separated into NT = 40 trials of each class i (i ∈ {1, 2…14}). Each trial zi,l (l ∈ {1, 2…NT }) 

consisted of a 100–400 ms post-stimulus interval of z[n]. For pattern recognition templates 

were computed from 39 trials of each class, which were derived as follows:

ti, k =
∑l = 1

NT zi, l
NT − 1 , l ≠ k (1)
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Each template vector ti,k was calculated from training data, and was subsequently compared 

to the kth trial of each class (leave-one-out cross validation (LOOCV) approach, k ∈ {1, 2…

40}). Thus, the remaining trial vector zi,k was correlated with the template ti,k leading to ri,k, 

the correlation coefficient for class i and trial k.

ri, k =
σti, k, zi, k
σti, k

σzi, k

(2)

The correlation followed the definition of the Pearson’s correlation coefficient with σti,k,zi,k 

as the covariance of ti,k and zi,k, and σti,k and σzi,k as the variance of ti,k and zi,k, 

respectively. Correlation coefficients were computed for all 14 templates for each of the 14 

test trials. Hence, for a given tested feature vector, the classifier determined the type and 

color that produced the highest correlation (MAX(ρ)). Results from 40 repetitions (14 · 40 = 

560 classifications in total) with new sets of templates yielded class specific positive rates 

(TPR) and an overall accuracy (ACC).

The same assessment approach was applied to paired conditions of colored and greyscale 

types to investigate any color or type specific bias that affected the discrimination 

performance. For paired conditions a test trial was correlated with the template vectors of 

the two selected classes and assigned to the class that correlated most.

Additionally, the assessment led to classification accuracies using temporal and spatial 

features only. Specifically, the temporal features contained concatenated z[n] of the selected 

channels for a dedicated 20 ms epoch and were classified by the pattern discrimination in 10 

ms steps (from −300 to 450 ms relative to stimulus onset). A similar strategy for the spatial 

assessment included the pattern discrimination of concatenated z[n] over time (100–400 ms 

post-stimulus interval), tested for each selected channel.

For each assessment, an additional permutation test generated a random distribution of 

accuracies based on trial labels that were shuffed 1,000 times. Hence, the rank of the 

assessment output in the random distribution gave the probability p for random 

classification. This probability was transformed into an activation index (AI) as follows 

(Gunduz et al., 2011, 2012, 2016; Kubanek et al., 2009; Liu et al., 2015; Lotte et al., 2015; 

Schalk et al., 2007; Wang et al., 2012):

AI = − log(p) (3)

The AIs were used to highlight reliable discrimination for the temporal and spatial 

assessment, whereas the p values were used to indicate results that were significantly better 

than chance (p < 0.05).
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2.5. Signal Processing for Online Discrimination

Real-time processing of multichannel ECoG signals requires time efficient feature extraction 

methods that guarantee a certain processing time, independent from the number of recorded 

channels. At the same time, asynchronous detection of visual perception requires robust 

features that are stable over time to enable detection and discrimination of visual stimuli 

based on sliding windows. Hence, the signal processing pipeline used for the assessment had 

to be modified to fulfill the aforementioned requirements.

Before classifying ECoG data in real-time, it was necessary to first process calibration data. 

Figure 5 shows the required signal processing steps. First, a 4th order Butterworth high-pass 

(HP) filter removed the DC drift of the recorded ECoG signals x[m] for visual inspection. If 

a channel contained power line interferences or epileptic waveforms, it was manually 

excluded. This led to 182 and 140 remaining channels for subjects A and D, respectively. 

Then, a 110–140 Hz band-pass (BP) filter extracted broadband γ activity xfilt[m]. Common 

spatial patterns (CSP) were computed from filtered signals to improve the signal-to-noise 

ratio (SNR) and reduce the feature dimensionality (Guger et al., 2000; Müller-Gerking et al., 

1999; Ramoser et al., 2000). Since CSPs maximize the signals’ variance for one condition 

and minimize it for another condition, a set of spatial filters for three “one-versus-all” 

conditions generated distinctive features for Face, Kanji and Idle. First, Face against 

combined Idle and Kanji stimuli, second Kanji against combined Idle and Face stimuli and 

finally, Idle against Face and Kanji stimuli. Hence, each combination resulted in a set of 

spatial filters sorted by their impact on the conditions’ variance. The CSP filters were 

calculated from ECoG data from 100–600 ms post-stimulus. For further processing only the 

four most relevant filters of each paired condition were used (i.e., the filters that 

corresponded to the two highest and the two lowest eigenvalues (Blankertz et al., 2008)), 

resulting in twelve feature channels in total. Specifically, spatial filters were applied as 

channel weights (wCSP,j,j ∈ {1, 2…12}) for all electrodes:

x∼CSP, j[m] = wCSP, j
T x filt[m] (4)

Then, from each resultant time series x̃CSP,j[m] the variance σx̃CSP,j [n] was calculated from 

500 ms epochs with a 97% overlap. These signals were log-transformed to normalize the 

data and to get yCSP [n], the normalized broadband γ power. Finally, three linear 

discriminant analyses (LDA) were trained to discriminate the twelve features of each class 

(30–40 trials per class of Face, Kanji and Idle), from data of the remaining classes. Each of 

the three combinations (denoted with i ∈ {F, K, I}) gave class specific weights wLDA,i.

After the calibration phase, the subsequent processing occurred in real time. Therefore, the 

ECoG data were sampled with 1,200 Hz and read into the real-time processing in frames of 

16 samples, which resulted in a processing rate of 75 Hz. In each processing step, data were 

HP and BP filtered, yielding xfilt[m] (as shown in Figure 5). The twelve spatial filters were 

applied on xfilt[m] to get twelve time series x̃CSP [m] for variance estimation and log-

transformation, which yielded yCSP [n]. Subsequently, the three weight vectors wLDA,i were 

applied to yCSP [n] to get the three LDA outputs qi for Face, Kanji and Idle:
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qi = wLDA, i
T yCSP[n] (5)

Each LDA output was translated into a probability using a Softmax function (Sutton and 

Barto, 1998):

p
iC

= 1 − e
qi

∑ j = 1
3 e

q j
(6)

Here, piC was the complement probability that features represent class i. Hence, the 

classifier selected the class that corresponded to the lowest piC. In the case that no piC 

reached the confidence threshold of piC < 0.05, the output was automatically set to Idle. 

Finally, the activation index (AI) was calculated from the complementary probability piC 

according to the following equation:

AI = − log(p
iC

) (7)

In the real-time processing mode, when the AI crossed the significance threshold (piC or AI 
> 3), an image of a face, a kanji character or a black screen appeared on a feedback monitor. 

This feedback was only visible to the experimenter, not the subjects.

3. Results

3.1. Assessment (experiment I)

3.1.1. Pairwise Discrimination of Colored and Greyscale Types—Figure 6 shows 

the TPR for each type of stimulation versus all each other type. TPR values were obtained 

by assigning the test trials to one of two template classes. Every matrix contains the TPR for 

each possible combination of classes. Subjects A and C reached very high TPRs (> 90%) for 

Face stimulation versus all other types, except for Color Face versus Grey Face. Of course, 

the TPR reached its maximum if a type was compared with itself as illustrated by the 

diagonals. Figure 6 further depicts that the TPR minimized for comparisons of Color and 

Grey stimuli of the same type. For example, subject A correctly classified only 50% of Grey 
Line versus Color Line stimuli.

Table 2 contains the classification accuracies (50% chance) for each subject and each type. 

Accuracies correspond to the average TPR obtained from all pairwise discrimination tests of 

a certain type with any other type (i.e., the mean of each type’s row and column TPR in 

Figure 6). The highest classification accuracy of 97.9% was reached by subject C for Color 
Face stimulation. Subject A reached the second and third highest accuracies of 97.8% for 

Color and Grey Face stimulation. Subject B yielded the lowest classification accuracies 

(76.7%, 78.7% and 80.7%) for Grey Digit and Body, and for Color Body stimulation. Face 
stimulation achieved 92.3%, the highest average accuracy across all subjects, followed by 
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Body (90.1%) and Object (90.0%) stimulation. The weakest average performance was found 

for Digit (88.0%) stimulation. Across all stimulus types and colors, the average accuracies 

were 92.8%, 83.1% and 93.6% for subjects A, B and C, respectively. Accuracies above 

65.0% (for A) and 62.5% (for B and C) were statistically better than chance (p < 0.05).

3.1.2. Overall Discrimination of Types and Colors—Table 3 contains the 

classification accuracy after discrimination of Color and Grey images (“Color vs. Grey”), 

whereby subject C achieved the highest accuracy of 73.0% (50% chance). It contains also 

the classification accuracy after discrimination of stimulus types without color separation 

(“7-Types”) when the seven types were classified against each other. Again, subject C 

reached the highest accuracy of 82.1% (14.3% chance). “T&C” in Table 3 contains the 

accuracy after classification of all 14 colored and greyscale stimulus types against each 

other. Here subject C reached 61.6% (7.1% chance). Interestingly, “7-Types” performed 

better than “Colors vs. Grey”. Although “T&C” performed worst, because of the 14 different 

classes, all subjects achieved highly significant accuracies (p < 0.0004).

Figure 7 illustrates the TPRs for “Color vs. Grey”, “7-Types” and “T&C”. In the “Color vs. 

Grey” assessment, subject C achieved a TPR of 74.3% for Grey and 71.8% for Color, 
whereas subject B correctly classified Color (72.1%) more often than Grey (66.8%). Subject 

A identified 61.8% of the Grey stimuli, but did not reach significant TPR for Color. In the 

“7-Types” classification Face performed best for subjects A and C. Indeed, all Face stimuli 

were identified in subject A. In subject B the TPR maximized for Hira and reached 68.8%. 

In the “T&C” mode, the classification worked best for Color Face in subjects A (75.0%) and 

C (90.0%), and Color Object in subject B (72.5%). Grey Line in subjects A (27.5%) and C 

(37.5%) and Grey Digit in subject B (20.0%) performed worst.

3.1.3. Temporal and Spatial Characteristics—The temporal pattern of the TPR is 

plotted in Figure 8 for each type (Body, Face…), and Grey and Color. Each star shows the 

time point with the highest average TPR (classification accuracy) of all types. The 

classification accuracy reached its peak at 240, 210 and 250 ms after stimulus onset for 

subject A, B and C, respectively. The classification accuracies (7.1% chance) at those times 

were 41.8%, 24.6% and 41.8%, respectively, and thus led to an average peak accuracy of 

36.1% at about 233 ms across subjects. Responses to Face and Body stimuli gave a high 

TPR after 200 ms and remained stable until about 400 ms for subject A and C. The biggest 

TPR difference could be found for subject C for Object. Subject B attained the highest TPR 

of about 58% for Kanji at about 210 ms. Interestingly, Body, Face and Object produced a 

high TPR over a long period of about 150–400 ms, while all other stimulus types showed a 

much shorter peaks.

Figure 9 summarizes the classification accuracy for each selected electrode channel 

discriminating all “7-Types” and all seven types and two colors (“T&C”). Yellow stars label 

those ECoG electrode locations that provided the highest classification accuracy for each 

subject. For the “7-Types” comparison, the highest classification accuracies (14.3% chance) 

were 26.4%, 24.3% and 21.6% for subjects A, B, and C, respectively. Note that each 

accuracy resulted from a single channel. The corresponding average peak accuracy across 

subjects was 24.1%. For the “T&C” assessment the highest classification accuracies (7.1% 

Kapeller et al. Page 9

J Neural Eng. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chance) reached 12.5%, 10.4% and 11.6% for subjects A, B, and C, respectively. Here, the 

average peak accuracy across subjects was 11.5%.

Figure 10 shows the highest TPR of all stimulus types and electrode locations for “7-Types” 

or “T&C”. Subject A reached a high TPR for Face around the area indicated with the star. In 

the “7-Types” condition, the types with the highest TPR (14.3% chance) were Face, for 

subject A (62.5%) and B (47.5%), and Kanji for subject C (61.3%). Adding the color 

information in “T&C”, the types with the highest TPR (7.1% chance) were Color Line 
(37.5%), Color Object (42.5%) and Grey Face (42.5%) for subjects A, B and C, respectively.

3.2. Online Discrimination of Computer and Natural Stimuli (experiment II and III)

Table 4 lists the total duration of data collection, the latency of the real-time classification 

output with respect to stimulus onset, the asynchronous classification accuracies and the 

corresponding random accuracies for subjects A and D. The actual stimulus and the decoder 

output matched best after shifting the decoder output 440–467 ms backwards in time, and 

thus showed the processing speed for real-time classification. In experiment II the real-time 

decoder correctly identified 73.7% of the computer stimuli for both subjects on average. The 

highest accuracy of 80.80% was achieved by subject A in the computer stimulus run. Even 

in the natural run subject A achieved an accuracy of 74.82% and performed better than 

subject D performed in the computer stimulus run. The latency of the decoder during the 

natural run was fixed to the 467 ms obtained in experiment II.

Figures 11 and 12 illustrate the AI over time for the computer stimuli in experiment II and 

the natural stimuli in experiment III. The decoder classified this output in real time into Face 
or Kanji when AI exceeded the dashed significance line (AI > 3, corresponding to p < 0.05), 

and Idle otherwise. The AI time series in both figures were corrected for the mean latency of 

the cortical responses (i.e., 440–468 ms) and thus shifted compared to the stimulus 

presentation bars.

4. Discussion

Many neuroimaging studies have demonstrated that ventral temporal cortex and inferior 

temporal gyrus are well known to contain specialized regions that process visual stimuli, and 

represent objects, words, numbers, faces and other categories. Some electrophysiological 

studies using electrocorticography (ECoG) have corroborated and extended these findings by 

identifying broadband ECoG responses to visual stimuli in the γ band. The present study 

provides the first human electrocorticographic evidence for color-related population-level 

cortical broadband γ responses, and demonstrated that neural categories established using 

stimuli presented on a video screen may generalize to the presentation of real-world visual 

scenes.

Results in this study were obtained by offline (experiment I) and online analyses 

(experiment II and III), which were fundamentally different in their decoding strategy. 

Specifically, the synchronous classification strategy during offline analysis revealed subject 

and location specific differences of individual categories, whereas the online decoder aimed 

to asynchronously detect and decode neural categories in real time.
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The assessment showed that all types Body, Face, Digit, Hira, Kanji, Line and Object could 

be classified with a grand average accuracy of 89.8%, and for each type, the accuracy was ≥ 

88% (see Table 2). The best performance was achieved for Grey Face and Color Face 
yielding 92.3% classification accuracy on average. Subject B achieved a lower accuracy than 

subjects A and C, which may result from missing coverage of the right fusiform gyrus, the 

location of fusiform face area (FFA). In contrast, subjects A and C had at least partly 

coverage of the left and right fusiform gyri and showed almost perfect Face classification in 

pairwise discrimination, which is consistent with the 86–96% correctly detected faces 

reported elsewhere (Gerber et al., 2016; Miller et al., 2016; Tsuchiya et al., 2008).

Aside from the detection of face-related neural responses, it is noteworthy that the accuracy 

for Color and Grey Digits reached 92.8% and 92.0% for subject C. Interestingly, electrode 

sites in subject C covered the right inferior temporal gyrus, which has been identified as a 

number form area (Shum et al., 2013).

Overall discrimination showed that the best classification accuracy of 72.9% was achieved 

when the “7-Types” were discriminated from each other based on class templates obtained 

from broadband γ responses. Other decoders have utilized event-related potentials (ERP), 

achieving a discrimination performance of about 60% for five stimulus categories (Liu et al., 

2009), or single neuron recordings, leading to 69% correctly assigned image labels in a two 

class selection task (Cerf et al., 2010).

Furthermore, the discrimination of colored and greyscale stimuli yielded 67.1% correct 

classification. In the present study ECoG signals for color discrimination were obtained 

mainly from visual area VO1, which has been reported to be color and object selective 

(Brewer et al., 2005), and further to be responsive to color changes (Brouwer and Heeger, 

2013). A previous reported decoder based on fMRI utilized signals obtained from visual area 

VO1 and discriminated responses to eight colors with an accuracy of 48% after more than 15 

repetitions (Brouwer and Heeger, 2009).

The discrimination of all 14 classes in “T&C” gave the lowest accuracy of 52.1%, but 

contained of course 14 different classes. Subjects A and C performed better for types than 

for colors, but in contrast, subject B performed better for colors than for types. Therefore, 

the electrode location could play an important part for color or type separation. Several 

ECoG locations showed the highest classification accuracy for Face or Kanji stimuli. Those 

locations were spread across the cortex and support the model of alternating face and 

letterstring selective cortex regions around the middle fusiform sulcus (Matsuo et al., 2015). 

Notably, ECoG locations that showed the highest TPR to Face stimuli were grouped into 

clusters of bigger regions than for Kanji locations. One cluster was located on the right FFA 

in subject A and turned out to be face selective and causally involved in face processing after 

systematic electrical cortical stimulation (Schalk et al., 2017). Such a face selective cluster 

of ECoG locations has also been previously reported in another electrical stimulation study 

(Parvizi et al., 2012). In the current study two of these clusters were found in subject A (one 

in each hemisphere), whereas only one cluster, located in the left hemisphere, was found in 

subjects B and C. This can be most likely explained by missing or only partial coverage of 

the right fusiform gyrus.
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Another interesting finding is that features obtained from Kanji locations enabled the 

decoder to discriminate even between Hiragana and Kanji stimuli. Such a discrimination 

task has not been presented elsewhere and shows that the letterstring locations reported in 

(Matsuo et al., 2015) can be further subdivided into more spe-cific regions.

The assessment further showed that even a single ECoG electrode location decoded specific 

stimulus types with an accuracy of 24.1% in the “7-Types” discrimination. Although this is 

already remarkable, combined information from multiple locations revealed the 72.9% 

accuracy of the “7-Types”. For real-time processing, it was important to efficiently consider 

multiple electrodes. This was realized with the CSPs that automatically weighted each 

electrode according to its importance for the classification task. Therefore, the most 

important electrodes were considered automatically, resulting in higher classification 

accuracy than single channel analysis.

The spatial distribution of type-specific information remained stable throughout 

experiments, whereas the onset of broadband γ activity varied from trial to trial and caused a 

different temporal pattern for each repetition. Hence, it is important to train the classifier on 

multiple trials and utilize moving variance windows for real-time classification. It is likely 

that the known relationship between modulatory activity in the α band and cortical 

population-level broadband γ activity (phase-amplitude coupling (Canolty et al., 2006; Coon 

and Schalk, 2016; Coon et al., 2016)) resulted in variable broadband γ responses. Hence, in 

real-time mode the variance was calculated from 500 ms windows and induced, together 

with the response time of the subject, a delay of 400–500 ms with respect to the stimulus 

onsets. However, this latency did not affect the performance of the decoder in the present 

study, as the feedback was not presented to the subject. Still, the observed delay here is 

much shorter than the reported 1–10 s of the online decoder presented in (Cerf et al., 2010). 

This is mainly due to the different experimental design, which required the subject to 

voluntarily activate stimulus selective neurons. Shorter latencies reported in other studies 

were obtained offline (Miller et al., 2016) and did not report asynchronous classification 

over time (Liu et al., 2009; Majima et al., 2014; Tsuchiya et al., 2008). The TPR over time in 

Figure 8 revealed that Body, Face and Object generated distinctive broadband γ activity over 

a relatively long period from 150 to 400 ms. This was much wider than for Digit, Hira, Kanji 
and Line, which indicates that processing stimuli of types like Body, Face or Object requires 

more time and thus is a more complex cognitive task.

Face, Kanji and Idle phases could be separated in real time with accuracies between 66.7–

80.8% after about 4 minutes of training in experiment II. These accuracies were achieved 

without giving feedback to the subject. With longer training periods, and with feedback to 

subjects, performance would probably increase further. The feedback may help the subject 

focus on the required tasks and maintain concentration, in addition to facilitating learning. 

The performance difference between subject A (80.80%) and D (66.67%) can be most likely 

explained by the dense electrode coverage of the ventral temporal cortex of subject A (66 

recording sites versus 20 in subject D).

Spontaneous online detection of visual stimuli in the real-world scenario in experiment III 

demonstrated a surprisingly high accuracy of 74.82%. Noteably, the real-world stimuli (e.g., 
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the face of the experimenter) were not part of the stimuli used for training with the visual 

stimuli shown on the computer screen. Thus, the real-world scenario was not only based on 

new and independent data, but also on a different set of stimuli than the artificial stimuli 

shown on the computer in experiment II. In fact, natural stimuli included images of kanji and 

faces printed on a sheet of paper, but also real human faces of the experimenters and the 

subject through a mirror. This showed that, in subject A, the same cortical regions process 

information from natural stimuli and from trained faces and kanji characters shown on a 

computer monitor.

Another issue relevant to real-world applications is the additional cortical activity due to eye 

motion and moving visual targets, described as motion related augmentation of broadband γ 
activity on the lateral, inferior and polar occipital regions (Nagasawa et al., 2011). Such 

activation patterns could interfere with the expected features from the training runs and 

therefore impair the classification performance. Furthermore, time-locking the onset of 

neural responses due to natural stimuli is much more challenging than time-locking the onset 

of responses resulting from stimuli presented via a computer.

4.1. Conclusion

Real-time detection and discrimination of visually perceived natural scenes is even possible 

when the system is trained on different data than was presented on a computer screen. This 

could lead to improved human-computer interfaces such as those proposed in the context of 

passive BCIs (van Erp et al., 2012). Specifically, learning the identity of a perceived (or 

perhaps even covertly attended) visual object could be useful for constraining or otherwise 

informing the options of an interface. This ability may also prove useful for establishing new 

communication options for people that have lost the ability to communicate, such as people 

with amyotrophic lateral sclerosis (ALS).
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Figure 1. 
ECoG recording sites for subjects A, B, C and D. Black dots represent implanted subdural 

electrodes. Red balls highlight ECoG electrodes at locations that demonstrated significant 

broadband γ responses to visual stimuli for subjects who participated in experiment I (A, B 

and C). Subject D only participated in experiment II, in which all channels were spatially 

filtered.
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Figure 2. 
Presented stimulus types and experimental procedures for the three experiments. Experiment 

I, the assessment, collected ECoG responses from visual stimuli (200 ms presentation time) 

of seven types (Body, Face, Digit, Hira, Kanji, Line and Object). Examples show one out of 

20 stimuli for each type in colored (Color) and greyscale (Grey) versions. Each stimulus 

occurred twice within the experiment (i.e., 40 stimuli per type and color, 560 stimuli in 

total). Experiment II evaluated the real-time discrimination performance of ECoG responses 

to presented Face and Kanji computer stimuli (400 ms presentation time), and to idle stimuli 

(black screen). Subjects viewed 30–40 stimuli of each type (180–240 trials in total) to 

calibrate the decoder and repeated the experiment with real-time discrimination (without 

getting any feedback). Experiment III tested the real-time discrimination performance of 

ECoG responses to natural stimuli (i.e., printed faces and kanji, mirror, real face) presented 

by the experimenter, one face presented by a co-experimenter and intermediate idle periods 

where nothing was shown.
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Figure 3. 
Time-frequency maps of two locations (yellow star and red diamond) of subjects A and B. 

Each map contains the standardized power change in z-scores for a given type (Line, 

Digit…) and color (Grey and Color) with respect to a reference window −300 to 0 ms 

relative to the visual stimulation onset. The yellow star location in A turned out to be Face 
selective, showing a strong broadband γ power increase for Face stimuli, whereas other 

most other locations remained silent or show little activation (like Body). A Color selective 

region was located in B (indicated by the red diamond). The average power change in z-

scores of 120 ECoG locations on the VTC in subjects A, B and C, averaged over a period of 

100 to 400 ms after stimulus onset, revealed the strongest change for the selected 110 to 140 

Hz band (highlighted by the red bar).
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Figure 4. 
Feature extraction pipeline and classification method for the assessment (experiment I). 

Signal processing steps for the multi-channel ECoG signals x[m] included drift removal by a 

high-pass filter (HP), spatial filtering (CAR), temporal band-pass filtering (BP), variance 

estimation (VAR), log-transformation (LOG) and standardization (z-score). Colored time 

series show the mean z-scores (z[n]) with standard errors for all stimulus types (color codes 

are based on Figure 1) from ECoG electrode location 182 of subject A. Areas shaded in grey 

represent the active period used for discrimination. One active period (trial) of z[n] was 

correlated with templates (t1,1,tt2,1…) based on the remaining trials of each stimulus type. 

The template that correlated most strongly (MAX(ρ) assigned the trial class according to the 

template class. A leave-one-out cross validation (LOOCV) yielded the classification 

accuracy (ACC) of all trials and stimulus types.
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Figure 5. 
Feature extraction pipeline and classification method for real-time detection and 

discrimination in experiment II and III. Calibration: Recorded multi-channel ECoG signals 

x[m] were HP and BP filtered and submitted to a common spatial pattern (CSP) analysis that 

computed a set of spatial filters (wCSP). Spatially filtered signals x̃CSP [m] underwent 

variance estimation (VAR) and log-transformation (LOG) and resulted in normalized yCSP 

[n]. A linear discriminant analysis (LDA) generated class specific weights (wLDA) for real-

time processing. Online: Real-time processing steps included the HP and BP filtering and 

the spatial (wCSP) filtering, followed by the variance estimation (VAR) and log-

transformation (LOG). The linear classifier (wLDA) weighted the features in yCSP [n] and 

generated LDA outputs (qF,qK,qI) for Face, Kanji and Idle. Finally, a Softmax function 

transformed the LDA output in complementary probabilities (pFC,pKC,pIC). The diagram 

yCSP [n] shows the real-time processing output for Face (blue), Kanji (yellow) and Idle 
(black) based on 182 combined ECoG locations in subject A.
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Figure 6. 
Results for pair-wise classification of colored (Color) and greyscale (Grey) stimulus types 

for subjects A, B and C. Colored squares indicate the true positive rate (TPR) for each type 

(rows) and color (columns) against every other type and color. A blue box indicates random 

classification, while perfect classification is highlighted in red (see color bar; 50% chance 

for paired classification). Diagonals are shown in black (i.e., no TPR available), as the same 

class templates used for discrimination were the same. The diagonals in the bottom left and 

top right quarter of each subject contain the TPR of colored stimuli against greyscale stimuli 

of the same type.
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Figure 7. 
TPR for colors (Color vs. Grey), types (7-Types) and both (T&C) after a leave-one-out cross 

validation test for three subjects (A, B, C). Stars indicate the expected random accuracy for 

each test. The red bar ends at the significance border (p < 0.05) of an empirically derived 

random distribution based on scrambled trial labels. As an example, subject A had a 50% 

chance level for “Color vs. Grey” with a threshold TPR of 60.0% (p < 0.05), a chance level 

of 14.3% for “7-Types” with a threshold TPR of 32.5% (p < 0.05), and a chance level of 

7.1% for “T&C” with a threshold TPR of 25.0% (p < 0.05).
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Figure 8. 
TPR and activation index (AI) over time for types and colors. Each time segment (20 ms 

epochs with 50% overlap) led to a feature vector and resulted in an independent 

classification output. Thus, the curve represents the TPR for individual segments and the 

edge color of each bullet shows the AI (black edges indicate reliable activation), which was 

derived from a randomization test with scrambled trial labels. Stars with vertical lines 

represent the times for which average TPR and AI maximized for types and colors.
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Figure 9. 
Spatial distribution of the average classification accuracy for types without color separation 

(7-Types) and types with color separation (T&C) for subjects A, B and C. Diameters show 

the average classification accuracy. Only channels with significant activation in the channel 

selection test were considered for classification and are marked with different AI scale 

values in green. All other recording locations were excluded from EXP1 and are indicated 

with small black dots. Yellow stars mark sites that showed the best discrimination 

performance between types (with and without color separation).
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Figure 10. 
Spatial distribution of the classes with the highest TPR for types without color separation (7-

Types) and types with color separation (T&C) for subjects A, B and C. Diameters show the 

TPR and the colors indicate the types with the highest TPR. Only channels with significant 

activation in the channel selection test were considered for classification (locations with 

colored dots). All other recording locations were excluded from experiment I and are 

indicated with small black dots. Yellow stars highlight sites with the highest TPR.
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Figure 11. 
Real-time classification output (AI) over time for the computer stimuli in experiment II of 

subject A. Stimulus presentation (SP) times of Face (blue) or Kanji (yellow) computer 

stimuli are overlapped with the AI of Face (blue) and Kanji (yellow).
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Figure 12. 
Real-time classification output (AI) over time for the natural stimuli in experiment III of 

subject A. Stimulus presentation (SP) times of natural Face (blue) or Kanji (yellow) stimuli 

are overlapped with the AI of Face (blue) and Kanji (yellow). These four photographs were 

taken from a video during the experiment and show the experimenter(s) (on the left) and the 

subject (on the right). From left to right, the pictures show: (1) the experimenter holding a 

printed kanji and the BCI system successfully decoding Kanji; (2) the experimenter holding 

a printed face; (3) the experimenter holding a mirror; (4) a second experimenter. The video 

monitor on the bottom demonstrates that the brain signals were classified in real time.
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