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Abstract

We studied modulation of undirected functional connectivity (uFC) in cortical-hippocampal sub-

networks during associative learning. Nineteen healthy individuals were studied (fMRI acquired 

on a Siemens Verio 3T), and uFC was studied between nodes in a network of regions identified by 

standard activation models based on bivariate correlational analyses of time series data. The 

paradigm alternated between Memory Encoding, Rest and Retrieval. “Rest” intervals promoted 

covert consolidation. Over the task, performance was broadly separable into linear (Early) and 

asymptomatic (Late) regimes, with late performance reflecting successful memory consolidation. 

Significant modulation of uFC was observed during periods of covert consolidation. The sub-

networks which were modulated constituted connections between frontal regions such as the 

dorsal prefrontal cortex (dPFC) and dorsal anterior cingulate cortex (dACC), the medial temporal 

lobe (hippocampus, HPC), the superior parietal cortex (SPC) and the fusiform gyrus (FG). uFC 

patterns were dynamic in that sub-networks modulated during Early learning (dACC ↔ SPC, 

dACC ↔ FG, dPFC ↔ HPC) were not identical to those modulated during Late learning (dACC 

↔ HPC, dPFC ↔ FG, FG ↔ SPC). Covert consolidation exerts systematic effects, and these 

results add to emerging evidence for the constructive role of the brain’s “resting state” in 

potentiating action.

Keywords

Associative learning; Functional connectivity; Resting state; Cortical-hippocampal networks; 
fMRI

1. Introduction

Frontal-hippocampal interactions are central to the creation of episodic memories (Miller & 

D’Esposito, 2012; Sommer, Rose, Glascher, Wolbers, & Buchel, 2005; Woodcock, White, & 

Diwadkar, 2015) wherein the standard model is one of early hippocampal engagement 
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followed by rapid reconsolidation in the neo-cortex (Bero et al., 2014). In human fMRI 

studies, associative memory tasks frequently employ paradigms wherein the experiment 

oscillates between periods (blocks) of Encoding (the presentation of memoranda to be 

associated) and Retrieval (the presentation of a recall cue) (Buchel, Coull, & Friston, 1999; 

Stanley et al., 2017; Wadehra, Pruitt, Murphy, & Diwadkar, 2013). Between these, the 

experimental structure includes Rest epochs involving instruction-free fixation (and which 

are typically used as baseline resting conditions in activation-based analyses). The 

accumulative nature of the task (requiring learning over time) promotes the covert rehearsal 

of to-be-remembered memoranda during these intervals, a process that is also driven by the 

general processing demands of memory consolidation. Moreover, reactivation of memory 

traces facilitates consolidation. Whereas some studies have shown relatively little if any 

effects of interference during the consolidation stage on memory consolidation (Varma et al., 

2017), several others have shown that interference during memory rehearsal is highly 

disruptive to such consolidation (McFarlane & Humphreys, 2012; Scully, Napper, & 

Hupbach, 2017). Clearly, resting epochs are not passive, but active, and as such must present 

with a detectable neuronal signature. Previous fMRI investigations have extensively modeled 

brain network interactions during Encoding and Retrieval, demonstrating that both effective, 

and functional connectivity between cortical-hippocampal sub-networks are essential 

correlates of memory formation and retrieval (Banyai, Diwadkar, & Erdi, 2011; Buchel et 

al., 1999; Woodcock, Wadehra, & Diwadkar, 2016).

Here we adopt a focus that complements previous studies: We specifically interrogated brain 

network interactions during the “active” Rest epochs that envelope the task-specific epochs 

of memory Encoding and memory Retrieval. Our goal was to discover patterns of network 

interactions during these epochs that provide suggestive evidence of synchrony of network 

constituents despite subjects being in an instruction-free state, yet were likely to be engaged 

in covert memory consolidation.

The term “rest” is itself not a unitary one, and in the context of assessing brain networks, 

might be conceptualized in at least two distinct ways: (1) Periods of passive rest provide 

access to the brain’s “default modes” (Raichle et al., 2001), whereas (2) periods of rest 

between task-driven activity (Diwadkar, Asemi, Burgess, Chowdury, & Bressler, 2017), and 

as defined in the current study provide access to ongoing constructive processes in brain 

networks. Several studies have characterized spontaneous brain-activity during periods of 

rest (Biswal, Yetkin, Haughton, & Hyde, 1995; Cordes et al., 2000; Greicius, Krasnow, 

Reiss, & Menon, 2003), and data acquisition in these studies is unconstrained by task 

context, with participants instructed not to think of anything specific. These studies allow for 

estimation of what is deemed “intrinsic” connectivity (or “connectomics”) (Smith et al., 

2013) between brain regions. These patterns of connectivity can predict behavioral 

performance/proficiency on tasks such as working memory (Zou et al., 2013) where 

performance data was acquired independently of fMRI data. By comparison, rest periods are 

almost universally employed in fMRI block designs to provide baseline conditions against 

which task-related activity during sensori-motor stimulation is contrasted (Amaro & Barker, 

2006). Evidence suggests that at least depending on the nature of the primary target task, 

these resting periods are constructive in the sense that interactions between brain regions is 

systematic, and supports cognitive architectures associated with the task-related networks 
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(Deco, Jirsa, & McIntosh, 2013; Diwadkar et al., 2017). Our work can be placed in this latter 

framework.

Our explorations were conducted based on analyzing the undirected functional connectivity 

(uFC) between regional time series relying on bivariate correlational models (Friston, 2011; 

Silverstein, Bressler, & Diwadkar, 2016; Whitfield-Gabrieli & Nieto-Castanon, 2012). 

Furthermore, behavioral proficiency on the task typically increases non-linearly (i.e., we 

observe a linear regime of learning followed by a transition to asymptotic performance), 

suggesting that performance transitions from early learning (with lower levels of proficiency 

and consolidation), to late learning (with higher levels of the same). These characteristics 

motivated a further interest on whether patterns of network interactions transition from more 

effortful (and lower consolidated) states of learning and memory (linear regime) to more 

consolidated states (asymptotic regime).

Our results provide evidence of significant supra-threshold correlations that are evident in 

cortical-hippocampal networks at rest. Moreover, we also demonstrate that these patterns of 

network connectivity are not static in the sense that the patterns of uFC observed during the 

linear (and presumably less consolidated) learning regime are different than those observed 

in the asymptotic (and presumably more consolidated) learning regime. In interpreting the 

results, we argue that they are consistent with an emerging literature emphasizing the active 
role of resting state networks in sub-serving potentiation for action in the dynamic brain 

(Deco et al., 2013; Diwadkar et al., 2017). In effect, these studies (and we) suggest that the 

brain between active states is under systematic potentiation for action. The fMRI signal is 

maximally sensitive to task-induced modulation (Logothetis, 2008). Therefore, appropriately 

structured experimental paradigms and tasks may help in discovering how network 

synchrony in the resting state sub serves function in task-relevant brain networks. Moreover, 

these results might also suggest a strategic reappraisal of using “resting” baselines, certainly 

within tasks such as ours, to identify activation profiles, given that these specific states 

appear to be covertly functionally active.

Given the goal-oriented nature of the learning task presented in this study and the need for 

memory consolidation for task mastery, we expected to observe some form of frontal-

hippocampal synchrony during the Rest periods, especially in the Early phase when 

participants underwent a linear regime of learning.

2. Methods

2.1. Subjects

MRI/fMRI were acquired from 19 individuals (11 M, 8 F, mean age=25.0 years old, 

SD=1.8) from the greater Detroit area, recruited through advertisements. All individuals 

gave informed consent to take part in the fMRI dataset as healthy controls, and received 

remuneration for participating in all assessments. All procedures were approved by the 

Human Subjects Investigative Committee (HIC) at Wayne State University.
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2.2. MR Protocol

Because fMRI responses are sensitive to circadian rhythmicity (Muto et al., 2016), all MRI/

fMRI data were acquired in the morning within a narrow temporal window (9–11 am). Data 

were acquired on a 3 T Siemens Verio scanner with a 32-channel volume head coil. For the 

functional data, multiband gradient EPI fMRI was used (TR=3 s, TE=24.6 s, multiband 

factor=3, FOV=192 × 192mm2, matrix= 96 × 96, 64 axial slices, pixel resolution=2 × 2 × 

2mm3). In addition, T1-weighted MRI images were collected for normalization and co-

registration with the EPI scan (3D Magnetization Prepared Rapid Gradient Echo (MPRAGE) 

Sequence, TR=2150 ms, TE=3.5 ms, TI=1100 ms, flip angle=8 degrees, FOV=256 × 256 × 

160mm3, 160 axial slices, pixel resolution=1 × 1 × 1mm3).

Associative Learning and memory Task—An established object-location associative 

learning and memory paradigm was employed (Diwadkar et al., 2016; Woodcock et al., 

2016). During the paradigm, participants were required to learn associations between nine 

object-location pairs (nine objects each associated with a unique location in a 3×3 spatial 

grid). The task alternated between Encoding, Rest and Retrieval epochs (27 s each). During 

Encoding, each of the nine equi-familiar objects was presented (3 s/object), in its associated 

location for naming. An instruction-free Rest interval (27 s), followed during which a 

fixation marker was presented at the center of the screen. This “Rest” interval is of interest 

as it is assumed to constitute the primary window for rehearsing associations, given that it is 

positioned between Encoding and subsequent Retrieval epochs. Following the rest interval, a 

cued Retrieval epoch (27 s) was employed to test episodic memory. Locations were cued in 

random order and participants were required to name the object associated with it. A total of 

eight cycles were used to increase chances of participants reaching asymptotic performance. 

Fig. 1a provides a depiction of the paradigm (a description of Fig. 1b is provided in the 

results section).

2.3. fMRI preprocessing

MR images were preprocessed and analyzed using SPM 8 (Statistical Parametric Mapping, 

Wellcome Department of Imaging and Neuroscience, London, UK) using established 

methods for temporal (slice timing correction) followed by spatial preprocessing. For spatial 

pre-processing, the EPI images were manually oriented to the AC-PC line with the 

reorientation vector applied across the EPI image set, realigned to a reference image to 

correct for head movement, and co-registered to the anatomical high resolution T1 image. 

This high-resolution T1 image was normalized to the MNI template, with the resultant 

deformations subsequently applied to the co-registered EPI images for normalization. Low 

frequency components were removed using a low-pass filter (128 s) and images were 

spatially smoothed using a Gaussian filter (8mm full-width half maximum; FWHM). An 

autoregressive AR(1) model was used to account for serial correlation.

2.4. fMRI modeling: Identifying nodes of interest based on activation profiles

First-level (within-subject) analyses included General Linear Model (GLM) fixed effects 

approach to model task periods, with a linear parametric modulator to model incremental 

effects in performance over time (Buchel et al., 1999). Regressors representing these 
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processes of interest were modeled as vectors convolved with a canonical hemodynamic 

reference waveform, with the six motion parameters (3 for translation and 3 for rotation) 

from the co-registration used as covariates of no interest.

The first-level regressors representing the task-active conditions (Encoding and Retrieval) 

were forwarded to second level random effects repeated measures analyses with condition as 

the single factor of interest. The goal of the activation analysis was to identify task-relevant 

nodes co-activated across Encoding and Retrieval compared to Rest: This task active 

network would be submitted for interrogation of uFC during Rest. Therefore, co-activated 

nodes were identified based on a conjunction analyses using the minimum inference statistic 

(Nichols, Brett, Andersson, Wager, & Poline, 2005). Co-activated clusters were identified 

based on cluster-level thresholding (p < .05, cluster-level corrected for multiple 

comparisons) (Ward, 2000) and centroids (radius= 5 mm) for further analyses were 

established at the significance peaks, which are depicted in Fig. 2, Results. Significance 

peaks were found to be in the left hemisphere for HPC and ITG, and the right hemisphere 

for dACC, dPFC, SPC, & FG. Therefore, hemispheric laterality for each of the regions was 

driven by the activation analyses results. This learning network was forwarded for 

subsequent uFC assessment associated with Rest.

2.5. uFC analyses

uFC of nodes in the network of interest was assessed using previously published methods 

(Whitfield-Gabrieli & Nieto-Castanon, 2012). In initial pre-processing, component-based 

noise correction methods (CompCorr) were used to correct for physiological noise, 

movement artifacts, and temporal covariates in the time series from the nodes of interest 

(Fig. 2). These time series were submitted to uFC analyses.

Two analyses consistent with our a priori motivations were conducted. First, we identified 

sub-networks the uFC of which was significantly modulated during the three conditions of 

interest: Encoding, Retrieval and Rest. A second motivation was to assess changes in 

coordinated sub-networks over time. As noted, based on average learning performance, the 

task can roughly be cleaved apart into early stages (when performance is increasing linearly) 

and late stages (when performance is asymptotic). As seen in Fig. 1 this division was 

effected by separating the first 4 epochs (Early) from the last four epochs (Late), resulting in 

equal numbers of volumes in each phase. Thus, we assessed the modulation of each pathway 

in the network of interest for each of the conditions separately during early and late periods 

of learning. All statistical inference was based on family-wise error correction using the 

False Discovery Rate (qFDR < 0.05).

3. Results

We organize the presentation of results as follows: (1) First, we discuss the behavioral 

effects observed across the experiment; (2) Next, we depict activation profiles across the 

experimental paradigm highlighting the network of interest derived from activation peaks; 

(3) Then, we depict connectomic profiles across the network. These profiles highlight 

network pairs, the uFC of which was positively modulated during each of Encoding, Rest 

and Retrieval. The data are presented in that order to be consistent with the temporal order in 
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which those conditions appeared in each learning phase; (4) Finally we present stage-wise 

analyses of the modulation of uFC during the Early and the Late stages of learning to 

discover how uFC was modulated during the different phases of the task.

(1) Behavioral results. As anticipated from previous studies, behavioral performance across 

the experiment was characterized by negatively accelerated learning. Performance data in 

Fig. 1b was well predicted by a sigmoidal relational Gompertz function (Stanley et al., 

2017), with three free parameters modeling estimated asymptotic performance (a), inflection 

point (c) and learning rate (b) from Fig. 1b. The dashed line reflects the results of the 

Gompertz fit across the averaged performance data (r2=0.978; parameter estimates: a=8.65, 

b=0.946, c=0.743).

(2) Activation profiles: Fig. 2 depicts regional activations (see Table 1 for statistical and 

location information) in a network of interest that includes (a) memoranda-specific regions 

such as the inferior temporal and fusiform gyri (associated with object identity), the superior 

parietal cortex (associated with spatial localization and processing), (b) regions involved in 

memory formation such as the hippocampus, and (c) regions such as the dorsal anterior 

cingulate and the dorsolateral prefrontal cortex involved in both memory formation, and 

cognitive and memory control.

(3a) uFC Analyses – Memory Encoding: To understand the sub-network patterns across the 

different conditions of the task, bivariate correlations were performed for the six regions of 

interest across the three conditions (with bilateral peaks from each region forwarded for uFC 

analyses). Fig. 3 depicts sub-networks the uFC of which was significantly modulated (that is 

uFC greater than 0) during Memory Encoding (qFDR < 0.05). As seen, effects were observed 

between the dACC ↔ FG (t18=3.30, β = 0.16), the FG ↔ ITG (t18=3.03, β=0.14), and the 

FG ↔ SPC (t18=3.29, β =0.14).

3b) uFC Analyses – Cued Retrieval: As seen in Fig. 4, during Retrieval, the uFC was 

significantly modulated between dACC ↔ ITG (t18=2.90, β = 0.11) and the dPFC ↔ FG 

(t18=3.76, β =0.19).

(3c) uFC Analyses – Rest/Rehearsal: Notably, the uFC of multiple sub-networks was 

significantly modulated during the Rest/Rehearsal epochs (Fig. 5). As seen, significant 

effects were observed between the dACC ↔ HPC (t18=2.92, β =0.10), the dACC ↔ FG 

(t18=3.76, β = 0.19), the dPFC ↔ FG (t18=4.12, β= 0.19) and the SPC ↔ FG (t18=2.90, β = 

0.11).

uFC Analyses during Early and Late Stages of Learning: Based on the expectation that 

distinct stages of behavior result in different patterns of the modulation of uFC during the 

conditions, we separately assessed uFC during Early stages of learning (when learning is 

largely linear) and Late stages (when learning is largely asymptotic) (Stanley et al., 2017). 

Fig. 6 provides an overview of the behavioral data with bar graphs depicting average 

performance during Early (first four) and Late (last four) epochs of the experiment. Below 

the depiction of the paradigm and aligned in columns with the phases of the task, we present 

the uFC profiles (in schematic with arrows depicting sub-networks the uFC of which was 

significantly modulated under the condition), and the probability matrix from which the uFC 
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profiles were inferred. These are presented for each of the Early (a) and Late (b) stages of 

the task

Several notable effects are evident. First, patterns of uFC modulation are dynamic, 

particularly during Rest/Rehearsal epochs: During the Early period, significant modulation 

was observed for dPFC ↔ HPC pathway (t18=2.25, β = 0.13), the dACC ↔ FG pathway 

(t18=2.64, β = 0.09) and the dACC ↔ SPC pathway (t18=2.34, β = 0.14), whereas during 

the Late period, these effects were shifted to dACC ↔ HPC (t18=2.58, β= 0.14), dPFC ↔ 
FG (t18=5.01, β =0.24) and the FG ↔ SPC (t18=4.36, β = 0.19).

The modulation of uFC during Encoding epochs also changed over the course of learning. 

Early encoding was associated with increased uFC in dPFC ↔ HPC (t18=4.19, β = 0.18) 

and dACC ↔ FG (t18=3.85, β = 0.21) sub-networks, but Late encoding was associated with 

increased uFC in dACC ↔ ITG (t18=2.12, β = 0.16), FG ↔ ITG (t18=3.95, β = 0.27) and 

FG ↔ SPC (t18=2.30, β= 0.16). Finally, during early Retrieval, increased uFC was observed 

in HPC ↔ ITG (t18=3.08, β=0.16) and dPFC ↔ FG (t18=5.19, β= 0.25) pathways, whereas 

no pathways were significant during Late Retrieval.

We also explored differences in uFC between Encoding and Rest for the connections that 

showed significant positive uFC, specifically dPFC ↔ FG, FG ↔ HPC, dACC ↔ FG, 

dACC ↔ HPC, FG ↔ ITG, and FG ↔ SPC. After correction for multiple comparisons, 

none of these inter-condition differences were significant. Similarly, planned comparisons 

explored between Retrieval and Rest, for the following connections: dPFC ↔ FG and 

dACC ↔ ITG were not significant.

4. Discussion

A principal aim of this study was to explore the modulation of undirected functional 
connectivity between sub-networks during (presumably) “active” rest states that are 

embedded within the paradigm itself. To maximize the facility of this exploration we 

specifically leveraged a previously employed associative learning paradigm (Diwadkar et al., 

2008; Stanley et al., 2017; Woodcock, White, & Diwadkar, 2015; Woodcock et al., 2016). 

This task was characterized by increased proficiency over the course of the study as subjects 

acquire episodic memory for associations between different memoranda classes arbitrarily 

brought into association for the purposes of the study. The paradigm was explicitly 

structured to alternate between periods of Memory Encoding and Cued Retrieval, where 

each of these task-active conditions were characterized by sensorimotor (visual inputs and 

verbal outputs) and memorial processing. These conditions enveloped a “Rest/Rehearsal” 

period involving only the presentation of a fixation marker. The ostensible functional role of 

this Rest period is to permit “internally driven” rehearsal of the associated memoranda, thus 

making this a potentially “active” rest state.

Our exploration of the connectivity profiles of the learning network (Fig. 2), revealed: (1) 

Memory Encoding resulted in the modulation of uFC between the dACC and FG, the FG 

and the ITG, and the FG and the SPC (Fig. 3); (2) Cued Retrieval resulted in the modulation 

of the uFC between the dACC and ITG, and the dPFC and the FG (Fig. 4); (3) Of the 
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greatest specific relevance to our aims, the uFC of several sub-networks was significantly 

modulated during Rest/Rehearsal (Fig. 5). These included the dPFC and the FG, the dACC 

and the FG, the dACC and the HPC, the FG and the SPC; (4) Finally, the patterns of uFC 

modulation appeared dynamic across the phases of learning (Fig. 6), with different patterns 

of modulation observed during Early Resting epochs.

These explorations (and results) do not conclusively establish a precise role for active resting 

states in sub serving “cognitive architectures” (Deco et al., 2013; Schlichting & Preston, 

2016). Nevertheless, they suggest that functional transactions during particular rest states 

remain ongoing (Diwadkar et al., 2017), and that dynamic patterns of changes in uFC are 

broadly associated with behavioral changes during the task. Below, we attempt to unravel 

plausible mechanistic bases for these effects and place our results within a broader 

conceptualization of the notion of the brain’s “resting state.”

5. An active role for the rest state in cognitive architectures

Brain’s in principle never rest, yet characterizing the role of the brain’s resting state is a non-

trivial challenge (Logothetis et al., 2009). Resting periods associated with both sleep 

(Stickgold, 2013) and wakefulness (Craig, Dewar, Della Sala, & Wolbers, 2015) play active 

functional roles, particularly in memory, suggesting that the neurobiological signatures of 

these mechanisms are ripe for discovery. Only recently have in vivo imaging studies turned 

attention to analyses of task-relevant resting state signals, as opposed to connectomic 

analyses (Smith et al., 2013). The recent efforts address the functional role that resting state 

network interactions might play, and this emergent evidence suggests that the resting state 

often assumes highly specific “active” roles and/or resting networks are associated with task-

active networks in specific domains (Dosenbach et al., 2007; Hoffstaedter et al., 2014). In 

this process of discovery, the analyses of resting signals that are embedded within ongoing 

tasks can be particularly useful, as these periods are likely to reflect psychological refractory 

and/or constructive intervals in the ongoing and unfolding cognitive process.

These questions were addressed in a recent study evaluating directed functional connectivity 

(dFC; based on multivariate autoregressive models to time series data (Bressler & Seth, 

2011; Diwadkar et al., 2017)) during both task- and resting epochs. Two classes of task 

epochs were used: basic motor control (Friedman et al., 2017) and working memory 

(Diwadkar et al., 2015). Of particular interest were interactions between dACC ↔ SMA 

during resting epochs embedded throughout the experiment, particularly given prior 

evidence that dFC from the dACC to the SMA is crucial in sub serving coordinated motor 

control, but not necessarily working memory (Asemi, Ramaseshan, Burgess, Diwadkar, & 

Bressler, 2015). Analyses of resting epochs revealed compelling differences in dFC from the 
SMA to the dACC; specifically, dFC during resting epochs was increased from the SMA to 

the dACC only for motor, but not memory tasks (Diwadkar et al., 2017). This result suggests 

that the directionality of FC in the resting state (SMA → dACC) complements that observed 

during task-active motor control (dACC → SMA), evidence for a relatively specific and 

constructive role for network interactions at rest.
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Translating previous results into the domain of memory is challenging, even though attempts 

at understanding how the brain consolidates memories is one of the most active areas of 

research in the field of memory-related neuroscience (Eichenbaum, 2001). fMRI and other 

studies have suggested that initial consolidation is driven by short or long term synaptic 

potentiation of hippocampal cells (Bittner, Milstein, Grienberger, Romani, & Magee, 2017; 

Wirth et al., 2003) leading to modulation of the strength of synaptic circuits. Traces initially 

consolidated in the medial temporal lobe are thought to be distributed to the neo-cortex over 

time (Haist, Bowden Gore, & Mao, 2001). Though fMRI provides aggregate “neural” data 

over several orders of spatial and temporal scale, evidence suggests that fMRI responses to 

stimuli during encoding are predictive of subsequent recall, and hence consolidation 

(Dickerson et al., 2007). Our current results are only obliquely related to these seminal 

studies, yet can be more directly compared to (and are broadly consistent with) other studies 

in associative learning. When subjects are trained to associate faces with other objects, 

supra-threshold activation in the fusiform face area (FFA) is observed several seconds after 

the encoding pair, suggestive of “reactivation” of this region following paired-associate 

memory (Schlichting & Preston, 2014). Moreover, in the same study, resting state uFC 

between the FFA and the hippocampus predicted learning of generalized associations of one 

pair of the memoranda, to a novel item. These results imply that resting state FC may 

facilitate the integration of ongoing information in memory in both fear and non-fear related 

contexts (de Voogd, Fernandez, & Hermans, 2016; Schlichting & Preston, 2016; van 

Kesteren, Fernandez, Norris, & Hermans, 2010). Other recent work also demonstrates a role 

for the resting medial temporal lobe in memory formation. The correlational structure of 

hippocampal voxel time series immediately following associative encoding is more similar 

to the encoding period than to that observed in pre-encoding periods (Tambini & Davachi, 

2013), suggesting that post-encoding activation sub-serves consolidation of recently 

acquired memories.

6. Cortical-hippocampal sub-networks during rest

In our results, aspects of the frontal lobe including the prefrontal cortex and the dorsal 

anterior cingulate, both of which are implicated in associative memory formation and recall 

(Woodcock et al., 2015; Woodcock et al., 2016) evinced significant uFC with other regions 

during rest/rehearsal (Fig. 5). These included “unimodal” regions such as the fusiform gyrus 

(dACC ↔ FG; dPFC ↔ FG), and the hippocampus itself (dACC ↔ Hippocampus). 

Additionally, we also observed increased uFC between the FG ↔ Superior Parietal cortex. 

These effects which are oriented around the dACC and the dPFC are consistent with the 

roles these structures play in memory and executive control (Anderson, Bunce, & Barbas, 

2016; Botvinick, Braver, Barch, Carter, & Cohen, 2001). The dACC implicated in motor and 

cognitive control (Anderson, Fincham, Qin, & Stocco, 2008; Asemi et al., 2015; Carter, 

Botvinick, & Cohen, 1999), is seen as the interface between these domains (Paus, 2001). In 

the context of associative learning, the region appears to underpin many of the executive 

processing commitments that are in play during memory encoding including maintaining 

memoranda in transient memory, updating representations and executive attention. Indeed, 

dFC analyses using psychophysiological interaction (PPI) (Friston et al., 1997; Woodcock et 
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al., 2015), have confirmed that the dACC exerts significant modulatory effects on multiple 

regions including the hippocampus and fusiform gyrus during memory encoding.

The dPFC has been associated with inhibitory and facilitatory control over memories 

(Anderson & Green, 2001), and is strongly engaged in tasks of memory suppression and 

retrieval. During associative memory and learning, frontal-hippocampal regions are crucial 

for consolidation of memories (Eichenbaum, 2014), though the functional contributions vary 

over time such that early memory formation is thought to be hippocampal-driven, whereas 

long-term consolidation is thought to happen over the cortex. Because the dPFC is integral 

to the long-term consolidation of memories, this structure (and the frontal lobe in general) is 

presumed to generate retrieval cues during episodic/associative memory retrieval (Simons & 

Spiers, 2003). Our observed uFC effects involving the dPFC are also consistent with 

independent analyses of connectivity during task-active epochs (Banyai et al., 2011). The 

dPFC’s network signature’s during Memory Encoding and Cued Retrieval have been 

established using both effective connectivity techniques, such as Dynamic Causal Modeling 

(Friston, 2011), and PPI, and the structure assumes a primal role in establishing network 

control during associative learning. It appears that many of these signatures may be at play 

in the resting state as well. Finally, increased uFC of FG ↔ SP is notable suggesting that the 

rehearsal of pairs during rest drives increased synchrony between regions associated with 

each memoranda class. In summary, increased uFC during rest was observed between nodes 

with multi-faceted aspects of relative functional specialization, ranging from executive 

processing and control (dPFC, dACC) to modality specific processing (FG, SPC), 

suggesting that these plausible network profiles of consolidation in the post memory 

encoding period are diverse. Moreover, componential analyses of temporal windows of the 

task revealed interesting “dynamics” of uFC: During the Early period, increased uFC was 

observed in dACC ↔ SPC, dACC ↔ FG and dPFC ↔ Hippocampus. During Late resting 

periods, these effects were observed in dACC ↔ Hippocampus, dPFC ↔ FG and FG ↔ 
SPC. It is notable that the temporal dynamics of these effects are broadly consistent with 

independent studies of the dynamics of modulated glutamate during learning (Stanley et al., 

2017). Using functional 1H Magnetic Resonance Spectroscopy, a non-hemodynamics based 

method of estimating brain function, we have previously shown that an early increase in 

glutamate modulation is a principle advantage that rapid learners possess over slow learners.

7. Conclusions and limitations

Our results provide evidence of significant supra-threshold correlations that are evident in 

cortical-hippocampal networks during periods when participants are presumably covertly 

consolidating memories. Moreover, we also demonstrate that these patterns of network 

connectivity are not static in the sense that the patterns of uFC observed during the linear 

learning regime are different than those observed in the asymptotic learning regime (when 

memories are more strongly consolidated). We argue that our results are consistent with an 

emerging literature emphasizing the active role of networks in sub-serving potentiation for 

action in the dynamic brain, even in the absence of overt sensorimotor stimulation (Deco et 

al., 2013; Diwadkar et al., 2017). In effect, these studies (and we) suggest that between 

active states, brain networks are often revisiting overt processes, or are in preparatory stages 

for upcoming action. Because the fMRI signal is maximally sensitive to task-induced 
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modulation (Logothetis, 2008), appropriately structured experimental paradigms and tasks 

may help in discovering how network synchrony in the resting state sub serves function in 

task-relevant brain networks. Moreover, these results might also suggest a re-evaluation of 

using “resting” baselines, certainly within tasks such as ours, to identify activation profiles, 

given that these specific states appear to be covertly functionally “active.”

Using fMRI to infer “mental” processes is an endeavor fraught with significant conceptual 

challenges (Price & Friston, 2005). Brain-Behavior (or Behavior-Brain) relationships are 

characterized by significant “degeneracy”, wherein brain regions and cognitive architectures 

do not sit in straightforward one-to-one relationships; diverse tasks can dynamically evoke 

responses in identical brain networks/regions (Park & Friston, 2013), and inferring 

“causality” in the classical sense is nearly impossible (Diwadkar, 2015; Mannino & Bressler, 

2015). These conceptual challenges are compounded by the spatio-temporal and 

interpretational limitations of the fMRI signal. These limitations preclude inferences 

regarding the precise neuronal bases of the signal (Logothetis, 2008; Singh, 2012), and its 

relationship to the excitation and inhibition balance in the cortex. Moreover, to a large 

degree the fMRI signal is modulated simply by sensori-motor stimulation, and is affected by 

a mixture of feedforward and feedback processes (Logothetis, 2008). Resting state network 

profiles themselves are a cause of further controversy because in “pure” resting state 

acquisitions, it is unclear if correlated signals across regions reflect true intrinsic 
connectivity, or synchronization to common source inputs (Logothetis et al., 2009). 

Moreover, these correlations are themselves highly sensitive to basic sensory modulators 

such as whether eyes are open or closed during acquisition (Song et al., 2015; Zou et al., 

2015).

In effect, functional connectivity methods, while attempting to capture interactions between 

system components, are higher order descriptions of data (Silverstein et al., 2016; Smith, 

2012), with little consideration for estimating neurophysiological parameters or drivers of 

the hemodynamic signal. This is a significant limitation of this weak class of methods. 

Whereas effective connectivity models provide strong bases for assessing directional 

network interactions between regions (Friston, 2011; Silverstein et al., 2016), our 

motivations here were driven by the need for discovery motivated by general (as opposed to 

specific) hypotheses. Toward that end, a “weak” connectivity technique such as uFC that 

relies on exploring statistical dependencies between fMRI signals, serves our goals well. Of 

course, generative causal models of network interactions provide a better framework for 

specific hypotheses assessment (Stephan et al., 2010) and indeed in our past work we have 

relied on such approaches to assess frontal-striatal (Diwadkar et al., 2014), frontal-limbic 

(Diwadkar et al., 2012), frontal-thalamic (Jagtap & Diwadkar, 2016) and frontal-

hippocampal network interactions (Banyai et al., 2011). We intend to use the current 

discoveries to motivate more detailed analyses of network interactions using effective 

connectivity techniques.

It is challenging if not impossible to ascribe precise psychological interpretations to the 

resting state correlations that we observed. It has been noted that fMRI is not a “mind 

reader” (Logothetis, 2008), yet modulations in fMRI signals are strongly effected by task-

related processing. Thus, we suggest that our observed modulation of sub-network uFC 
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during rest is likely to reflect an active and constructive process. The correlations are not 

general (i.e., network-wide), and in cases are exclusive to effects observed in Memory 

Encoding or Retrieval (see Fig. 5 vs. 3 and 4). This implies that our results do not merely 

reflect task-related reverberations from preceding Memory Encoding epochs, but profiles 

uniquely modulated at rest. uFC also appears more sensitive during the Rest epochs rather 

than the task-active states of Memory Encoding and Cued Retrieval. If in fact, task-active 

states induce higher frequency fluctuations, these may obscure the sensitivity of 

correlational analyses that are highly sensitive to lower frequency fluctuations that dominate 

resting state signals, and the relationships of which to task-active modulation is highly task-

specific (Yuan et al., 2013). From this perspective, our current results, and other previous 

studies of this nature, can help elucidate what if any, active role is assumed when the brain is 

at “rest” (assuming it ever truly is) (Logothetis et al., 2009).
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Fig. 1. 
(a) The figure provides a schematic depiction of the employed experimental paradigm used. 

Within a block design (each epoch 27 s), the task alternated between Memory Encoding, 

Rest/Rehearsal and Cued Retrieval. During Memory Encoding, nine objects (3s/object, 9 

objects total) were presented in random sequence in their associated grid location for 

naming. An instruction free fixation interval followed. During cued Retrieval, grid locations 

were cued and participants were asked to recall (by naming) the object associated with the 

location. A total of eight epochs of each type were employed in sequence to maximize the 

chances of participants reaching asymptotic performance. (b) Averaged behavioral 

performance across the eight epochs is depicted (# correct) with a relational Gompertz 

function fitted to the mean performance curve of all 19 subjects (dashed line). As the shaded 

windows indicate, performance could be differentiated into early epochs (linearly increasing 

performance regime) and late epochs (asymptotic performance regime).
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Fig. 2. 
The map represents the activation profiles associated with the paradigm. As seen (and 

expected), the task induced robust engagement of multiple regions of interest including the 

dorsal anterior cingulate cortex (dACC), the dorsolateral prefrontal cortex (dPFC), the 

hippocampus (HPC), the fusiform gyrus (FG), the inferior temporal gyrus (ITG) and the 

superior parietal cortex (SPC). The insets denote the activation peaks (see Table 1) time 

series from which were represented in the subsequent uFC analyses.
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Fig. 3. 
The connectomic ring depicts sub-networks the uFC of which was significantly modulated 

during Encoding (across the entire experimental run). As is evident, effects were significant 

between the dACC ↔ FG, the FG ↔ SPC and the FG ↔ ITG.
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Fig. 4. 
The connectomic ring depicts sub-networks the uFC of which was significantly modulated 

during the Rest/Rehearsal epochs (across the entire experimental run). As is evident, effects 

were significant between the dACC ↔ Hippocampus, the dACC ↔ FG, the dPFC ↔ FG, 

and the FG ↔ SPC.

Ravishankar et al. Page 20

Brain Cogn. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The connectomic ring depicts sub-networks the uFC of which was significantly modulated 

during the Retrieval epochs (across the entire experimental run). As is evident, effects were 

significant between the dACC ↔ ITG, and the dPFC ↔ FG.
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Fig. 6. 
Performance and uFC profiles are depicted during each of the (a) Early and (b) Late periods 

of the task. The bar graphs in each panel depict averaged performance across Early and Late 

epochs (see Fig. 1b for performance curve; error bars are ± sem). Following the depiction of 

the conditions of the paradigm, schematic brain images depict pathways, the uFC of which 

was significantly modulated under condition. The probability matrices below correspond to 

the brain images. As seen, the characteristics of uFC modulation during Rest/Rehearsal 

appear to be dynamic (as a function of task period). During early learning periods uFC of 

dACC ↔ SPC, dACC ↔ FG and dPFC ↔ Hippocampus is significantly modulated during 

Rest/Rehearsal. Later, these patterns of modulation shift to the dACC ↔ Hippocampus, 

dPFC ↔ FG and SPC ↔ FG pathways.
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