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Abstract

Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA 

polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and 

generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are 

removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the 

distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome 

is physically close to Pol II in vivo implies that transcription and splicing occur on similar 

timescales and that the transcription and splicing machineries may be spatially constrained. In this 

Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-

transcriptional events that allow the temporal coordination of co-transcriptional splicing.

The cellular demand for the splicing of precursor messenger RNAs (pre-mRNAs) is 

enormous. Typical human genes have eight introns, and each intron provokes the de novo 
assembly of a spliceosome1, 2. It takes only one RNA polymerase II (Pol II), one set of 5′ 

end capping enzymes and one 3′ end cleavage and polyadenylation complex to 

transcribe the pre-mRNA and to process its 5′ and 3′ ends, whereas multiple spliceosomes 

are necessary to remove introns from the pre-mRNA body. Nascent RNA is mostly spliced 

during transcription elongation3. The number of spliceosomes that simultaneously act on a 

given transcript is unknown. However, we can infer that RNA sequence and secondary 

structure continuously change with the progress of both transcription and splicing.
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The recent observation that splicing is often completed as soon as the intron emerges from 

Pol II4, 5 invites us to consider mechanisms that can affect co-transcriptional splicing 

efficiency. In this Review, we discuss the minimal distances along the pre-mRNA that are 

required for each spliceosome assembly stage, and how transcription elongation dynamics 

and RNA folding may influence the identification of the introns and splicing catalysis. We 

evaluate how other co-transcriptional events — 5′ end capping, RNA modifications and 3′ 
end processing — assist in intron and exon identification. Although the spliceosome and 

splicing catalysis are highly conserved, higher eukaryotes have degenerate splice sites and a 

larger, more complex pool of splicing factors. This enables variable splicing outcomes, 

including frequent alternative splicing. We illustrate how the core transcription and 

processing machineries can be modulated to obtain different splicing outcomes. Importantly, 

splicing stimulates other processes — most notably, transcription itself6–13 — suggesting 

that the spliceosome has other direct or indirect activities beyond intron removal. We 

propose that the intricate coordination between DNA, RNA sequence and structure, and the 

transcription and processing machineries ensures highly efficient and regulated co-

transcriptional mRNA processing, and that this coordination may be achieved partly by 

concentrating all of the involved components in subnuclear membrane-less compartments.

Gene architecture and pre-mRNA splicing

The transcription start site (TSS) marks the 5′ end of the first exon, and the poly(A) site 

(PAS) marks the 3′ end of the last exon (FIG. 1a). Exon–intron organization provides 

important additional landmarks for the alignment of signals and activities, such as Pol II 

density, chromatin modifications, and RNA sequence and structure elements. Mammalian 

genes are longer than yeast genes, primarily because they contain more and longer introns14. 

Nevertheless, several aspects of gene architecture are conserved from yeast to humans. 

For example, the last exon is almost always the longest. Moreover, intron structure is similar 

across evolution: the GU and AG dinucleotides, which are contained in short and conserved 

sequences known as splice sites, define the 5′ and 3′ intron boundaries, respectively (FIG. 

1a). A third sequence, the branchpoint sequence (BPS; see below), is 18–40 nucleotides 

upstream of the 3′ splice site (3′SS)15–18. In metazoans, the sequence between the BPS and 

the 3′SS contains a polypyrimidine tract19, which helps to identify the 3′SS during 

spliceosome assembly2. Despite the nucleotide sequence conservation of these sites, intron 

ends and their differential usage are difficult to define computationally20. Therefore, most 

intron ends are annotated from empirical data, such as cDNA sequencing.

Pre-mRNA splicing is a two-step transesterification reaction that has been extensively 

characterized in vitro2. The substrates for splicing catalysis are the 5′SS, the BPS and the 

3′SS21, 22 (FIG. 1b). In the first step (step I), the 2′OH of the BPS adenosine carries out a 

nucleophilic attack on the 5′SS guanosine, yielding a 5′ exon with a free 3′OH and a 

branched intron lariat that is attached to the 3′ exon. In the second step (step II), the 3′OH 

of the 5′ exon attacks the first nucleotide downstream of the 3′SS guanosine, releasing 

ligated 5′ exon-3′ exon and the excised intron lariat. How this chemistry is accomplished in 

the context of the growing nascent RNA polymer can be considered in light of recent data on 

co-transcriptional splicing and spliceosome assembly.
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Spliceosome assembly on nascent RNA

The building blocks for spliceosome assembly include five U-rich small nuclear 

ribonucleoproteins (snRNPs), which are named after their small nuclear RNA (snRNA) 

component: U1, U2, U4, U5 and U6. The snRNPs coordinate dynamic base pairing between 

the different snRNAs and between snRNAs and the pre-mRNA to obtain secondary and 

tertiary RNA structures that define the spliceosome catalytic centre. Protein complexes such 

as the nineteen complex (NTC), nineteen-related (NTR), retention and splicing complex 

(RES) and other non-snRNP proteins participate in spliceosome assembly and function23. 

For a complete list of spliceosomal components, see REF. 24. Although splicing catalysis 

does not require ATP per se, essential ATPases assist the conformational transitions during 

assembly by establishing and rearranging RNA-RNA, RNA-protein and protein–protein 

interactions25. The current view is that the spliceosome positions elements within the pre-

mRNA, including 5′SSs and 3′SSs, for the splicing reaction.

Co-transcriptional spliceosome assembly

In vitro splicing in cellular and nuclear extracts has revealed how snRNPs associate and are 

released from pre-synthesized pre-mRNAs. This has led to the formulation of a spliceosome 

assembly model in which the spliceosome transitions through sequential assembly 

stages2, 23, 25. In this model, the first stages of spliceosome assembly involve the 

identification of the 5′ and 3′ ends of the intron, followed by spliceosome maturation, 

spliceosome activation and splicing catalysis (FIG. 1b). Spliced RNA is then released, the 

spliceosome is disassembled and recycled, and the intron lariat is debranched and 

degraded2, 23. Spliceosome components and assembly are generally conserved in 

eukaryotes. The ~90 core proteins are conserved between the budding yeast Saccharomyces 
cerevisiae and human spliceosomes, although the number of human spliceosome proteins 

(~175) is twofold higher compared with yeast26. Because alternative splicing is extremely 

rare in budding yeast, this organism has been widely used as a model for identifying the 

basic principles of spliceosome function and assembly. Although this Review is guided by 

findings in budding yeast, we highlight numerous roles of metazoan proteins in these 

processes.

Chromatin immunoprecipitation (ChIP)-based experiments showed that spliceosomal 

components accumulate around splice sites following their transcription (Supplementary 

information S1 (box)). For example, U1 snRNP ChIP signals increase immediately 

downstream of the exon–intron boundary27–30. This in vivo observation supports the 

stepwise spliceosome assembly model that was derived from biochemistry (FIG. 1b). 

Studies in multiple laboratories and in many species indicate that splicing is mainly co-

transcriptional3. Recently, single-molecule sequencing of nascent RNA from yeast showed 

that splicing catalysis occurs when Pol II has transcribed 26–129 nucleotides downstream of 

the 3′SS4, 5. These data suggest that spliceosome assembly, splicing catalysis and 

transcription elongation occur at similar rates. In such a model, the progress of transcription 

and spliceosome assembly are interwoven, raising the question of how many nucleotides 

downstream of the 5′SS, BPS and 3′SS need to be transcribed for spliceosome assembly 

and catalysis.
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Commitment to splicing

The first step of spliceosome assembly is the formation of commitment complex E (FIG. 

1b). The U1 snRNP binds to the 5′SS, and splicing factor 1 (SF1) and U2 auxiliary factor 

(U2AF) establish RNA–protein interactions with the BPS and the poly-pyrimidine tract at 

the 3′ end of the intron. Mammalian U2AF65 (also known as U2AF2) binds to Pol II in the 

early transcription stages and is delivered to nascent RNA as soon as a few nucleotides have 

emerged from the enzyme31. In vivo ultraviolet (UV) crosslinking experiments 

have shown that the binding of yeast U1 snRNP protein components is highest ~17 

nucleotides downstream of the 5′SS32. This suggests that U1 snRNP contacts additional 

nucleotides around the 5′SS via RNA–protein interactions, in addition to base pairing its 

snRNA with the 5′SS23. The UV crosslinking signal of the branchpoint binding protein 

(BBP; the yeast orthologue of SF1) peaks on the BPS, whereas Mud2 (the yeast homologue 

of U2AF65) crosslinks along the entire intron32. These observations suggest that the 

transcription of the 5′SS, BPS and the few downstream nucleotides is necessary to trigger 

spliceosome assembly in yeast (FIG. 1b). Gene-specific distances between the 5′SS and the 

BPS, and thus the different time intervals between the emergence of the BPS from Pol II 

relative to the 5′SS, could influence the kinetics of commitment complex E formation to 

different degrees.

Assembly of a catalytically active spliceosome

Complex E is converted into the pre-spliceosome (complex A) once BBP dissociates and U2 

snRNA base pairs with the BPS. The BPS adenosine bulges out of the BPS– U2 duplex and 

will carry out the nucleophilic attack on the 5′SS during step I. Recruitment of the tri-

snRNP that contains U4, U6 and U5 results in complex B formation33–36 (FIG. 1b). 

Conformational rearrangements of RNA–RNA and RNA–protein interactions, the 

recruitment or stabilization of protein complexes, such as NTC, NTR and RES, and the 

release of U1 and U4 snRNPs result in spliceosome maturation into the activated complex 

Bact (REF. 26) (FIG. 1b). In vitro studies have shown that yeast Bact assembles on pre-

mRNAs that lack the 3′SS, indicating that only the BPS is required for this assembly 

stage26, 37, 38. Bact contains the catalytic centre that is formed by the interactions between 

U2–U6 and the pre-mRNA, but the spliceosome is not catalytically active39, 40. UV 

crosslinking of purified yeast Bact complex revealed that the SF3a and SF3b complexes of 

the U2 snRNP directly contact the pre-mRNA upstream and downstream of the BPS37, 41. 

Recent cryo-electron microscopy (cryo-EM) structures of yeast Bact have shown that the 

BPS is occluded by components of SF3b and that it is kept ~50 Å away from the catalytic 

centre39, 40. The ATPase Prp2 triggers the conversion of Bact into the catalytically active 

complex B* by destabilizing SF3a and SF3b, thereby exposing the BPS adenosine37, 40. A 

stretch of 23–33 nucleotides downstream of the BPS is necessary and sufficient for Prp2 

action37 (TABLE 1). Conversion into B* and step I catalysis do not require the 3′SS AG 

dinucleotide in yeast or in mammalian extracts37, 38, 42. In a co-transcriptional context, these 

observations suggest that step I catalysis can, in principle, take place as soon as a short 

stretch of ~30 nucleotides downstream of BPS emerges from Pol II. The presence of the 

3′SS in this stretch of nucleotides is not necessary for step I.
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Rearrangements preceding step II

Complex C, which is formed following step I catalysis, contains the 5′ exon and intron 

lariat-3′ exon intermediates (FIG. 1b). The U5 snRNA base pairs with the 5′ exon, thereby 

retaining it in the active site. The U6 snRNA interacts with the branched 5′SS, and the U2 

snRNA immobilizes the intron lariat43, 44. UV crosslinking experiments have shown that, 

upon step I catalysis, the major U5 snRNP protein Prp8 binds to the pre-mRNA downstream 

of the BPS, near the 3′SS, implying that further conformational changes are necessary for 

the subsequent step41. Complex C stimulates the ATPase activity of Prp16, which rearranges 

the catalytic site from step I to step II conformation, leading to the formation of activated 

complex C* (REFS 45, 46). Recent cryo-EM structures of this complex have revealed a 

major rearrangement of the branched adenosine and the BPS–U2 snRNA duplex, and have 

suggested that the vacated space caused by this reorganization in the catalytic centre 

contributes to 3′SS localization to the catalytic site47–49. The first AG dinucleotide 

encountered downstream of the BPS docks in the active site21, 50. This is known as the ‘first 

AG rule’, and is consistent with a co-transcriptional spliceosome assembly model, in which 

this AG dinucleotide is the first to be transcribed and, therefore, is favoured for recognition 

by the spliceosome. However, exceptions to the first AG rule have been observed. For 

example, if the dinucleotide is located closer than 10 nucleotides downstream of the BPS or 

if it is buried in secondary structures, then it is not efficiently recognized and is 

skipped51, 52. Alternative 3′SS selection is frequent in metazoans; how the spliceosome 

skips 3′SSs that are favourably positioned relative to the BPS is unclear.

Step II catalysis and post-splicing dynamics

Step II catalysis, in which the 3′OH of the 5′ exon attacks the first residue of the 3′ exon, 

produces the post-spliceosome (complex P), which is associated to the ligated 5′ exon–3′ 
exon nascent RNA and the excised intron lariat (FIG. 1b). In yeast, the earliest step II 

products have been observed when Pol II transcribes <40 nucleotides downstream of the 

3′SS4 (TABLE 1). In light of possible crosstalk between Pol II and the spliceosome, it is 

interesting to consider how much RNA is protected by Pol II and the spliceosome and thus 

how close the two machines may be during co-transcriptional splicing. On the one hand, 15 

nucleotides of nascent RNA are buried in the Pol II exit channel53. On the other hand, ~20 

nucleotides downstream of the 3′SS are likely embedded in the spliceosome, because Prp22 

(an ATPase with splicing fidelity and disassembly functions) requires a segment of 13–23 

nucleotides downstream of the splice junction45. The sum of these nucleotides (~35) and 

recent measurements of Pol II position at the completion of step II (<40 nt downstream) 

highlight the close proximity of the spliceosome to Pol II (FIG. 1b) (TABLE 1). The 

observation that Prp22 can be crosslinked by UV irradiation to the 3′ exon downstream of 

the splice junction only after step II completion45 suggests that further transcription is 

necessary for mRNA release (FIG. 1b). Finally, the ATPase Prp43 disassembles the intron 

lariat spliceosome (ILS) into the intron lariat and the spliceosomal components, which are 

then recycled for further rounds of splicing54.
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Transcription and splicing interactions

Spliceosome assembly and catalysis require the recognition of the splice sites and BPS on 

the nascent transcript. How is this achieved? Two main aspects define the co-transcriptional 

selection of splice sites and the BPS. First, only a subset of these sequences is present on the 

nascent RNA at a given time because of ongoing transcription. This restricts the choice of 

sites available to the spliceosome. Transcription rate determines the portion of the transcript 

that is available for inspection by the spliceosome, such that faster transcription rates may 

provide longer stretches of nascent RNA sequence. Interestingly, Pol II elongation rates are 

faster over introns than over exons55, 56. Second, both DNA and RNA undergo different 

folding states and modifications, and they exhibit dynamic protein-binding profiles that 

influence transcription rate, accessibility of splice sites and BPS, as well as splicing factor 

recruitment. Local differences in post-translational modifications (PTMs) of the Pol II 

carboxy-terminal domain (CTD) and chromatin environment influence transcription rates 

and nascent RNA processing dynamics. For example, the histone 2A variant H2A.Z 

promotes efficient pre-mRNA splicing of introns with non-consensus splice sites in both 

budding and fission yeast57, 58. The extensive crosstalk between splicing, transcription and 

other nuclear machineries can be appreciated by considering the multitude of reported 

genetic and physical interactions between them, which we summarize in FIG. 2 (see also 

Supplementary information S2 (table)).

Phosphorylation dynamics of the Pol II CTD

Changes in PTMs of the Pol II CTD mirror and influence the different phases of 

transcription and nascent RNA processing, owing to the interaction of the CTD with factors 

that regulate transcription, mRNA processing and downstream steps such as mRNA 

export11, 59, 60. CTD-modifying enzymes often have additional cellular targets, thereby 

integrating the CTD into a greater network of gene expression59. The CTD consists of 

repeats of almost the same seven amino acids Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 (26 

repeats in yeast and 52 in humans61, 62), which are mainly modified by phosphorylation of 

Ser2, Ser5, Ser7, Thr4 and Tyr1 (REFS 63–65) (FIG. 3a). Pol II is differentially modified at 

the start and the end of transcription units. In budding yeast, Ser5 and Ser7 phosphorylation 

(Ser5P and Ser7P) occurs early, during transcription initiation and early elongation along the 

first exon, whereas Ser2, Thr4 and Tyr1 phosphorylation occurs later, during the 

transcription of the second exon and transcription termination (FIG. 3a). PTM transitions 

have recently been mapped to transcription pause positions along yeast gene bodies and, in 

particular, to 3′SSs, consistent with changes in Pol II elongation rate around intron–exon 

boundaries66, 67. In well-spliced yeast genes, the relative abundance of ‘early’ CTD PTMs 

decreases over the intron, whereas ‘late’ PTMs begin to increase at the 3′SS (FIG. 3b).

In addition to the Pol II CTD, the entire transcription elongation machinery and the nascent 

RNA itself interact with proteins, forming RNP complexes. Many of these proteins belong to 

complexes that are involved in mRNA 5′ end capping, splicing, 3′ end processing, editing, 

folding, nuclear export and decay, and bind to specific transcript regions, such as 

untranslated regions, introns and exons32, 68, 69. For example, in higher eukaryotes, 

tetrameric heterogeneous nuclear ribonucleo-protein C (hnRNPC) binds to introns in nascent 
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RNA and organizes long intronic sequences for splicing70. During intron transcription, U1 

snRNP is recruited to the 5′SS, and U2 snRNP levels begin to increase at the 3′SS, 

paralleling the transition from early to late CTD PTMs32 (FIG. 3a). Nevertheless, the 

relationship between specific Pol II CTD PTM profiles and nascent RNA processing events 

is far from being understood. Some profiles are different between species, such as that of 

Tyr1P between yeast and humans60, 65, 71, or between different studies in the same species 

(FIG. 3a). Combinations of different PTMs can occur on the same CTD, albeit rarely within 

the same repeat72, 73. Finally, even moderate increases in PTM levels over the gene body 

may be important for gene expression regulation. For example, although the Ser5P levels are 

highest at the beginning of transcription units, a link between this PTM and splicing has 

been found in both yeast and humans66, 74. Pronounced peaks of Ser5P and Pol II levels are 

observed at the 5′SSs of alternatively included exons compared with excluded exons74, 75.

The characterization of isolated RNP complexes associated with specific CTD PTM profiles 

helps to define the dynamic nascent RNP interactome66. In yeast, all interactomes of the 

phosphorylated residues, except that of Thr4P, are enriched for splicing factors, which is 

consistent with the general trend of Thr4P increasing towards gene ends64, 66 (FIG. 3a). The 

combination of interactome analyses with analyses of the activity of these transient 

macromolecular assemblies will be crucial for the study of co-transcriptional processes, 

including spliceosome assembly, activity and disassembly (FIG. 3b; see Supplementary 

information S1 (box)). Data integration using computational modelling approaches, such as 

machine learning, will help to rationalize Pol II CTD phosphorylation patterns and to 

identify gene regions that are important for successful transcription and RNA processing, in 

addition to the known gene landmarks such as the splice sites. This will hopefully 

disentangle the causes and the consequences of different CTD profiles along genes67.

Transcription rates are affected by gene architecture and chromatin features

The transcription rate can influence splice site identification by the spliceosome. Current 

models suggest that different local rates of transcription elongation can influence the time 

frame between the synthesis of sequential splice sites, thereby possibly modulating RNA 

folding or the interactions with RNA-binding proteins10. The synthesis of RNA by Pol II 

occurs with an average elongation rate of 1–4 kb per minute55, 56, 76. However, Pol II can 

transiently pause, stall or terminate prematurely55, 56. Pol II elongation rate is influenced by 

a multitude of factors, such as the underlying DNA sequence, nucleosome position and 

histone modifications, which affect local chromatin structure, the activity of elongation 

factors, and the folding and processing of the nascent RNA55, 77. For example, the balance 

between histone acetylation and methylation in neuronal cells is a determinant of 

transcription rate and associated splicing patterns78.

The positioning of nucleosomes relative to TSSs, transcription termination sites (TTSs), 

exons and introns helps to define gene architecture79–82 (FIG. 4a). Conversely, nucleosome 

phasing seems to be facilitated by the inherent exon–intron primary structure (such as 

elevated GC content in exons), by the sequence elements that are required for pre-mRNA 

splicing79, 80, 82 and by the local activity of chromatin remodellers80, 83. Intriguingly, the 

median length of internal exons in the human genome is 137 bp, which is very close to the 
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147 bp that are wrapped around a nucleosome14 (FIG. 4a). The correlation between the 

length of internal exons and the nucleosomal DNA could be explained by the observation 

that evolutionarily recent intron generation events in the alga Micromonas pusilla occurred 

upon the preferential integration of DNA transposons into nucleosome spacer regions81.

Nucleosomes can interfere with transcription progression67, 84–87. Consistent with 

nucleosome phasing over exons, slower transcription elongation has been measured over 

exonic sequences75, 86, 88. This is suggested by high Pol II density close to the nucleosome 

centre in all genes67, 85. The histone tails of nucleosomes that are positioned over exons can 

be enriched for PTMs that may facilitate exon definition by affecting the recruitment of 

splicing factors, as well as the transcription process itself8, 89–92 (FIG. 2). Slow passing of 

the transcription machinery through nucleosomes may facilitate the relocation of splicing 

factors and regulators from the chromatin template to Pol II or to the nascent RNA.

Splicing-dependent Pol II pausing

Recent studies have implicated the splicing process in transcriptional pausing. For example, 

pausing at terminal exons was detected in efficiently spliced genes in yeast93. Upon splicing 

inhibition, either by introducing a temperature-sensitive mutant allele of the RNA helicase 

Prp5, or by introducing mutations in the BPS or the U2 snRNA, the Pol II ChIP signal 

increases on introns, suggesting the activation of a transcription elongation checkpoint to 

allow spliceosome assembly94. Discrete pauses have been mapped to 5′SSs and 

3′SSs66, 75, 95 (FIG. 4a). How does Pol II pausing specifically relate to intron-exon 

boundary identification and spliceosome assembly? The extent to which splicing-related 

pausing occurs and a mechanistic understanding of this process are still elusive. When Pol II 

pauses at the 3′SS, the intron 3′ end, including the polypyrimidine tract, is still in its 

catalytic centre or exit channel and is not yet available for splicing31. How does pausing at 

the 3′SS relate to spliceosome assembly? The distance between the BPS and the 3′SS in 

most introns might allow assembly to proceed during pausing. Pol II pause release can be 

aided by transcription elongation factors, such as transcription factor IIS (TFIIS) 85. In 

addition, splicing factors may stimulate transcription progress. Interestingly, the shift of 

U2AF65 from Pol II to the nascent RNA was suggested to stimulate transcription 

elongation31, 96. Explaining the prevalence and functional importance of Pol II pausing 

around 3′SSs and the general change of Pol II elongation rate over exons is crucial for 

understanding how transcription elongation and nascent RNA splicing are intertwined12. 

The development of new single- nucleotide-resolution single-molecule sequencing strategies 

that monitor splicing intermediates offers promising new avenues of investigation74, 85 

(Supplementary information S1 (box)).

Nascent RNA folding and RNA modifications influence splicing

Nascent RNA folds into secondary structures that affect its subsequent processing. The 

propensity for RNA folding directly depends on sequence-specific folding rates, 

transcription elongation rates and the rate of proteins binding to the RNA97, 98 (FIG. 4b). 

RNA secondary structures can conceal or expose the 5′SSs, BPSs and 3′SSs, which are 

consequently ignored or readily recognized by the splicing machinery99, 100. By concealing 

or exposing alternative cis-acting elements, secondary structures may have a role in 
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alternative splicing52 (FIG. 4b). The splicing machinery may recognize splicing targets on 

nascent RNA before the RNA has time to fold into a secondary structure100. Similarly, 

RNA-binding proteins may influence the transient folding of nascent RNA and, therefore, 

may modulate the timing of splice site exposure to the splicing machinery99. For example, 

hairpins with a small loop readily fold after transcription, thereby concealing the splice site 

that is contained in their stem. By contrast, the folding of hairpins with bigger loops takes 

longer, allowing longer splice site exposure to the splicing machinery and/or to regulatory 

RNA-binding proteins101.

Changes in transcription elongation rates influence nascent RNA folding and so may affect 

splice site selection97, 100. Intramolecular hairpins that sequester the 5′SS, BPS or 3′SS 

inhibit splicing both in vitro and in vivo101–103 (FIG. 4b). The inhibitory effects increase 

with hairpin stability 102. Conversely, secondary structures can increase the recognition 

efficiency of true splice sites by masking cryptic ones51, 52 (FIG. 4b). Interestingly, a 

systematic analysis in yeast showed that true 3′SSs are usually more accessible than cryptic 

ones52. Finally, secondary structures that form between the 5′SS and the BPS or between 

the BPS and the 3′SS without directly sequestering them may positively influence splicing 

by shortening the physical distance between these cis-acting elements and thus may help the 

spliceosome to bridge them52, 104 (FIG. 4b).

Modifications that alter the chemical properties of RNA, such as base modifications and 

substitutions, may also affect splicing by altering local RNA secondary structures or the 

binding sites for the splicing machinery105. Nucleotide substitution through RNA editing is 

widespread in metazoa106, 107 and occurs co-transcriptionally108, 109. Nucleotides can be 

edited as close as ~55 nucleotides upstream of the 3′ end of nascent RNAs, in the Pol II 

catalytic centre, suggesting that the introduction of these modifications may be very rapid109 

(TABLE 1). All 12 types of nucleotide editing have been identified on endogenous 

transcripts107, 109. A-to-I (adenosine to inosine, which is recognized as a guanosine by 

cellular machineries) is the most abundant modification107 and is catalysed by adenosine 

deaminase acting on RNA (ADAR). ADAR can act on double-stranded RNA substrates that 

form through base pairing between exonic and intronic sequences, pointing towards 

coupling between editing and splicing110. It is possible that the splicing of these introns is 

delayed owing to occupancy of the 5′SS by ADAR. ADAR2 directly alters the splicing of its 

own pre-mRNA by introducing an alternative 3′SS. Moreover, the Pol II CTD is required for 

efficient editing111. The glutamate receptor subunit B (GluRB; also known as GluR2) pre-

mRNA contains edited sites that are close to the 5′SSs112. In vitro, the editing and splicing 

of these sites on pre-synthesized GluRB pre-mRNA are mutually exclusive. However, such 

mutual exclusion is not observed in vivo, suggesting that transcription coordinates the 

editing and splicing machineries that act on these sites to ensure that both can take place112. 

Transient local RNA folding is likely to have a role in this coordination. Thus, changes in 

secondary structures that are induced upon RNA editing may conceal or expose the splice 

sites, resulting in alternative splicing113.
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Strategies for splice site identification

The complexity of gene architecture varies between phyla114, 115, requiring different 

mechanisms to identify splice sites. Metazoan splice sites are short and poorly conserved, in 

contrast to budding yeast splice sites23. This implies that the spliceosome might encounter 

frequent ‘incorrect’ splice sites along the transcripts, or at least a multiplicity of splice sites 

from which to choose116. The high complexity of metazoan gene architecture requires 

strategies to identify bonafide splice sites and lends itself to various means of pre-mRNA 

splicing regulation, including alternative splicing116. In metazoa, accurate splice site 

selection depends on short conserved sequences, known as splicing regulatory elements 

(SREs), that reside in introns or exons117, 118. Regulatory proteins, such as SR proteins 

and hnRNPs, specifically bind to SREs and influence splice site recognition and/or 

spliceosome assembly116. Productive or unproductive interactions between SRE-binding 

proteins and the spliceosomal machinery generally depend on the location of the SREs 

relative to the splice sites, underscoring a large regulatory potential116 (FIG. 5).

Intron and exon definition

How are introns and exons recognized by the spliceosome? In vertebrates, intron length 

varies from a few hundred nucleotides to several thousand nucleotides, and the median 

length of internal exons is approximately 137 nucleotides114. Surrounding the internal exon, 

the 3′SS of the upstream intron and the 5′SS of the downstream intron pair across the exon, 

thereby committing the upstream intron to splicing through an ‘exon definition’ 

mechanism119, 120 (FIG. 5). By contrast, transcripts in lower eukaryotes usually contain 

introns that are shorter than 250 nucleotides (REF. 114). In this case, a 5′SS pairs with the 

downstream 3′SS of the same intron, and splicing is triggered through an ‘intron definition’ 

mechanism121 (FIG. 1). In exon definition, a splice site mutation causes exon skipping, 

whereas in intron definition it causes intron retention121, 122. Thus, exon and intron 

definition mechanisms explain the different phenotypes of single splice site inactivation in 

vertebrates and in lower eukaryotes119.

Intron definition fits with the stepwise co-transcriptional spliceosome assembly model 

discussed above. In vivo, yeast complexes E and A assemble onto the 5′SS and BPS32, 

suggesting that the BPS rather than the 3′SS is required for splicing commitment (FIG. 1b). 

Indeed, budding yeast lack an obvious homologue of U2AF35, which binds to the 3′SS AG 

dinucleotide in the mammalian complex E. In vitro, transcripts with one short intron are also 

spliced upon intron definition119, and the AG dinucleotide is not necessary for step I 

catalysis38, 42. These observations suggest that transcription of the 5′SS and the BPS may be 

sufficient for splicing commitment following intron definition (FIG. 1b). In higher 

eukaryotes, in which splicing is triggered by exon definition, U2AF35 bound to the 3′SS 

participates in splicing commitment together with the U1 snRNP bound to the downstream 

5′SS23, 119 (FIG. 5). This inverted order of identification of intronic elements may partly 

account for the slower splicing rates that are found in higher eukaryotes5.
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Nascent RNA 5′ end capping and the definition of the first exon

Splicing of the first intron depends on first exon definition119. First exon boundaries consist 

of the 7-methylguanosine (m7G) cap structure at the 5′ end of the transcript and the 5′SS of 

the first intron (FIG. 5). The capping enzyme adds the m7G cap to the 5′ end of all Pol II-

transcribed RNAs when the nascent RNA is less than 20 nucleotides in length53, 123–127 

(TABLE 1). The nuclear cap-binding complex (CBC) serves as a platform for interacting 

with factors that are involved in RNA processing128. In vitro, CBC enhances the splicing of 

the first intron, suggesting that it contributes to first exon definition119, 123, 129. In vivo, CBC 

directly interacts with tri-snRNP protein components and its depletion impairs both U1 

snRNP and tri-snRNP recruitment to the pre-mRNA28, 130, 131. Genetic interactions were 

observed between the yeast CBC, U1 snRNP proteins and BBP, suggesting that CBC 

functions in the formation of complex E132 (FIG. 2). Tri-snRNP recruitment by CBC was 

proposed to mediate U1 snRNP association and the consequent identification of the first 

5′SS130. Nevertheless, all spliceosomal complexes physically interact to some degree with 

the CBC, either directly or indirectly through the nascent RNA (FIG. 2).

Nascent RNA 3′ end processing and the definition of the last exon

Splicing of the last intron depends on terminal exon definition119. The 3′SS of the last intron 

and the PAS set the terminal exon boundaries133 (FIG. 5). The PAS, the nearby AU-rich 

sequences and other cis-elements on the nascent RNA are bound by the cleavage and 

polyadenyl ation complex (CPA). It is not currently known how far transcription proceeds 

past the PAS before 3′ end cleavage takes place (TABLE 1). However, the PAS is required 

for termination, and its elimination leads to transcription readthrough134–136. PAS 

elimination also results in the specific inhibition of last intron splicing, indicating that 3′ 
end processing contributes to terminal exon definition137, 138. The U2 snRNP, U2AF65 and 

cleavage and poly adenylation specificity factor (CPSF; a component of the CPA) 

functionally and physically interact (FIG. 2); this supports a model in which the PAS 

triggers the removal of the last intron by facilitating spliceosome assembly139–142. Splicing 

and the regulation of 3′ end processing is reciprocal, as the inactivation of the terminal 3′SS 

inhibits 3′ end processing and transcription termination137–139, 143, 144. The splicing and 3′ 
end processing machineries seem to serve as recruitment platforms, as the physical presence 

of the two machineries is sufficient for coupling between splicing and 3′ end processing, 

and neither catalytic activity is required for the regulation of the complementary 

process138, 139, 144, 145. Indeed, artificially induced cleavage of the nascent RNA impairs 

splicing and 3′ end processing in vitro138. In vivo, the Pol II CTD stimulates coupling 

between splicing and 3′ end processing146. Taken together, these observations suggest that 

coupling between splicing and 3′ end processing can determine whether splicing occurs 

before transcription termination142.

The molecular mechanisms of 3′ end processing involve components of the splicing 

machinery. The mammal ian U1 snRNP component U1 70k directly interacts with poly(A) 

polymerase, a component of the CPA, and inhibits polyadenylation147. In vivo, functional 

inhibition of U1 snRNP inhibits splicing and causes premature 3′ end processing148. 

Interestingly, U1 snRNP is much more abundant than all other spliceosomal snRNPs149, and 

this may reflect its role in protecting nascent RNA from premature 3′ end processing. In 
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such a model, the U1 snRNP binds to nascent RNA at frequent cryptic 5′SSs and suppresses 

the activity of adjacent cryptic PASs148. The relative abundance of PASs and U1 binding 

sites on transcripts may modulate premature transcription termination. Indeed, upstream 

antisense transcripts are enriched in PASs but depleted of U1 recognition sites, and their 

expression is efficiently suppressed150. Changes in transcript and U1 snRNP abundance 

ratios result in changes in alternative PAS selection, and consequently modulate transcript 

length151. Overall, the PAS and CPA have a major role in defining the last exon and thus the 

3′SS for last intron removal. In addition, splicing aids 3′ end processing by preventing the 

recruitment of the CPA to cryptic PASs.

3D organization of gene expression

The 3D chromatin conformation can enable crosstalk between different mRNA processing 

machineries. Similar to promoters that associate with distant enhancers152, gene ends may 

loop over long distances. Gene looping occurs when the transcription initiation and 

termination machineries juxtapose TSSs and TTSs153, 154. Gene looping may regulate 

transcriptional output and may provide promoter directionality by depositing termination 

factors close to the promoter, which can lead to the termination of upstream antisense 

transcripts155 (FIG. 6a). In yeast, introns can further enhance looping by bridging the 5′SS 

with the TSS and the 3′SS with the PAS156. It is tempting to speculate that looping may 

facilitate splice site usage in subsequent rounds of transcription by promoting the efficient 

recycling of splicing factors. It remains to be seen how widespread this phenomenon is and 

how spliceosome assembly and catalysis contribute to gene looping.

Co-transcriptional splicing presupposes that spliceosome components are in the vicinity of 

the transcribed regions and are readily available for spliceosome assembly and splicing 

catalysis. Live cell- imaging experiments have measured diffusion constants in the order of 

0.2–0.8 µm2 s−1 for snRNPs, as well as other RNPs157. This slow rate of diffusion, which is 

~100 times slower than free diffusion in water158, has been attributed to transient 

interactions with binding partners such as pre-mRNA157. An alternative explanation is that 

splicing factors dwell at sites of transcription owing to liquid–liquid phase separation 

(LLPS). Such phase transitions are favoured by proteins with intrinsically 

disordered regions (IDRs) and RNA-binding domains159–163. Proteins with IDRs are 

found to be enriched in membrane-less compartments that are formed by LLPS, for 

example, SR proteins in nuclear speckles and coilin in Cajal bodies159. Approximately 

18 polypeptides in the B complex harbour IDRs that are similar to SR proteins164. 

Interestingly, IDRs of several mammalian hnRNP isoforms are encoded by alternative 

exons; depending on exon inclusion, the resulting hnRNP isoform can promote multi- 

hnRNP assemblies that affect alternative splicing of target transcripts165. Members of the 

Fox1 family of RNA-binding proteins (Rbfox) can undergo higher-order interactions with 

the large assembly of splicing regulators (LASR) complex via a Tyr-rich low-complexity 

region, which is required for splicing regulation by Rbfox166. We suggest that spliceosomal 

components could be greatly concentrated at transcription sites as a consequence of LLPS 

(FIG. 6a). There are four reasons to suspect that this might be the case. First, snRNPs can 

reside in nuclear compartments that are formed by LLPS; they assemble from precursors and 

are highly concentrated in Cajal bodies167. Second, the Pol II CTD has been shown to 
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undergo LLPS, owing to its low complexity and intrinsically disordered structure60, 168, and 

it was recently proposed that CTD LLPS may be important for transcription initiation60. 

Third, the low-complexity protein FUS mediates interactions between Pol II and the U1 

snRNP169, 170, potentially promoting the recruitment of U1 to the first 5′SS. Fourth, yeast 

and human chromatin, transcription and spliceo-some proteins have a strong tendency to 

disorder, similar to proteins of P-bodies and nucleolar proteins that are known to undergo 

LLPS171 (FIG. 6b; see Supplementary information S3 (table)). Intriguingly, the visualization 

of lampbrush chromosomes reveals numerous active gene loops that take on droplet-like 

morphologies, suggesting the local occurrence of LLPS during gene expression172. Thus, 

LLPS may facilitate local high concentrations of spliceosomal components at transcription 

sites, thereby creating miniature nuclear bodies at each active gene (FIG. 6a); similar phase 

transition phenomena have been suggested to explain transcription regulation by super-

enhancers163. This scenario may explain how unprocessed transcripts are retained at sites of 

transcription173–175 and how particular splicing isoforms predominate in a given cell or for a 

given gene176, 177. For example, the same pool of splicing regulators could be reused in 

multiple rounds of splicing. Spliceosome disassembly could also take place in this 

sequestered environment, while the mature messenger ribonucleoprotein (mRNP) is 

prepared for nuclear export.

Conclusions and perspectives

Coupling 5′ end capping, splicing and 3′ end processing to transcription ensures the 

formation of a fully processed mRNA that is ready for export and translation. In this Review, 

we rationalize how these individual steps are coordinated at the transcription unit. Delaying, 

preventing or enhancing splice site recognition may modulate splicing outcome, leading to 

mature mRNA isoforms with diverse cellular fates178–181. We highlight links between 

splicing outcome and transcription dynamics, nucleosome positioning and RNA folding. 

Spliceosome proteins interact with proteins that are involved in transcription and nuclear 

RNA processing, and extensive crosstalk and regulation are promoted by protein– protein 

interactions between different machineries (FIG. 2).

Recent cryo-EM structures have visualized spliceosome assembly complexes and have 

revealed new conformational details34–36, 39, 40, 43, 44, 47–49. The joint structural analysis of 

interfaces between splicing complexes and the transcription and processing machineries, and 

the use of high-resolution nascent RNA sequencing for the analysis of individual processing 

steps, have the potential to reveal new aspects of the coordination between these large 

nuclear machines. Finally, the precise quantification of local protein and RNA abundance 

and RNA– protein interactions, as well as the visualization of the dynamics along 

transcription units, will help in formulating new models of gene expression regulation, such 

as the recently invoked LLPS mechanism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

5′ end capping
The addition of an untemplated guanosine to the 5’ end of an RNA polymerase I transcript 

followed by its methylation at the N7 position Capping protects the mRNA 5′ end from 

endonucleases.

3′ end cleavage and polyadenylation
Endonucleolytic cleavage that defines the 3′ ends of RNA polymerase II transcripts by 

cleavage and polyadenylation specificity factor (CPSF) and other factors followed by the 

addition of non-templated poly(A) tails by poly(A) polymerase

Nascent RNA
RNA that is tethered to DNA by any elongating RNA polymerase

Gene architecture
The ensemble of cis-regulatory, coding and non-coding elements of a gene, including length, 

position and sequence

Ultraviolet (UV) crosslinking
UV irradiation-induced covalent bonds that link amino acids with nucleic acids

SR proteins
RNA-binding proteins with long repeats of arginine (Arg) and serine (Ser) residues that are 

involved in the regulation of alternative splicing and other steps of gene expression

Intrinsically disordered regions
Protein regions that contain little amino acid diversity and appear to lack well-defined 

secondary and tertiary structures

Speckles
Membrane-less subnuclear granules that are enriched in splicing factors, particularly the SR 

proteins

Cajal bodies
Membrane-less subnuclear compartments (2–4 per cell) that are the sites of small nuclear 

RNA modification and small nuclear ribonucleoprotein assembly. Cajal bodies are not the 

sites of splicing

P-bodies
Membrane-less cytoplasmic compartments that are involved in mRNA turnover

Lampbrush chromosomes
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Giant meiotic chromosomes that are formed in oocyte nuclei owing to the looping of 

chromosomal regions that are highly transcribed and coated with nascent RNA
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Figure 1. Yeast gene architecture and co-transcriptional spliceosome assembly
a | Typical architecture of a budding yeast gene that contains one intron. The transcription 

start site (TSS), poly(A) site (PAS) and transcription termination site (TTS) are shown; for 

simplicity, only one of each site is represented. b | Co-transcriptional recruitment of small 

nuclear ribonucleoproteins (snRNPs) and splicing. The recruitment of U1 snRNP and the 

yeast branchpoint sequence (BPS) recognition factors (branchpoint binding protein (BBP) 

and Mud2) results in complex E. U2 snRNP recruitment and the concomitant displacement 

of BBP results in complex A. Upon recruitment of the U4/U6•U5 tri-snRNP complex B is 

formed. The subsequent release of the U1 and U4 snRNPs converts complex B into mature 

Herzel et al. Page 24

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bact, which contains the U2, U5 and U6 snRNPs. Catalytic activation (red star) yields 

complex B*. Step I catalysis produces complex C, which contains the 5′ exon and the 

branched intron lariat-3′ exon. Step II, which is catalysed by activated complex C*, 

produces complex P, which contains the ligated 5′ exon-3′ exon and the excised intron 

lariat. Spliced nascent RNA and intron lariat spliceosome (ILS) are then released. The 3′ 
end of the nascent RNA lies in the catalytic centre of RNA polymerase II (Pol II). The hatch 

marks on each nascent RNA replace the much longer sequence of the intron between the 

5′SS and the BPS. CTD, carboxy-terminal domain; SS, splice site.
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Figure 2. Crosstalk of the assembling spliceosome with nuclear gene expression machineries
The crosstalk of the components of the small nuclear ribonucleoproteins (snRNPs) and the 

different spliceosome assembly stages with nuclear gene expression factors and complexes 

is underlined by a multitude of genetic and physical interactions. Genetic and physical 

interactions that involve core splicing factors of Saccharomyces cerevisiae were obtained 

from the Biological General Repository for Interaction Datasets (BioGRID). Protein 

complex annotations were derived from the CYC2008 yeast proteins catalogue182 and the 

Spliceosome Database24. Only predominantly nuclear complexes that are involved in 

chromatin biology, transcription and RNA-related nuclear processes were considered183 
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(Supplementary information S2 (table)). The grey scale reflects the number of reported 

interactions between spliceosomal and non-spliceosomal complex subunits. The number of 

reported interactions is adjusted to the number of reported non-spliceosomal complex 

subunits. A minimum of two reports for the same interaction was required. Overall, 

chromatin-modifying and chromatin-remodelling complexes display predominantly genetic 

interactions. Fewer reports exist of physical interactions, with the exception of core 

spliceosomal complexes (Supplementary information S2 (table)) and the 5′ and 3′ end 

processing machineries. In line with mechanistic studies (see the main text), specific genetic 

interactions have been reported between the cap-binding complex (CBC) and some 

spliceosomal complexes, but an extensive physical interaction network (possibly mediated 

through the nascent RNA) has been mapped with all spliceosomal complexes. The full non-

spliceosomal complex and protein names are given in Supplementary information S3 (table). 

Tri, tri-snRNP; U1, U1 snRNP; U2, U2 snRNP.
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Figure 3. Patterns of RNA polymerase II C-terminal domain phosphorylation, small nuclear 
ribonucleoprotein binding and splicing along an average intron-containing budding yeast gene
a | Comparison of RNA polymerase II (Pol II) carboxy-terminal domain (CTD) 

phosphorylation profiles and small nuclear ribonucleoprotein (snRNP) binding profiles from 

different studies. Heatmap of average CTD phosphorylation profiles (top) normalized to 

total Pol II profiles (the total Pol II profile was not available for REF. 66) for the 50% of 

intron-containing genes with the highest snRNP signal over terminal exons (snRNP data are 

from REF. 30 and Pol II CTD data are from REFS 63–67). In most data sets, Ser5 and Ser7 

phosphorylation is most abundant in the first exon and in the intron (most budding yeast 

genes contain one intron), whereas phosphorylation of the other CTD repeat residues is high 
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over the terminal exon and/or the poly(A) site (PAS), pointing to a transition in CTD 

phosphorylation profiles around the 3′ splice sites (3′SSs). Note that the data sets differ in 

experimental procedure (chromatin immunoprecipitation (ChIP)–chip, ChIP-Nexus, 

ultraviolet (UV) crosslinking and analysis of cDNAs (CRAC)) and the antibodies used. A 

heatmap of average U1 and U2 snRNPs binding profiles (data are from REFS 30, 66) 

(bottom) for the same intron-containing genes illustrates stepwise co-transcriptional 

spliceosome assembly. b | Schematic of step II splicing kinetics in yeast4 and hypothetical 

step I splicing kinetics. The kinetics of the spliceosome assembly stages — the transition 

from B complexes (including B, Bact and B*) to C complexes during step I, and the 

transition from C complexes (including C and C*) to P during step II — have not yet been 

determined. Hypothetical splicing assembly stage transitions and global CTD 

phosphorylation changes are indicated by the colour gradient. A, branch adenosine; TSS, 

transcription start site.
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Figure 4. Gene architecture, chromatin features and nascent RNA properties influence co-
transcriptional splicing
a | The length of typical internal exons (grey boxes) is comparable to the DNA that is 

wrapped around a nucleosome. Nucleosome positioning relative to the transcription start site 

(TSS), transcription termination site (TTS) and, to a lesser extent, exons helps to define the 

boundaries of these elements, providing a platform for crosstalk between chromatin, 

transcription and splicing. Less stable nucleosomes at introns are indicated with dashed 

outlines. For simplicity, only one TSS, poly(A) site (PAS) and TTS are depicted. The 

zoomed-in section shows that RNA polymerase II (Pol II) transcription rates change along 

introns (black lines with grey nucleosomes) and exons (grey lines with yellow nucleosomes) 

from high rates to low rates. A sleeping Pol II represents pausing events at splice sites (AG 

and GT). Post-translational modifications (PTMs) on histone tails influence transcription 

and splicing. b | RNA secondary structures and RNA-binding proteins can modulate the 

availability of splice sites and branchpoint sequences. The splicing machinery cannot 

identify sites that are concealed in secondary structures or that are bound by inhibitory 

proteins. Pol II transcription rate and local RNA folding contribute to site accessibility. 

CTD, carboxy-terminal domain; snRNP, small nuclear ribonucleoprotein.
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Figure 5. First, internal and terminal exon definition
As a prerequisite to first exon definition, the capping enzyme that is bound to the 

phosphorylated RNA polymerase II (Pol II) carboxy-terminal domain (CTD) adds a cap to 

the 5′ end of the nascent RNA. The cap-binding complex (CBC) recruits the U4/U6•U5 tri-

small nuclear ribonucleoprotein (snRNP) and mediates the association of the U1 snRNP 

with the first 5′ splice site (SS). In internal exon definition, the transcription of an internal 

3′SS and the downstream 5′SS triggers the recruitment of the U1 snRNP, the branchpoint 

sequence recognition factors (splicing factor 1 (SF1), U2AF65 and U2AF35) and the U2 

snRNP. Splicing factors facilitate or inhibit exon definition by binding to splicing regulatory 

elements (SREs), leading to alternative splicing. As a prerequisite to terminal exon 

definition, the cleavage and polyadenylation complex (CPA) interacts with the poly(A) site 

(PAS), phosphorylated Pol II CTD and the splicing machinery, aiding 3′SS identification. In 

addition, the splicing machinery helps CPA recruitment onto the PAS. A, branch adenosine; 

P Y, polypyrimidine tract.
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Figure 6. Higher-order organization of the gene expression machineries
a | The nucleus and cytoplasm contain membrane-less compartments, known as bodies, such 

as the nucleolus, Cajal bodies, histon locus bodies, speckles and P-bodies. Such bodies form 

through liquid–liquid phase separation (LLPS) and are often linked to the transcription of 

specific genes, for example, ribosomal DNA (rDNA) in the nucleolus, small nuclear RNA 

(snRNA) genes in Cajal bodies and histone genes in histone locus bodies. We propose that 

looped and actively transcribed genes (genes w, x, y and z) are also likely to form nuclear 

bodies. b | Spliceosome proteins, particularly chromatin and transcription-associated 

proteins, are predicted to have a similar proportion of unstructured protein regions to those 

of other groups of proteins that are known to be involved in LLPS, as shown in the 

cumulative representation of the complete proteome and the protein groups associated with 

specific Gene Ontology terms (cellular component: P-body, nucleolus, chromatin (binding); 

biological process: DNA-templated transcription, mRNA splicing via spliceosome and 

transport). The data were downloaded from the Saccharomyces Genome Database 

(Supplementary information S3 (table)). The cumulative fraction of proteins (y axis) is given 

in association with the percentage of amino acids per protein that have a high probability of 

being in a disordered region (x axis), according to predictions by IUPred184185. Whereas 

50% of transport proteins and the entire proteome contain 7% or fewer amino acids with a 

high tendency to form disordered regions, 50% of the P-body, nucleolar or chromatin and 

transcription-associated proteins contain 25–30% of such amino acids. The median fraction 

of amino acid disorder tendency for spliceosomal proteins is 16%. Medians are represented 
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by light grey lines. CBC, cap-binding complex; CPA, cleavage and polyadenylation 

complex; Pol I, RNA polymerase I.
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