Skip to main content
. 2017 Sep 6;187(5):1085–1092. doi: 10.1093/aje/kwx311

Table 1.

Results of Simulation Studies to Compare Sequential Conditional Mean Models with Inverse Probability Weighted Estimation of Marginal Structural Models

Modela Independence Unstructured
Biasb 95% CIc SDd Biasb 95% CIc SDd
SCMM
 Form of E(Yt|X¯t,Y¯t1)
  i) β0+βX1Xt 0.425 0.420, 0.430 0.081 0.256 0.251, 0.262 0.087
  ii) β0+βX1Xt+βYYt1 0.151 0.146, 0.156 0.080 0.050 0.045, 0.055 0.086
  iii) β0+βX1Xt+βX2Xt1 0.115 0.109, 0.120 0.092 −0.002 0.008, 0.004 0.095
  iv) β0+βX1Xt+βX2Xt1+βYYt1 −0.001 −0.007, 0.005 0.095 0.001 −0.004, 0.007 0.095
SCMM using propensity scores
 Form of E(Yt|X¯t,Y¯t1)
  i) β0+βX1Xt+βPSPS^t 0.001 −0.005, 0.007 0.096 0.001 −0.005, 0.007 0.095
  ii) β0+βX1Xt+βYYt1+βPSPS^t 0.001 −0.005, 0.007 0.096 0.006 0.000, 0.012 0.097
  iii) β0+βX1Xt+βX2Xt1+βPSPS^t 0.003 −0.002, 0.009 0.096 −0.002 −0.008, 0.004 0.095
  iv) β0+βX1Xt+βX2Xt1+βYYt1+βPSPS^t −0.001 −0.007, 0.005 0.096 0.001 −0.005, 0.007 0.096
IPW estimation of MSMs
 Unstabilized weights
  i) E(Ytxt)=ω0+ωX1xt 0.022 0.001, 0.043 0.340 0.046 −0.137, 0.230 2.959
  ii) E(Ytx¯t)=ω0+ωX1xt+ωX2xt1 0.007 −0.012, 0.026 0.306 3.635 −3.208, 10.478 110.4
 Stabilized weights
  i) E(Ytxt)=ω0+ωX1xt 0.297 0.291, 0.302 0.090 0.187 0.180, 0.194 0.110
  ii) E(Ytx¯t)=ω0+ωX1xt+ωX2xt1 −0.002 −0.009, 0.004 0.107 −0.060 −0.067, −0.053 0.114
 Stabilized weights: truncated at the 1st and 99th percentiles
  i) E(Ytxt)=ω0+ωX1xt 0.309 0.304, 0.315 0.087 0.196 0.190, 0.202 0.098
  ii) E(Ytx¯t)=ω0+ωX1xt+ωX2xt1 0.018 0.012, 0.024 0.101 −0.051 −0.058, −0.045 0.106
 Stabilized weights: truncated at the 5th and 95th percentiles
  i) E(Ytxt)=ω0+ωX1xt 0.325 0.320, 0.330 0.086 0.214 0.209, 0.220 0.092
  ii) E(Ytx¯t)=ω0+ωX1xt+ωX2xt1 0.025 0.019, 0.032 0.099 −0.043 −0.049, −0.037 0.102
 Stabilized weights: truncated at the 10th and 90th percentiles
  i) E(Ytxt)=ω0+ωX1xt 0.341 0.335, 0.346 0.085 0.225 0.219, 0.230 0.091
  ii) E(Ytx¯t)=ω0+ωX1xt+ωX2xt1 0.044 0.038, 0.050 0.097 −0.032 −0.039, −0.026 0.100
 Stabilized weights: truncated at the 20th and 80th percentiles
  i) E(Ytxt)=ω0+ωX1xt 0.364 0.359, 0.370 0.083 0.236 0.231, 0.242 0.088
  ii) E(Ytx¯t)=ω0+ωX1xt+ωX2xt1 0.067 0.061, 0.073 0.094 −0.021 −0.027, −0.015 0.097

Abbreviations: CI, confidence interval; GEE, generalized estimating equation; IPW, inverse probability weight; MSM, marginal structural model; SCMM, sequential conditional mean model; SD, standard deviation.

a All models were fitted using GEEs with an independence working correlation matrix and an unstructured working correlation matrix.

b Bias in the estimated short-term causal effect of Xt on Yt averaged over 1,000 simulations.

c Monte Carlo 95% confidence interval corresponding to the bias.

d Empirical standard deviation of the estimates.