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SUMMARY

Linking putatively pathogenic variants to the tissues they affect is necessary for determining the 

correct diagnostic workup and therapeutic regime in undiagnosed patients. Here, we explored how 

gene expression across healthy tissues can be used to infer this link. We integrated 6,665 tissue-

wide transcriptomes with genetic disorder knowledge bases covering 3,397 diseases. Receiver-

operating characteristics (ROC) analysis using expression levels in each tissue and across tissues 

indicated significant but modest associations between elevated expression and phenotype for most 

tissues (maximum area under ROC curve = 0.69). At extreme elevation, associations were marked. 

Upregulation of disease genes in affected tissues was pronounced for genes associated with 

autosomal dominant over recessive disorders. Pathways enriched for genes expressed and 

associated with phenotypes highlighted tissue functionality, including lipid metabolism in spleen 

and DNA repair in adipose tissue. These results suggest features useful for evaluating the 

likelihood of particular tissue manifestations in genetic disorders. The web address of an 

interactive platform integrating these data is provided.

INTRODUCTION

Human tissues and organs comprise a mixture of different cell types, each executing a 

distinctive transcriptional program. Individually, each cell contributes to the global 

transcriptional landscape that drives tissue functionality. Genetic variants that alter gene 

products or influence gene expression can affect tissue function. However, linking genomic 

variants to phenotype, e.g., affected tissues, remains a challenge (MacArthur et al., 2014). In 

this regard, multi-tissue transcriptomic data from healthy individuals, offer valuable 

information for understanding the functional roles of genes and perhaps their involvement in 

disease. One hypothesis is that elevated gene expression in healthy tissues indicates 

functional significance in the tissue. Therefore, deleterious germline variants are more likely 

to affect tissues where the genes with variants are highly expressed in normative conditions. 
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Oellrich et al. linked wild type expression to the phenotypes observed across tissues in 

knockout mice; however, they also identified circumstances where gene expression and 

phenotype were spatially separated (Oellrich et al., 2014). Barshir et al. demonstrated that a 

majority of disease-associated genes were expressed at elevated levels in the affected tissues 

for a set of 233 genes with deleterious germline mutations (Barshir et al., 2014). 

Antanaviciute et al. showed that on average, expression levels of disease genes were 

significantly higher in affected tissues compared to unaffected ones (Antanaviciute et al., 

2015). As such, prioritizing de novo mutation candidates in patients with congenital heart 

diseases based on expression levels in the heart, successfully distinguished cases from 

controls (Zaidi et al., 2013). To this end, gene expression levels have been incorporated into 

workflows that aim to prioritize disease-associated variants from genome and exome 

sequencing such as CANDID (Hutz et al., 2008), geneTIER (Antanaviciute et al., 2015) and 

Endeavour (Tranchevent et al., 2016).

Associations between highly expressed genes and phenotypes, i.e., affected organs and 

tissues, is obvious in some cases. For instance, alpha and beta myosin heavy chain genes 

(MYH6 and MYH7) and cardiac troponin (TNNI3) are almost exclusively expressed in heart 

and implicated in various cardiac diseases (Fatkin et al., 2014). Synuclein alpha and beta 

(SNCA and SNCB), associated with Parkinson’s disease and dementia (Online Mendelian 

Inheritance in Man (OMIM) IDs: 163890 and 602569), are highly expressed in multiple 

brain regions and nervous tissue. Among the genes associated with genetic disorders 

affecting multiple tissues, cystic fibrosis transmembrane conductance regulator (CFTR) is 

mainly expressed in pancreas, gastro-intestinal track, salivary glands, and lung. Disruptive 

mutations in CFTR are causally associated with life-threatening pathologic conditions such 

as fibrotic cysts in the pancreas, inflammation in the lungs and sinus, and other exocrine 

organs (OMIM ID: 602421). In this case, disease phenotypes correlate well with the organs 

and tissues expressing CFTR. Many genes however, including a large portion of known 

disease genes, are expressed in most tissues. For such genes, cross-tissue transcriptional 

activity may provide limited explanation with regard to the affected tissues (Barshir et al., 

2014; Greene et al., 2015; Melé et al., 2015). Furthermore, in some cases, expression 

profiles “contradict” our knowledge of disease manifestation. For instance, Salt-Inducible 

Kinase 1 (SIK1, OMIM ID: 605705) is expressed at its highest level in skin and the lowest 

in brain. Yet mutations in SIK1 lead to severe developmental epilepsy without a known skin 

phenotype (Hansen et al., 2015). HNRNPDL associated with Limb-Girdle Muscular 

Dystrophy (OMIM ID: 609115) has lower expression in skeletal muscle than most other 

tissues (see the Genotype-Tissue Expression Project (GTEx) portal for gene expression 

levels across tissues).

Discrepancies between expression levels and phenotypes may be, in part, addressed by 

looking beyond the expression of single genes. Lage and colleagues demonstrated that the 

mean expression of protein complexes including disease genes, was elevated in affected 

tissues (Lage et al., 2008). An extension of this study also revealed high co-expression 

between the disease genes and the other genes forming the protein complexes (Börnigen et 

al., 2013). Greene et al. recently demonstrated an important role for tissue-specific co-

expression networks in disease and utilized their approach to refine disease gene 

associations from genome-wide association studies (Greene et al., 2015). Barshir and 
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colleagues demonstrated that tissue-specific protein interactions can shed light on the 

affected tissues due to germline mutations (Barshir et al., 2014).

To systematically assess the relationship between gene expression levels and affected tissues 

in rare genetic disorders, we integrated tissue-wide transcriptome profiles with genetic 

disorder knowledge databases. We analyzed genes in a two-dimensional space, where the 

expression level of a gene in one tissue is compared with its expression in other tissues and 

with the expression levels of other genes within that tissue. Our results show that expression 

in each dimension separately and more so in their combination, can inform the likelihood of 

disease phenotypes in rare genetic disorders. As a source of gene expression, we used RNA-

seq data from the GTEx project (GTEx Consortium, 2015; Melé et al., 2015; Rivas et al., 

2015). Genetic disorder information was extracted from OMIM, a catalogue summarizing 

phenotypes for thousands of predominantly Mendelian disorders and their associated genes 

and variants. However, OMIM is principally a corpus of unstructured text, making it difficult 

to systematically extract the phenotypes of each disease. We bridged this gap using 

information from the Human Phenotype Ontology (HPO) which constitutes a hierarchical 

structure of terms describing human phenotypes (Köhler et al., 2014). HPO terms have 

conveniently been mapped to their relevant OMIM records in a combination of 

computational and manual efforts, enabling the systematic association between diseases and 

their phenotypes. In this study we used the GTEx dataset in conjunction with the OMIM and 

HPO to evaluate the relationship between gene expression and phenotype, and created an 

interactive online platform to further explore this data.

RESULTS

Tissues affected in genetic disorders from the OMIM database

Using information extracted from the OMIM compendium, we inked 4,508 diseases with 

3,483 genes. Based on specific HPO terms chosen to represent each tissue, we linked 3,397 

diseases and 2,747 genes (denoted as “disease genes” hereafter) with the tissues they affect 

(see Methods and Supplementary Tables S1 and S2). In the current study, we included the 

following 25 tissues: adipose tissue, adrenal gland, blood, blood vessel, brain, breast, colon, 

esophagus, heart, liver, lung, muscle, nerve (tibial), ovary, pancreas, pituitary, prostate, skin, 

small intestine, spleen, stomach, testis, thyroid, uterus and vagina, for which RNA-seq data 

are available from GTEx.

Disease-tissue connections were skewed across tissues, as 67% of connections attributed to 

five organs: brain, muscle, skin, heart and blood (Figure 1A). The majority of diseases in 

OMIM (74%, 2,527 of 3,397) affected 3 or fewer tissues out of the 25 tissues included in 

this study (Figure 1B), illustrating tissue-specific manifestation for genetic disorders 

(Barshir et al., 2014; Goh et al., 2007). On the other end of the spectrum, several diseases 

mapped to multiple tissues. For instance, CHARGE Syndrome (OMIM ID: 214800) and 

Smith-Lemli-Opitz Syndrome (OMIM ID: 270400) each affected 14 tissues included in our 

analysis. When a single gene was associated with multiple diseases affecting different 

tissues, we created a gene-centric mapping by connecting each gene to the totality of tissues 

affected by all associated diseases (Supplementary Table S3).
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Expression patterns of disease genes

We used 6,665 GTEx samples to create a matrix of expression levels for 19,644 protein-

coding genes across 25 tissues (Supplementary Table S4 lists the samples included in this 

study). Based on reads per kilo-base per million mapped reads (RPKM), we calculated the 

mean expression level of each gene in each tissue. The number of genes expressed in each of 

the 25 tissues at a level of mean RPKM ≥ 1 was bimodal, i.e., the majority of genes were 

either expressed in a small number of tissues or in most tissues. This supports findings in 

previous reports (Barshir et al., 2014; Jongeneel et al., 2005; Melé et al., 2015) (Figure 1C). 

At this threshold, 53.9% of the genes were expressed in ≥ 20 tissues (denoted as 

“ubiquitously expressed”) and 30.9% were expressed in ≤ 5 tissues (denoted as “specifically 

expressed”). Of note, approximately 10% of genes were not expressed in any of the 25 

tissues at the same threshold. These genes may either express in the tissues not included in 

our analysis, exclusively express during fetal and early developmental periods or express 

under specific conditions such as disease.

Of 2,747 disease genes in our analysis (Supplementary Table S5), 1,771 genes were 

expressed in ≥ 20 tissues (16.7% of all ubiquitously expressed genes) and 536 were 

expressed in ≤ 5 tissues (8.8% of all specifically expressed genes) suggesting a 

disproportionately high number of ubiquitously expressed genes among disease genes (Odds 

Ratio (OR) 2.08, 95% confidence interval (CI) 1.87–2.3 and Fisher’s exact p-value 1.77 × 

10−48, Figure 1C). Changing the threshold of expression level from ≥1 RPKM to higher 

thresholds increased the number of specifically expressed (≤ 5 tissues) genes and reduced 

the number of ubiquitously expressed (≥ 20 tissues) genes. However, the relative over-

representation of disease genes among ubiquitously expressed ones was consistently 

observed at different thresholds, as enumerated in Table S1. These results were not sensitive 

to changes in thresholds of ≥ 20 and ≤ 5 for specific and ubiquitous grouping, respectively 

(data not shown). Finally, we computed the number of affected tissues for ubiquitously and 

specifically expressed genes. Not surprisingly, the number of affected tissues was higher for 

ubiquitously expressed genes compared to that of specifically expressed genes 

(Kolmogorov-Smirnov two-sided p-value = 1.01 × 10−14, Figure 1D). In summary, disease 

genes were enriched among ubiquitously expressed genes and the number of tissues 

expressing disease genes was positively associated with the number of affected tissues.

Expression levels of disease genes in affected tissues

Although disease genes are often expressed ubiquitously across tissues, their relative 

expression levels could be informative. To investigate this assumption, we compared the 

expression levels of disease genes in their affected and unaffected tissues. For each gene, we 

divided 6,665 GTEx samples into those from affected and unaffected tissues and compared 

their expression levels using a Wilcoxon rank sum test (see Methods and Supplementary 

Table S6). Out of 1,823 genes that mapped to three or less affected tissues (through the 

HPO), more genes were up regulated (52%) than down regulated (41%). To test the 

significance of these proportions, we constructed a random control model where the affected 

tissue(s) were randomly chosen 1,000 times for each gene and recomputed the fraction of up 

and down regulated genes. The fraction of up regulated genes was significantly larger in our 
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data compared to the control (one sample T-test p-value < 0.001, Figure 2A,). This finding 

also supports previous observations (Antanaviciute et al., 2015; Barshir et al., 2014).

We further divided these genes into those linked with autosomal dominant (AD) and 

autosomal recessive (AR) disorders according to the HPO. Out of 461 genes exclusively 

associated with AD disorders, 60% were up regulated whereas 34% were down regulated in 

the affected tissue(s). For 743 AR genes, the fractions of up and down regulated genes were 

not different. As such, enrichment of up regulated genes in affected tissues was significantly 

different between AD and AR diseases (OR 1.7 95% CI 1.35–2.24, Fisher’s exact p-value 

5.76×10−6, Figure 2A). Further analysis by tissue suggested that the difference between AD 

and AR was mostly driven by diseases affecting specific tissues such as brain and muscle, 

but not blood (Figure 2B, using tissues with ≥ 50 genes in AD and AR categories).

In some tissues relatively few genes may dominate expression, pancreas and blood being 

extreme examples (Melé et al., 2015). Since GTEx experiments were conducted at a set read 

depth for all tissue samples, cross-tissue comparisons with these tissues could be biased, 

especially for low expressed genes. To address this potential bias, we substituted the RPKM 

expression values of each gene with their rank in the sample, and recalculated fractions of up 

and down regulated genes (Supplementary Figure S1). Another possible bias may stem from 

the different numbers of samples available for each tissue. All brain tissues combined 

constituted the largest group (n=889), outnumbering the smallest group of uterus samples 

(n=70) by more than 12-fold. Therefore, we recomputed this analysis using the 70 

expression values from the samples closest to the median expression of each gene (see 

Methods). Although the number of up and down regulated genes varied between these 

methods, the enrichment of up regulated genes in affected versus unaffected tissues was 

consistent. Moreover, AD genes maintained a stronger signal than AR genes both globally 

and for each tissue separately across these methods (Supplementary Figures S1–2, see 

Methods).

Linking elevated cross-gene and cross-tissue expression levels to phenotype

The expression level of a gene in a tissue can be compared either with the expression levels 

of other genes in the same tissue (“cross-gene”) or with the expression levels of the same 

gene across other tissues (“cross-tissue”). Using 6,665 GTEx samples from 25 tissues, we 

compared cross-gene and cross-tissue expression levels of 2,747 disease genes in each 

tissue. Cross-gene expression was represented by the mean expression of all GTEx samples 

within a tissue. Cross-tissue expression was estimated by comparing the expression level of 

a gene in one tissue with its expression in all other tissues. Specifically, we compared the 

expression levels in GTEx samples from one tissue with expression levels in samples from 

all other tissues using a Wilcoxon rank sum test. For each gene we repeated this procedure 

25 times (one for each tissue) and recorded the −log10 p-values derived from the test. The p-

values were computed to recognize elevated expression (see Methods and Supplementary 

Table S7). Cross-gene and cross-tissue expression levels for 2,747 disease genes are 

illustrated for heart and peripheral nervous tissue (Figures 3A and 3B). It is noteworthy that 

disease genes affecting these tissues could have low mean expression (cross-gene) but high 

cross-tissue expression, e.g., NKX2-6 in heart and SH3TC2 in nervous tissue, or vice versa, 
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e.g., ACTB in heart and HSPB1 in nervous tissue. In both tissues, some genes with extreme 

values on both cross-gene and cross-tissue axes, e.g., ACTC1, TNNT2 and TNNI3 in heart 

and MPZ in nervous tissue, have been implicated in cardiac and peripheral nervous system 

diseases, respectively (Supplementary Table S3). However, there are many examples in 

which both elevated cross-tissue and cross-gene expression do not correspond to disease 

manifestation. For instance, mutations in ATP2A2, a gene elevated in heart, have been 

implicated in a skin disorder (OMIM ID: 124200) but not in cardiac disease (Sakuntabhai et 

al., 1999). Similarly, the SPARC gene elevated in peripheral nervous tissue, affects the 

central nervous system but not the peripheral one (OMIM ID: 616507).

We began to quantify expression-phenotype relationships by systematically examining the 

genes at the extreme points of expression. For each tissue, we computed the enrichment of 

phenotype-causing genes among the top 10% of genes on the cross-gene and/or cross-tissue 

axes (shown as dashed lines in Figures 3A and 3B). For 14 out of the 25 tissues, ORs 

demonstrated overrepresentation of phenotype-causing genes in the top 10% of genes using 

cross-gene or cross-tissue measures (i.e., lower CI of log2(OR) > 0 and Fisher’s exact p-

values < 0.05). Genes with both high cross-gene and high cross-tissue values (referred to as 

“intersect”) showed stronger enrichment for 12 of these tissues. These enrichments were 

greater than 5-fold (ORs > 5, Fisher’s exact p-values < 0.001) in pancreas, brain, thyroid, 

pituitary, nervous tissue and heart. Supplementary Figure S3 illustrates cross-gene and cross-

tissue expression levels of disease genes in all tissues.

To expand this analysis we performed a receiver operating characteristic (ROC) analysis so 

that all genes and not only the top 10% were included. Here, an area under the ROC curve 

(AUC) of > 0.5 indicates that elevated expression in a tissue increases the chance to observe 

a phenotype in that tissue. Figure 4 summarizes the AUCs computed for all tissues using 

cross-gene and cross-tissue expression separately. Overall, 15 of the 25 tissues presented a 

non-random relationship (i.e., a lower bound AUC CI > 0.5) between elevated expression 

levels of disease genes and the affected tissues using cross-gene and cross-tissue measures 

(Figure 4A). The tissues identified here agreed with those identified using only the top 10% 

of expressed genes, with the exception of pituitary and with the addition of colon and testis. 

The maximum AUC of 0.69 (95% CI 0.64–0.75) was observed for nervous tissue using 

cross-gene expression. Significant differences between AUCs using cross-gene and cross–

tissue expression measures were observed for muscle, brain, blood, heart, small intestine, 

thyroid and vagina (DeLong’s p-values < 0.01, indicated in Figure 4A). For example, muscle 

demonstrated a 10% increase using cross-gene expression (DeLong’s p-value 2.6×10−17, 

Figure 4B) whereas small intestine demonstrated a 13% increase using the cross-tissue 

measure (DeLong’s p-value 0.002, Figure 4C). Overall, AUCs demonstrated a weak 

(relatively small AUCs) but significant (p-values < 0.01) link between elevated expression 

and phenotype for a majority of tissues.

To assess the robustness of our results, we recalculated cross-tissue p-values using additional 

methods described above. Specifically, we substituted RPKM expression values with gene 

ranks and used an equal sample size across all tissues (Supplementary Tables S8–9). We 

chose a non-parametric ranking test over conventional differential expression tools since the 

latter are designed to compare groups, each relatively homogenous. In our analyses however, 
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heterogeneous expression profiles from multiple tissues were grouped together. Nonetheless, 

we also calculated p-values using limma-voom (Law et al., 2014) instead of the Wilcoxon 

rank sum test (see Methods and Supplementary Table S10). A comparison between the p-

values that were calculated using the different methods is shown in Supplementary Figures 

S4–6. Ranking expression data mainly impacted the tissues where few genes dominated the 

global expression repertoire (e.g., blood, muscle and pancreas, Supplementary Figure S4). 

Using an equal but relatively small number of samples for each tissue resulted in lower 

statistical power limiting the range of p-values (Supplementary Figure S5). The relationship 

between p-values from our original approach and from limma-voom was non-linear for most 

tissues, which suggested a general property of comparing parametric (limma-voom) and 

non-parametric (Wilcoxon rank-sum) tests. Discordant p-values observed in brain tissue 

could be the result of combining heterogeneous brain regions. Cerebellum, for example, is 

known to have a unique expression pattern compared to other brain regions (GTEx 

Consortium, 2015). Indeed, a separate analysis of cerebellum expression showed a similar 

relationship to that observed in other tissues (Supplementary Figure S6). Most importantly, 

these differences did not significantly alter the level of agreement between expression and 

phenotype for most tissues, supporting the robustness of our results (Supplementary Figure 

S7).

Web Interface

To facilitate the integration of gene expression and phenotype, we created an online platform 

where a set of genes can be projected onto cross-gene and cross-tissue expression space in 

each tissue. We linked this platform to the full set of HPO terms, such that genes associated 

with any phenotype can be analyzed: http://e2p.dbmi.hms.harvard.edu.

Mapping diseases to sub-organ tissues

Although GTEx includes expression profiles of sub-organ regions (e.g., multiple brain 

regions), systematic mapping of diseases to these specific regions through OMIM and HPO 

is challenging. Nonetheless, we attempted to make this distinction in some cases. For 

instance, we classified brain phenotypes into those mapped or not mapped to cerebellum 

(using HPO terms containing the string “cerebellar” or “cerebellum” – see Methods). We 

found that cerebellum expression levels of 527 genes associated with cerebellum phenotypes 

matched slightly better than the collection of all other brain diseases with mixed expression 

(Supplementary Figure S8). Similarly, we singled out genes associated with cardiac atrial 

(159 genes) and ventricular (285 genes) phenotypes (using keywords associated with each – 

see Methods), and matched them with GTEx expression from atrial appendage and left 

ventricle respectively. Here the specific tissues did not match better than the combined set of 

heart diseases and mixed expression (Supplementary Figure S9, and Supplementary Tables 

S11–12). Our online platform enables a view of expression in all sub-organ tissues.

Enriched biological processes of disease genes in each tissue

To further explore expression-phenotype relationships, we categorized 2,747 disease genes 

into four groups based on expression (mean RPKM ≥ 1) and the presence of a phenotype in 

each tissue (see Methods and Supplementary Table S13). Groups are denoted by “E” for 

expression or “P” for phenotype and with “+” or “-” signs to indicate presence or absence 

Feiglin et al. Page 7

Cell Syst. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://e2p.dbmi.hms.harvard.edu


respectively (Supplementary Figure S10A). For instance, E+P- group represents genes that 

are expressed in a tissue but, where no information linking the genes to a phenotype in the 

same tissue have been reported. Combining all tissues, we generated a global summary of 

the genes in each of the four groups and their intersections (Supplementary Figure S10B). 

Notably, no single gene was unique to any one of the four groups, and 487 genes were found 

in all four groups. In each tissue, we then performed a Gene Ontology (GO) enrichment 

analysis for each of the four groups separately. We searched for enriched terms in the GO 

Biological Process category with only disease genes as a background (see Methods). The 

full list of enriched categories is presented in Supplementary Table S14.

Genes expressed in their affected tissues (E+P+) were likely to participate in tissue-specific 

processes such as steroid biosynthesis for adrenal gland, immune pathways for blood, neural 

and synaptic pathways for brain, and metabolic processes in liver. Of note, we observed 

several pathways in this group that have not been widely described. For instance, excision 

repair cross-complementing genes and POLD1, involved in DNA replication and repair, 

were expressed and associated with the diseases in adipose tissue. This observation could 

explain recent findings linking DNA damage and metabolic disease (Shimizu et al., 2014). 

In spleen, the E+P+ group was enriched with the genes involved in lipid transport and 

metabolism suggesting a role for spleen in lipid metabolism (Asai et al., 1988; Fatouros et 

al., 1995). An interesting observation for E+P+ genes was that compared to cardiac muscle, 

skeletal muscle was associated with diverse metabolic pathways. The genes in the E+P- 

group could, in part, suggest undiscovered phenotypes. Alternatively, such genes may be 

functionally redundant or only required under certain conditions. The majority of tissues in 

this group were enriched with diverse metabolic pathways. This supports the hypothesis 

suggesting redundant metabolic pathways (Wang and Zhang, 2009).

Genes causing phenotype but not expressed (E-P+) constituted the smallest group (919 

genes, Supplementary Figure S10). These genes warrant an explanation as to the observed 

phenotype. One possibility would be that the affected tissues are not a direct outcome of the 

mutated gene but rather a secondary effect caused by disorders in other tissues. Among 919 

genes, 592 (64.4%, Supplementary Figure S10) are associated with phenotypes in the other 

tissues, i.e., they also belong to E+P+ group. This could account for comorbidities affecting 

multiple tissues. Additionally, the genes in this group might only be expressed under certain 

conditions. For instance, genes from the blood coagulation and wound healing processes, 

activated during bleeding and injury, were enriched for blood in this group. Furthermore, 

genes that are not expressed in adult tissues could play important roles, such as those highly 

expressed at specific time windows during development. We did not include gene expression 

profiles from developing organs and tissues in this study as all GTEx samples included in 

our analysis were collected from adults (ages 20–70). For instance, mutations in DCX are 

implicated in X-linked lissencephaly-1 (OMIM ID: 300067), causing mental retardation and 

seizures. However, this gene is expressed at low levels (mean RPKM ≤ 1 in GTEx) in 

multiple regions of adult brains. Conversely, expression values from the Human Brain 

Transcriptome (HBT) project (Kang et al., 2011) show that DCX is highly expressed in the 

developing brain, and that its expression level decreases with age (Supplementary Figure 

S11). The final group of genes that are not expressed and do not present a phenotype in the 

tissue (E-P-) were enriched for pathways unrelated to their steady state tissue function 
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including general immune response pathways in brain, muscle and testis, and neurologic 

system processes in almost all tissues excluding brain and pituitary.

DISCUSSION

Genomics remains a long way from being able to predict disease phenotype ab initio from 

novel mutations. Nonetheless, the accumulation of genome-scale data has permitted 

incremental advance. Specifically, whole exome sequencing (WES) has considerably 

broadened our perspective on genetic causes of diseases and on an increasing fraction of 

variants that do not appear to be associated with any clinical phenotype (Chen et al., 2016; 

Lek et al., 2016). Furthermore, the clinical imperative to look for disease manifestations in 

the correct tissue for any new potentially deleterious variant discovered in individuals, 

continues to grow with the increased clinical use of WES.

At a whole organismal level, predicting the existence of any disease phenotype based on 

sequence variation has been approached through breaches of constraints on conservation and 

biochemistry (Adzhubei et al., 2013; Moreau and Tranchevent, 2012; Sim et al., 2012; 

Thusberg et al., 2011), protein interaction network properties (Barabási et al., 2011), guilt-

by-association in multi-omic studies (Lee et al., 2011), and patterns of gene expression 

(Butler et al., 2015) to name but a few. Here, we examined the extent to which cross-tissue 

transcriptional activity of genes implicated in disease can inform which tissues are affected 

in the disease. We focused on rare genetic disorders where genetics has large effects on 

phenotype. The plausibility of extending our current approach to common diseases is 

unclear (Blair et al., 2013; Manolio et al., 2009). To the best of our knowledge, a 

comprehensive analysis integrating gene expression and phenotypes of rare genetic disorders 

has not previously been performed at this scale.

Potential mechanisms for dominant inheritance include gain of function mutations, reduced 

gene dosage (haploinsufficiency) and dominant negative effect of mutated proteins (Wilkie, 

1994). For instance Zhong et al. showed that dominant disorders were enriched for in-frame 

mutations likely to produce a defective protein that could interfere with the normal allele, as 

compared to truncating mutations that eliminate the protein (Zhong et al., 2009). In line with 

these findings we observe a stronger tendency of genes associated with dominant diseases to 

have elevated expression in their affected tissues. This may indicate the sensitivity of highly 

expressed genes to dosage change (Figure 2).

There are several limitations in our study. In the context of gene expression, the dynamic 

nature of transcriptional activity must be considered. Gene expression levels change rapidly 

under pathophysiological changes and along with development, maturation and aging. We 

used tissue-wide gene expression profiles from generally healthy adults between 20–70 

years old, while the majority of Mendelian disorders onset early in life and are possibly 

linked to gene expression programs specific to fetal development (Wilber et al., 2011). 

Indeed, under disease conditions such as heart failure, reactivation of fetal gene expression 

program is observed (Chien and Olson, 2002). Expanding our approach to organ specific 

developmental gene expression profiles such as the HBT dataset (Kang et al., 2011) could 

inform of fetal gene programs; however, such datasets are not available for most human 
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tissues. Inevitably, a gene expression snapshot at a single time point and under specific 

conditions conveys a narrow scope of information. Other factors limiting the power of this 

study are partial knowledge of disease-causing genes and of the affected tissues. Efforts to 

systematically map diseases to HPO terms have contributed greatly. However, in addition to 

incomplete annotation, disease manifestations vary largely across age, gender and ethnicity 

and cannot be summarized trivially. System level processes may also have a crucial role in 

determining the affected tissues. A dysfunctional pathway in one tissue could initiate the 

perturbation of reactive pathways that propagate and affect other organs and tissues. Primary 

signs and symptoms in patients may reflect the secondary effect of causal pathways in 

different tissues. For instance, genes that regulate body weight do not necessarily regulate 

energy metabolism or pathways in adipose tissue but rather exert an effect through altered 

activity in brain (Locke et al., 2015). Lastly, severe disease-causing genetic variants and 

associated genes are absent in genetic disorder databases due to embryonic lethality and low 

fitness (Filges and Friedman, 2015). These limitations suggest future directions for sample 

collection and measurement to enhance the links between genetic variants and their clinical 

manifestations. Specifically, extending GTEx to include developing tissues, or at least 

cognate ex vivo organoids from multiple individuals (Camp et al., 2015) should shed more 

light on the incomplete links between gene variants and tissue-specific disease 

manifestation.

Notwithstanding these limitations, our findings suggest several features of gene expression 

that could be incorporated into evaluating likelihood of disease manifestation and gene 

function in specific tissues. These include those tissues particularly susceptible such as 

pancreas and central nervous system, patterns of expression across and within tissues, 

disease transmission model and extremes in expression distribution. Existing disease-

prediction models can be augmented with these insights, and our online application can 

facilitate discoveries in this domain.

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Isaac Kohane (isaac_kohane@harvard.edu).

METHOD DETAILS

Mapping genes to diseases and diseases to tissues

OMIM text files were downloaded from the OMIM catalog: www.omim.org, (on 

21/01/2016) and parsed with perl scripts to extract the associations between 4,508 

phenotypes and 3,483 genes. All evidence codes linking genes to diseases were included. 

Using the Human Phenotype Ontology (HPO) browser (http://human-phenotype-

ontology.github.io) we searched for terms representing 25 GTEx tissues. For each term we 

recorded the OMIM entries linked with it. For example, the term “Abnormality of adipose 

tissue” (HP:0009124) was linked to 139 OMIM entries. Supplementary Table S1 lists the 

HPO terms used for each tissue. Our choice of HPO terms used to represent each tissue was 

determined by the medical expertise of the authors, however the online platform 

accompanying this paper enables users to make their own selection. 5,295 OMIM entries 
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mapped to at least one tissue. Of these, 3,449 entries were associated with at least one 

disease gene spanning a total of 2,808 genes. Intersecting these genes with the genes 

included in our GTEx expression dataset (see below) resulted in 2,747 genes associated with 

3,397 diseases. Four disease genes (DCAF8, IDS, SHOX, CSF2RA) were represented 

multiple times in GTEx. In these cases we chose the expression profile with the highest 

expression levels across a majority of tissues. To generate mappings of affected tissue sub-

regions we used the HPO text files (downloaded on 23/01/2017) to construct a graph (tree) 

representing the hierarchical structure of HPO terms (using the hp.obo file). We identified 

the HPO terms matching keywords and extracted those terms and their sub-terms (i.e., sub-

component in the graph) using the R igraph package. Specifically, for cerebellum we 

retrieved 76 such terms using the string “cerebell” (ignoring case). Similarly for heart we 

queried the words “atrium” or “atrial” (42 terms) and “ventricle” or “ventricular” (195 

terms). For heart we limited our search to the branch of the term: “Abnormality of the 

cardiovascular system” (HP:0001626) in the HPO graph. A list of the HPO terms for the 

tissue sub-regions is presented in Supplementary Table S11. Finally, we used the 

phenotype_annotation.tab file to connect the terms with their diseases and crossed this 

information with our data presented in Supplementary Table S12.

Tissue-wide transcriptome profiles

Gene level RPKM values from 8,555 GTEx samples were downloaded from the GTEx 

portal (www.gtexportal.org) using version 6 files (GTEx_Analysis_v6_RNA-seq_RNA-

SeQCv1.1.8_gene_rpkm.gct). In our analysis we included 7,051 samples that were included 

by the GTEx consortium in the expression Quantitative Trait Loci (eQTL) analysis 

(GTEx_Analysis_V6_eQTLInputFiles_geneLevelNormalizedExpressionMatrices.tar.gz). 

Since we were interested in tissues and organs affected in disease, we further filtered out cell 

line samples, arriving at a final set of 6,665 samples spanning 44 specific tissue types. In our 

analysis, we used the GTEx broad tissue categories (defined in 

GTEx_Data_V6_Annotations_SampleAttributesDS.txt), which combines multiple specific 

tissue types into broader groups. For example multiple specific brain regions are combined 

to the single tissue “Brain”. Thus 44 specific tissues in our data map to 25 broader tissue 

types as presented in Supplementary Table S4. We focused on 19,644 protein coding genes 

excluding all other gene types as defined in the gene model used by the GTEx consortium, a 

patched version of GENCODE v19 (file: gencode.v19.genes.patched_contigs.gtf.gz). For 

each gene, we computed the mean expression level of samples from each of the 25 broad 

tissue types.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data normalization

For statistical tests RPKM values were transformed to log10 scale and one was added so that 

0 RPKM values could be log transformed (log10(RPKM+1)). Quantile normalization was 

performed separately for each tissue using the R package preprocessCore.
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Cross-tissue gene expression

Using 6,665 GTEx samples, for each gene we compared the expression of samples from a 

single tissue with all other tissues using the Wilcoxon rank sum test from the standard stats 

package in R. We repeated this procedure 25 times, once for each tissue comparing each 

gene’s expression in one tissue with its expression in all other tissues. The direction of the 

difference was determined by setting the alternative hypothesis to “greater” for up regulation 

(and “less” for down regulation). We used the negative log10 p-values from this test as our 

measure of cross-tissue expression. When p-values were zero and therefore transformed to 

infinity (Inf in R) we set the negative log10 p-value to be just above the next largest value. 

The results for the “greater” alternative are presented in Supplementary Table S7. To 

evaluate p-values for specific tissue sub-regions, we singled out the samples of the specific 

sub-region and compared their expression with all other samples.

To demonstrate the robustness of our results, we recomputed the cross-tissue p-values where 

the GTEx gene expression values were substituted for their rank within each sample 

(Supplementary Table S8). Additionally, p-values were computed using the same number of 

samples for each tissue. This was achieved by selecting the 70 (based on the lowest number 

of samples in uterus) representative samples for each gene with the closest expression to the 

median value of all samples (Supplementary Table S9). Finally we computed limma-voom 

p-values by executing the “voom” function from the R “limma” package and extracting the 

p-values. Since we are evaluating the level of up regulation, the p-values of genes with 

negative fold changes were set to 1 (Supplementary Table S10). Our choice for limma-voom 

was because it could easily handle thousands of samples as opposed to most other tools. As 

input to limma-voom we used the GTEx raw counts raw counts matrix 

(GTEx_Analysis_v6p_RNA-seq_RNA-SeQCv1.1.8_gene_reads.gct).

For comparing expression in affected versus unaffected tissues we performed a similar 

procedure as above, only merging samples from all the affected tissues into one group and 

comparing them with the expression of all samples of the unaffected tissues. Here we 

corrected the p-values for multiple hypothesis (using the R function p.adjust with the “fdr” 

option).

Receiver-Operating Characteristic (ROC) analysis

Receiver Operating Characteristics (ROC) analysis was performed using the pROC packge 

in R. This package implements the method described in (Carpenter and Bithell, 2000) to 

compute confidence intervals for the area under the ROC curve. To compare two ROC 

curves, the roc.test function was used which implements the DeLong method to assign a p-

value (DeLong et al., 1988).

GO enrichment analysis

For Gene Ontology enrichment analysis, we used GO terms from the Molecular Signature 

Database (MSigDB) C5 - Biological Process (file: c5.bp.v5.1.symbols.gmt, downloaded on 

05/18/2016). Crossing 2,747 disease genes with 6,178 genes in the MSigDB C5 Biological 

Process file, resulted in 1,494 shared genes. These genes served as the background for the 

GO enrichment analysis. For each tissue we divided the disease genes into the four groups as 
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described in the Results section and performed a hypergeometric test for each of the four 

groups in all 25 tissues. GO terms were enriched if their corrected hypergeometric p-value 

was < 0.01 and the number of intersecting genes was ≥ 3 (Supplementary Tables S13 and 

S14).

ADDITIONAL RESOURCES

Description: http://e2p.dbmi.hms.harvard.edu

To facilitate the integration of gene expression and phenotype, we created an online platform 

where a set of genes can be projected onto cross-gene and cross-tissue expression space in 

each tissue from the GTEx data. We linked this platform to the full set of HPO terms such 

that genes associated with any phenotype can be analyzed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Disease manifestation and gene expression across tissues
(A–B) Based on information gleaned from the Human Phenotype Ontology, distributions of 

3,397 OMIM diseases across the tissues and organs they affect (A) and across the number of 

tissues and organs affected in each disease (B). (C) Distribution of 19,644 protein coding 

genes (coloured grey) and 2,747 disease genes (coloured dark blue) across the number of 

tissues in which they are expressed (mean RPKM ≥ 1). The insert combines bars from ≤ 5 

tissues and ≥ 20 tissues to demonstrate enrichment of disease genes in the latter. (D) 
Boxplots representing the number of affected tissues by genes expressed in ≥ 20 tissues and 

≤ 5 tissues. All analyses here are limited to the 25 tissues included in this study.
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Figure 2. Up and down regulated genes in affected versus unaffected tissues
(A) Fractions of up and down regulated disease genes in affected tissues compared to 

unaffected tissues are shown for our data and for a random control model, including disease 

genes affecting up to 3 tissues (n=1,823, left bars). These fractions are also shown for 

subsets of genes associated with autosomal dominant (n=461) and autosomal recessive 

(n=743) disorders (right bars). (B) Comparing up and down regulation of genes associated 

with autosomal dominant (D) and autosomal recessive (R) disorders across different tissues. 

In these analyses up and down regulation were determined by dividing 6,665 GTEx samples 

into those from affected and unaffected tissues and comparing their expression using a 
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Wilcoxon rank sum test. Fractions of genes in each group are inscribed in the bars (rounded 

to 2 decimal points). Odds ratios (OR) comparing up and down regulated genes in dominant 

and recessive disorders are indicated (“*” and “**” correspond to p-values < 0.01 and < 

0.001 respectively).
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Figure 3. Cross-gene and cross-tissue expression
Cross-gene and cross-tissue expression measures are plotted for 2,747 disease genes in heart 

(A) and nervous tissue (B). Genes associated with phenotypes affecting each tissue are 

colored red; other disease genes are colored grey. Cross-gene expression corresponds to 

mean expression of all GTEx samples from one tissue. Cross-tissue expression corresponds 

to the –log10(p-value) derived from a Wilcoxon rank sum test comparing expression of a 

gene in one tissue with its expression in all other tissues (computed to identify elevated 

expression – see Methods). Circled genes are discussed in the text. Horizontal and vertical 

dashed lines mark the top 10% value on each axis, dividing the plot into quadrants. (C) Odds 

ratios representing enrichment of genes associated with phenotypes in each tissue versus 

those that are not, are computed using the top 10% of genes on the cross-gene axis (colored 

red), cross-tissue axis (colored dark blue) and their intersect (colored green). The numbers of 

genes associated with a phenotype in each tissue are shown on the right.
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Figure 4. Linking expression and phenotype
(A) AUCs quantifying the strength of expression-phenotype relationships are shown for each 

tissue with 95% confidence intervals based on cross-gene (colored red) and cross-tissue 

(colored dark blue) expression measures. Numbers of genes associated with a phenotype in 

each tissue are shown on the right. Significant differences between cross-gene and cross-

tissue measures are indicated with an asterisk (“*” and “**” correspond to p-values < 0.01 

and < 0.001 respectively). ROC curves for Muscle (B) and Small Intestine (C) demonstrate 

differences between cross-gene and cross-tissue measures.
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