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Abstract. Curcumin, isolated from rhizome of turmeric, 
has been widely studied as a potential therapeutic drug for 
cancer. However, protective effects of curcumin on chronic 
heart failure (CHF) have not been fully studied. In the present 
study, the effects of curcumin on CHF and the underlying 
mechanisms were investigated. A total of 40 rabbits were 
randomized into 4 groups: Control rabbits fed with placebo 
(Con) or curcumin (Con‑cur), CHF rabbits fed with placebo 
(CHF) or curcumin (CHF‑cur). CHF was induced by volume 
and pressure overload. The effects of curcumin on cardiac 
function and left ventricular (LV) structure were assessed by 
echocardiography and histology. The effects of curcumin on 
CHF molecular biomarkers were detected by dihydroethidium 
and immunohistochemical staining. The effects of curcumin 
on Dickkopf‑related protein 3 (DKK‑3), p38 mitogen‑activated 
protein kinase (p38), c‑Jun N‑terminal kinase (JNK) and 
apoptosis signal‑regulating kinase 1 (ASK1) were assessed 
by immunohistochemical staining and western blot analysis. 
Cardiac dysfunction and LV remodeling were successfully 
produced by ten weeks volume overload and eight weeks pres-
sure overload in the CHF group. Compared with the Con group, 
the CHF group demonstrated higher levels of CHF molecular 
biomarkers, a lower level of DKK‑3 expression and alterations 
of p38, JNK and ASK1 protein expression. Curcumin allevi-
ated all those abnormalities markedly in the CHF‑cur group. 
In summary, curcumin may exert cardioprotective effects by 
up‑regulating DKK‑3, which in turn may inhibit p38 and JNK 
signaling pathways in an ASK1‑dependent way. The present 
study demonstrated that Dickkopf‑3 upregulation mediates the 

cardioprotective effects of curcumin on chronic heart failure 
for the first time.

Introduction

With a growing epidemic, chronic heart failure (CHF) 
results in an economic burden worldwide and has become 
a major factor causing disabilities and mortality (1,2). CHF 
is characterized by progressive cardiac dysfunction and 
remodeling  (3,4). Volume and pressure overload are the 
most common promoters in pathological process of CHF (5). 
Cellular and molecular mechanisms are involved in the dete-
rioration of CHF, including inflammation, oxidative stress 
and fibrosis but the underlying mechanisms are not fully 
understood (6).

Curcumin [1,7‑bis (4‑hydroxy‑3‑methoxyphenyl)‑1,6‑hep-
tadiene‑3,5‑dione] is the major active component of turmeric 
isolated from the rhizome of Zingiberaceae and has widely 
been studied as an anticancer agent  (7,8). Curcumin is a 
powerful antioxidant and anti‑inflammatory reagent (9), as 
well as a modulator of protein kinase, DNA methyltransferase 
and histone acetyltransferase (10). Curcumin is closely asso-
ciated with the expression and activity of various regulatory 
proteins  (11). Several studies have reported the protective 
effects of curcumin on cardiovascular diseases, including 
protection against cardiac dysfunction and remodeling in 
heart failure in rats (8,12,13). However, the mechanism by 
which curcumin exerts cardioprotective effects has not been 
fully understood.

Dickkopf‑related protein 3 (DKK‑3), a member of the 
Dickkopf glycoprotein family, is recognized as a negative 
regulator of many tumors and is crucially involved in cell 
growth, proliferation and immunity (14). DKK‑3 is abun-
dantly expressed in skeletal muscle and heart (15,16). DKK‑3 
expression was decreased in hypertrophic murine heart and 
human dilated cardiomyopathy heart (5). In animal models, 
cardiac dysfunction and remodeling induced by pressure 
overload can be exacerbated by DKK‑3 depletion and can 
be rescued by DKK‑3 overexpression  (5). Our previous 
study indicated that DKK‑3 served a cardioprotective role in 
the pathology of CHF by inhibiting p38 mitogen‑activated 
protein kinase (p38) and c‑JunN‑terminal kinase (JNK) 
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signaling pathways in an apoptosis signal‑regulating kinase 1 
(ASK1)‑dependent way (16). DKK‑3 may be the downstream 
target of curcumin owing to its similar cardioprotective 
effects in heart failure. The present study was designed to 
investigate whether curcumin exert cardiac protective effects 
by regulating DKK‑3 and try to clarify whether p38 and 
JNK pathways are involved in the underlying molecular 
mechanisms.

Materials and methods

Animal preparation. A total of 40 adult New Zealand 
rabbits (male, weighing 2‑2.5 kg, ~12‑week‑old) were kept 
in the breeding facility for one week prior to experimental 
use. Rabbits were singly housed in animal holding cages at 
temperature (22±2˚C) and humidity (45‑50%), with a 12‑h 
light/dark cycle and unrestricted access to food and water. 
Rabbits were randomized into four groups: Control rabbits 
given with placebo (Con, n=10) or curcumin (Con‑cur, n=10), 
chronic heart failure rabbits fed with placebo (CHF, n=10) or 
curcumin (CHF‑cur, n=10). Placebo or curcumin were fed 
three days prior to the pressure overload surgery and this 
continued until the day of sacrifice. The dose of curcumin 
(Hebei Food Additive Co., Ltd. Shijiazhuang, Hebei, China) 
and placebo (Kangxin Co., Ltd., Shijiazhuang, Hebei, China) 
both were 100 mg/day/kg in capsules, which were chosen with 
reference to a previous study (17). The placebo was made of 
starch and was contained in an identical capsule to that of 
curcumin. All procedures were according to the ‘Guide for 
the Care and Use of Laboratory Animals’ published by the 
US National Institutes of Health (NIH Publication no. 85‑23; 
revised 1996) and approved by the Institutional Animal Care 
and Use Committee at Renmin Hospital of Wuhan University 
(Wuhan, China).

CHF production. CHF was induced by ten weeks volume 
overload and eight weeks pressure overload as previously 
described with slight modifications (18). Prior to each surgery, 
all rabbits were anesthetized with pentobarbital sodium 
(30 mg/kg) by intravenous injection. Volume overload was 
produced by puncturing across the aortic valve through 
carotid artery retrogradely with a catheter (external diameter 
1.30 mm). The catheter puncturing across the aortic valve 
was repeated until the pulse pressure increased by ~100%. 
Two weeks following this, pressure overload was produced 
by ligating the abdominal aorta partly just above renal artery 
branch out. This resulted in abdominal aorta stenosis by ~50% 
in CHF rabbits. Rabbits in the Con and Con‑cur groups under-
went a sham operation, but neither aortic valve regurgitation 
nor aorta stenosis was produced.

Cardiac f unct ion and s t ructure  eva lua t ion by 
echocardiography. Transthoracic echocardiography (10S 
transducer, Vivid 7, GE Healthcare, Chicago, IL, USA) was 
performed at baseline and eight weeks following the aorta 
stenosis surgery. Left ventricular ejection fraction (LVEF), 
left ventricular fractional shortening (LVFS), aortic diameter 
(AO), left ventricular posterior wall thickness (LVPW) and 
interventricular septal thickness (IVS) were assessed by 
echocardiography.

Heart weight and cardiac histology. Following the echocar-
diography, all rabbits were sacrificed and tissue samples from 
left ventricular (LV) were prepared for the following analysis. 
LV samples were fixed in 4% paraformaldehyde solution at 
room temperature for 24 h and then were sliced into 5‑µm 
sections transversely. Haematoxylin & eosin (H&E), masson 
(G1006, Servicebio, Inc., Wuhan, China), picrosirius red (PSR) 
(G1018, Servicebio, Inc.) staining and terminal deoxynucleo-
tidyl transferase‑mediated dUTP nick end labeling (TUNEL) 
assay (In Situ Cell Death Detection kit; cat. no. 11684817910; 
Roche Diagnostics, Basel, Switzerland) were performed. In 
H&E staining, the slides were successively stained with hema-
toxylin solution and eosin solution at room temperature for 
5 min respectively. In masson staining, the slides were succes-
sively stained with iron hematoxylin solution, acid ponceau 
fuchsin solution and aniline blue solution at room tempera-
ture for 5 min each respectively. In PSR staining, the slides 
were stained with sirius red solution at room temperature for 
10 min. In TUNEL staining, slides of LV were first incubated 
with the TUNEL reaction mixture containing terminal deoxy-
nucleotidyl transferase (TdT) at 37˚C for 60 min. Subsequently, 
diaminobenzidine was added to the slides for 30 min and incu-
bated in substrate solution for an additional 15 min at 37˚C. 
The cross‑sectional area (CSA) of LV myocytes was analyzed 
based on H&E staining, LV interstitial collagen volume 
(%) was evaluated based on both Masson and PSR staining 
by Image‑Pro Plus 6.0 software (Media Cybernetics, Inc., 
Rockville, MD, USA). The cardiomyocyte apoptosis index 
was defined as the proportion of apoptotic cardiomyocytes 
among the total cardiomyocytes (apoptotic cardiomyocytes 
had deep‑brown nuclei while normal cardiomyocytes had 
blue nuclei).

Ultrastructure analysis. For cardiac ultrastructure analysis, 
LV samples were immediately soaked in pre‑cooled Ca2+‑free 
phosphate saline buffer (G1102; Servicebio, Inc.). The 
samples were successively fixed with 2.5% glutaraldehyde 
and 1% osmium tetroxide at 4˚C for 2 h. Then the samples 
were dehydrated by ethanol of gradient dilution (30, 50 and 
70%) at 4˚C for 10 min respectively, later the samples were 
further dehydrated using an acetone of gradient dilution 
(80, 90 and 100%) at room temperature for 10 min. Samples 
were sliced into 50 nm section, embedded in the Epon resin 
and then stained with uranyl acetate and lead citrate at 40˚C 
for 4 h. Sections were imaged under a transmission electron 
microscope (HT7700; Hitachi, Ltd., Tokyo, Japan).

Inflammation, hypertrophy and fibrosis biomarkers analysis. 
Reactive oxygen species (ROS) production of LV myocytes 
was detected by dihydroethidium (DHE; 10 mmol/l; D7008; 
Sigma‑Aldrich; Mecrk KGaA, Darmstadt, Germany) staining. 
Cryosections (10‑µm) were treated for 30 min at 37˚C, and 
the ethidium fluorescence (excitation/emission at 488/610 nm) 
was examined by digital fluorescence microscopy (Eclipse 
Ti‑SR; Nikon Corporation, Tokyo, Japan). The relative fluores-
cence intensity was analyzed by Image‑Pro Plus 6.0 software 
(Media Cybernetics, Inc.). Immunohistochemical staining 
was performed as described previously  (19). LV sections 
were incubated overnight at 4˚C with primary antibodies 
respectively as follows: Mouse monoclonal anti‑tumor necrosis 
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factor‑alpha (TNF‑α) antibody (1:200; cat. no. NB600‑1422; 
Novus Biologicals, Ltd., Cambridge, UK), mouse monoclonal 
anti‑matrix metallopeptidase‑2 (MMP‑2) antibody (1:200; 
cat. no.  ab2462; Abcam, Cambridge, UK), mouse mono-
clonal anti‑matrix metallopeptidase‑9 (MMP‑9) antibody 
(1:200; cat. no.  ab58803; Abcam) and mouse monoclonal 
anti‑sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) anti-
body (1:200; cat. no. ab2817; Abcam). Following washes with 
PBS three times, sections were incubated with the rabbit 
anti‑mouse immunoglobulin (Ig) M/horseradish peroxidase 
(HRP) secondary antibody (1:200; cat. no. bs‑0368R‑HRP; 
BIOSS, Beijing, China). A total of five fields of view 
(magnification, x200) were selected randomly for each slide 
under a light microscope (BX50, Olympus Corporation, 
Tokyo, Japan) and the relative mean optical density of ROS 
or each target protein was analyzed by Image‑Pro Plus 6.0 
software (Media Cybernetics, Inc.).

Detection of DKK‑3, p38, JNK and ASK1 expression. 
Immunohistochemical staining for DKK‑3 was performed 
as described above. Primary rabbit polyclonal anti‑DKK‑3 
antibody (1:200; cat. on. bs‑2686R; BIOSS) and secondary 
antibody mouse anti‑rabbit IgM/HRP (1:200, bs‑0369M‑HRP, 
BIOSS) were used in the staining. Western blotting was 
performed by using extracts from LV tissue homog-
enates. Radio‑immunoprecipitation assay lysis buffer (G2002 
Servicebio, Inc.) was used for protein extraction. The protein 
concentration of the LV tissue homogenates was measured by 
Pierce BCA Protein Assay kit (cat. no. 23225; Pierce; Thermo 
Fisher Scientific, Inc. Waltham, MA, USA) according to the 
manufacturer's protocol following centrifugation (4˚C, 10 min, 
15,000 x g). SDS‑PAGE gel wells were loaded with 50 µg of 
corresponding protein for electrophoresis. The proteins were 
transferred to a polyvinylidene fluoride membrane. The blots 
were incubated with the primary antibodies overnight at 4˚C 
as follows: Rabbit polyclonal anti‑DKK‑3 antibody (1:1,000; 
cat. no. bs‑2686R), rabbit polyclonal anti‑p38 antibody (1:1,000; 
cat. no.  bs‑0637R), rabbit polyclonal anti‑phospho‑p38 
(Thr180+Tyr182) antibody (p‑p38; 1:1,000; cat. no. bs‑0636R), 
rabbit polyclonal anti‑JNK (1:1,000; cat. no. bs‑10562R), rabbit 
anti‑phospho‑JNK (Thr183+Tyr185) antibody (P‑JNK; 1:1,000; 
cat. no.  bs‑1640R), rabbit polyclonal anti‑ASK1 (1:1,000; 
cat. no.  bs‑1425R), rabbit anti‑phospho‑ASK1 (Ser1033) 
antibody (P‑ASK1; 1:1,000; cat. no. bs‑5437R) and antibody 
against GAPDH (1:5,000; cat. no. bs‑2188R). Subsequently, the 
membrane was incubated with the mouse anti‑rabbit IgM/HRP 
secondary antibody (1:5,000; cat. no. bs‑0369M‑HRP) for 
1 h at room temperature. All antibodies used in western blot 
analysis were purchased from BIOSS. Visualization reagent 
(ECL; cat. no. G2014; Servicebio, Inc.) was used in the western 
blotting. Membranes were analyzed by Quantity One Imaging 
system (version 4.6.9; Bio‑Rad Laboratories, Inc., Hercules, 
CA, USA). The protein expression was normalized to that of 
GAPDH.

Statistical analysis. Quantitative data are presented as the 
mean  ±  standard deviation. Comparison between preop-
erative and postoperative parameters was performed by 
matched Student's t‑test. Multi‑group comparisons were 
examined via one‑way analysis of variance followed by a 

Student‑Newman‑Keuls post hoc test. The statistical differ-
ences were examined by the statistical software SPSS package 
v22.0 (IBM Corp., Armonk, NY, USA). P<0.05 was considered 
to indicate a statistically significant difference.

Results

Curcumin improves cardiac function. The present study aimed 
to determine the effect of curcumin on chronic heart failure 
and whether curcumin improved cardiac function by observed 
symptoms and echocardiography. All rabbits suffered from 
evident dyspnea and edema in the CHF group, and six rabbits 
suffered from cough in the CHF‑cur group. Based on the 
echocardiography data (Table I), LVEF and LVFS of the CHF 
group were significantly lower, and AO, LVPW and IVS of 
the same group were significantly higher compared with the 
Con group. The above results indicate that ten weeks volume 
and eight weeks pressure overload produced CHF success-
fully in the CHF and CHF‑cur groups. Additionally, ten 
weeks treatment with curcumin significantly alleviated the 
symptoms and echocardiographic abnormalities in CHF‑cur 
group (Table I).

Curcumin inhibits heart remodeling. CHF is characterized 
by both cardiac dysfunction and cardiac remodeling (20). The 
effects of curcumin on cardiac remodeling was evaluated by 
cardiac morphology, ultrastructure and histology. Heart/body 
weight ratio of the CHF group was higher than the Con group, 
and curcumin treatment decreased the ratio in the CHF‑cur 
group compared with the CHF group (Fig. 1A). H&E staining 
demonstrated that average CSA of LV cardiomyocyte of 
CHF group was higher than those of Con group signifi-
cantly, and curcumin ameliorated myocardial hypertrophy 
(Fig. 1B H&E and C). Compared with the Con group, the 
ultrastructure of the CHF group demonstrated disarranged 
myofibrils, swelled mitochondrial and diminished crista. 
Curcumin partly alleviated the ultrastructure disorganization 
in the CHF‑cur group (Fig. 1B Ultrastructure). Marked cardiac 
fibrosis detected by Masson or PSR staining was demonstrated 
in the CHF group, and curcumin alleviated fibrosis in the 
CHF‑cur group (Fig. 1D MASSON, 1D PSR, 1E and 1F). 
Higher apoptosis of cardiomyocyte detected by TUNEL assay 
was demonstrated in the CHF group, and curcumin ameliorated 
this effect in the CHF‑cur group (Fig. 1D TUNEL and G).

Curcumin regulates the expression of certain CHF molecular 
biomarkers. Curcumin was demonstrated to improve cardiac 
function and inhibit heart remodeling. The effects of curcumin 
on the biomarkers above, including ROS, TNF‑α, MMP‑2 
and MMP‑9, were investigated. In the sample images of 
DHE staining, red granules in cytoplasm and cell nucleus 
indicated positive staining of ROS (Fig. 2A ROS) and yellow 
granules in cytoplasm indicated the positive staining of the 
target proteins in the sample images of immunohistochemical 
staining (Fig. 2A TNF‑α, 2D MMP‑2, 2D MMP‑9 and 2G 
SERCA2a). Quantitative analysis of the DHE staining and 
immunohistochemical staining indicated that expression 
of ROS, TNF‑α, MMP‑2 and MMP‑9 were increased in the 
CHF group compared with the Con group but these proteins 
were decreased in the CHF‑cur group (Fig. 2A‑F). Compared 
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Figure 1. Effects of curcumin on cardiac morphology and histology. (A) Effects of curcumin on heart/body weight ratio. (B) Representative images of 
H&E staining (magnification, x200; scale bar=50 µm) and ultrastructure of LVAW cardiomyocytes (magnification, x2,000; scale bar=3 µm). (C) Effects of 
curcumin on LVAW cardiomyocytes cross‑sectional area. (D) Representative images of LVAW, measured by Masson, picrosirius red staining and TUNEL 
assay (magnification, x200; scale bar=50 µm). Quantification of LVAW collagen volume (%) detected by (E) masson staining, (F) picrosirius red staining. 
(G) Quantification of cardiomyocyte apoptosis index detected by TUNEL assay. All data are expressed as the mean ± stadard deviation, n=10. *P<0.05. CHF, 
chronic heart failure; Con, control; Cur, curcumin; LVAW, left ventricular posterior wall thickness; TUNEL, terminal deoxynucleotidyl transferase‑mediated 
dUTP nick end labeling; H&E, haematoxylin & eosin.

Table I. Effects of curcumin on cardiac function and morphology.

Group	 Time	 LVEF (%)	 LVFS (%)	 AO (mm)	 LVPW (mm)	 IVS (mm)

Con	 Pre	 74.2±3.8	 39.9±3.3	 7.1±0.2	 2.1±0.2	 2.1±0.1
	 Post	 74.0±3.4b	 39.8±2.9b	 7.1±0.3b	 2.2±0.1b	 2.2±0.2b

Con‑cur	 Pre	 71.4±8.9	 38.0±7.4	 7.1±0.6	 2.2±0.4	 2.1±0.3
	 Post	 70.6±7.2	 37.2±5.6	 7.2±0.5	 2.2±0.5	 2.2±0.3
CHF	 Pre	 72.1±6.0	 38.2±5.0	 7.2±0.40	 2.2±0.3	 2.1±0.4
	 Post	 32.1±8.8a,c	 14.1±4.5a,c	 10.3±1.5a,c	 3.1±0.4a,c	 4.1±0.8a,c

CHF‑cur	 Pre	 70.2±5.3	 36.7±4.1	 7.2±0.4	 2.0±0.2	 2.1±0.2
	 Post	 48.3±12.9a,d	 23.0±7.2a,d	 8.7±0.5a,d	 2.6±0.3a,d	 3.1±0.3a,d

Data are expressed as the mean ± standard deviation (n=10). All data are expressed as the mean ± standard deviation (n=10). aP<0.05 post-
operative parameters vs. preoperative ones; bP <0.05 vs. postoperative parameters of CHF group; cP<0.05 vs. postoperative parameters of 
CHF‑cur group; dP<0.05 vs. postoperative parameters of Con group. AO, aortic diameter; IVS, interventricular septum thickness; LVEF, left 
ventricular ejection fraction; LVFS, left ventricular fractional shortening; LVPW, left ventricular posterior wall thickness; Post, postoperative; 
Pre, preoperative.
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with the Con group, the expression of SERCA2a decreased in 
the CHF group, and curcumin increased its expression in the 
CHF‑cur group (Fig. 2G and H).

Curcumin increases expression of DKK‑3. Previous studies 
demonstrated that DKK‑3 down‑regulation contributed to the 
stress‑induced or infarction‑induced dysfunction and remod-
eling in CHF (5,16). The influence of curcumin on DKK‑3 was 

further investigated. In the sample images of the immunohis-
tochemical staining (Fig. 3A), yellow granules in cytoplasm 
indicated the expression of DKK‑3. As illustrated in the 
images (Fig. 3A), DKK‑3 was mostly expressed in cytoplasm 
and its expression was higher in the Con group compared with 
in the CHF group and CHF‑cur group. Quantitative analysis 
of relative DKK‑3 expression levels based on immunohisto-
chemical staining indicated that DKK‑3 was reduced in the 

Figure 2. Effects of curcumin on the expression of CHF molecular biomarkers. (A) Representative images of ROS and TNF‑α staining and quantifica-
tion of (B) ROS and of (C) TNF‑α expression levels, as measured by DHE (ROS) and immunohistochemical staining (TNF-α) in LVAW cardiomyocytes. 
(D) Representative images of MMP‑2 and MMP‑9 and quantification of (E) MMP‑2 and (F) MMP‑9 expression levels, as measured by immunohistochemical 
staining in LVAW cardiomyocytes. (G) Representative images of SERCA2a and (H) quantification of its expression levels, as measured by immunohisto-
chemical staining in LVAW cardiomyocytes. Magnification, x200. Scale bar=50 µm. All data are expressed as the mean ± stadard deviation, n=10. *P<0.05. 
CHF, chronic heart failure; Con, control; Cur, curcumin; LVAW, left ventricular posterior wall thickness; MMP, matrix metalloproteinase; ROS, reactive 
oxygen species; SERCA, sarcoplasmic reticulum Ca2+ ATPase; TNF, Tumor necrosis factor; DHE, dihydroethidium.
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CHF group compared with the Con group but it was increased 
in the CHF‑cur group (Fig.  3A and  B). The western blot 
analysis indicated that expression levels of DKK‑3 were lower 
in the CHF compared with the Con group, while these were 
partially restored by curcumin treatment in CHF‑cur group 

(Fig. 3C and D), which were in accordance to the immunohis-
tochemistry staining results.

Dickkopf‑3 upregulation is involved in the cardioprotective 
effects of curcumin on CHF rabbits. DKK‑3 was demonstrated 

Figure 3. Effects of curcumin on DKK‑3, p38, JNK and ASK1 protein expression levels. (A) Representative images of DKK‑3 and (B) quantification of its 
expression levels in LVAW, as evaluated by immunohistochemical staining. (C) Representative images of DKK‑3 and (D) quantification of its expression, 
as evaluated by western blot analysis. (E) Representative images of p‑p38, p‑JNK and p‑ASK1 and quantification of (F) p‑p38; (G) p‑JNK and (H) p‑ASK1 
expression levels, as measured by western blot analysis. Magnification, x200. Scale bar=50 µm. All data are expressed as the mean ± stadard deviation, n=10. 
*P<0.05. ASK1, apoptosis signal‑regulating kinase 1; CHF, chronic heart failure; Con, control; Cur, curcumin; DKK‑3, Dickkopf‑related protein 3; LVAW, left 
ventricular posterior wall thickness; p, phosphorylated; T, total; p38, p38 mitogen‑activated protein kinase; JNK, c‑Jun N‑terminal kinase.
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to be an inhibitor of p38 and JNK signaling pathways (5,16). 
In order to reveal the signaling mechanisms involved in the 
regulation of curcumin, the influence of curcumin on DKK‑3, 
p38 and JNK was investigated. Compared with the Con group, 
p‑p38 and P‑JNK were significantly higher in the CHF group. 
Curcumin decreased p‑p38 and P‑JNK expression levels in 
CHF‑cur group compared with the CHF group (Fig. 3E‑G). 
This indicated that p38 and JNK signaling pathways were 
significantly activated during CHF and curcumin partially 
inhibited the p38 and JNK signaling pathways activation in the 
CHF‑cur group. In addition, ASK1 is regarded as the upstream 
component of the p38 and JNK signaling pathways and ASK1 
phosphorylation is largely responsible for the increase of p38 
and JNK phosphorylation  (16). A previous study reported 
that DKK‑3 could protect against cardiac remodeling 
induced by myocardial infarction or pressure overload via 
negatively regulating the p38 and JNK signaling pathways 
in an ASK1‑dependent way (5,16). Therefore, the effects of 
curcumin on ASK1 were further investigated. Corresponding 
to the p38 and JNK activation, ASK1 was activated in CHF 
and curcumin partly inhibited its activation in CHF‑cur group 
(Fig. 3E and H).

Discussion

Rabbit and human hearts are anatomically and function-
ally similar, and therefore CHF is commonly modeled in 
rabbits (18,21). Curcumin is a potential candidate for a novel 
anti‑cancer drug and the cardioprotective effects of curcumin 
on heart diseases have been reported, but the underlying 
mechanisms have not been revealed fully (9). In the present 
study, a CHF model was successfully induced by ten weeks 
volume and eight weeks pressure overload. Ten weeks treat-
ment with curcumin improved cardiac performance, which 
was indicated by the heart/body weight ratio and echocar-
diography parameters. Cardiac remodeling was also alleviated 
by curcumin treatment in the CHF‑cur rabbits, including 
myocardial hypertrophy, fibrosis, apoptosis and ultrastructure 
disorganization. Curcumin also decreased the expression of 
some CHF molecular biomarkers. The present study demon-
strated that curcumin upregulated DKK‑3 expression which 
may lead to inhibition of p38 and JNK signaling pathways 
and this may be a potential underlying mechanism by which 
curcumin exerted cardiac protective effects, but this needs to 
be confirmed in future studies.

In previous studies, curcumin was reported to exert 
anti‑inflammatory and anti‑oxidant effects on several kinds 
of diseases  (9,22). Cardiac remodeling, including cardiac 
hypertrophy, fibrosis and apoptosis, is partially attributable 
to overactive inflammatory response and excessive ROS 
release in CHF (6). When heart suffers from prolonged pres-
sure overload or myocardial infarction, intracellular ROS 
can activate multiple signaling pathways, including p38 and 
JNK signaling pathways which may upregulate the expres-
sion of TNF‑α in myocytes  (23). TNF‑α in turn increases 
ROS production by uncoupling mitochondrial respiration in 
a positive feedback mechanism (6). This pathological process 
may accelerate the cardiac remodeling through multifaceted 
impaction (24,25). DKK‑3 was also demonstrated to suppress 
inflammation following myocardial infarction and promote 

cell survival by reducing the expression of the superoxide 
during oxidative stress, but the effects of curcumin on DKK‑3 
has not been clarified (16,26). The present study demonstrated 
that curcumin increased DKK‑3 expression and the increased 
DKK‑3 suppressed inflammatory reactions, and reduced 
ROS via inhibiting p38 and JNK signaling pathways in rabbits 
with CHF.

Curcumin has been reported to serve therapeutic 
roles on renal and hepatic fibrosis, but rarely on cardiac 
fibrosis  (27‑29). An excessive deposition of extracellular 
matrix (ECM) molecules is another determining factor for 
cardiac remodeling, especially for myocardial fibrosis (30,31). 
Previous studies demonstrated that the deposition of ECM 
positively associates with MMP‑2 and MMP‑9 levels while 
tissue inhibitors of metalloproteinases alleviate this deposi-
tion (31,32). Upregulation of MMP‑2 and MMP‑9 in cardiac 
fibroblasts is associated with the activation of p38 and JNK 
signaling pathways (33,34). Inducing excessive deposition of 
ECM, p38 and JNK signaling pathways activation accelerates 
cardiac fibrosis by promoting migration of inflammatory cells 
and vascular regeneration through upregulating MMPs (35). 
A previous study reported that decreased DKK‑3 expression 
leads to up‑regulation of MMPs in normal prostate epithe-
lial cells and acts as an inhibitor of p38 and JNK signaling 
pathways (36). The present study demonstrated that curcumin 
increased DKK‑3 expression and downregulated MMP‑2 
and MMP‑9 possibly by inhibiting p38 and JNK pathways in 
CHF rabbits.

It has been previously demonstrated that CHF is char-
acterized by dysregulation of SERCA2a, the major Ca2+ 
pump in the cardiomyocytes (37,38). SERCA2a can regulate 
excitation‑contraction coupling in cardiomyocytes  (38,39). 
SERCA2a can be regulated precisely according to the 
physiological condition of the heart (40,41). SERCA2a was 
identified to be lower in cardiomyocytes of CHF models and 
an increase of SERCA2a expression could improve cardiac 
function (42,43). SERCA2a expression was demonstrated to 
be downregulated by activated p38 and JNK signaling path-
ways in cultured neonatal and mature cardiomyocytes (44,45). 
The association between DKK‑3 and SERCA2a, as well 
as the effects of curcumin on SERCA2a, have rarely been 
studied  (46). In the present study, p38 and JNK signaling 
pathways were inhibited while both DKK‑3 and SERCA2a 
expression levels were upregulated in the CHF‑cur group 
compared with the CHF group. This indicates that curcumin 
enhanced DKK‑3 expression, which in turn may up‑regulate 
SERCA2a via inhibition of p38 and JNK signaling pathways 
in CHF rabbits.

It was reported that curcumin exerts anti‑inflammatory 
effects via inhibition of the p38 and JNK pathways in HaCaT 
cells (47). Activation of p38 and JNK pathways is also involved 
in the pathology of CHF  (33,48). In addition, ASK1 phos-
phorylation is mainly responsible for the activation of p38 and 
JNK pathways, and a previous study demonstrated that DKK‑3 
inhibited them in an ASK1‑dependent manner (16). Cardiac 
hypertrophy and fibrosis were exacerbated by DKK‑3 knockout 
while ameliorated by DKK‑3 overexpression (5). In the present 
study, p38, JNK and ASK1 kinases were all activated in the 
CHF group, accompanied by the downregulation of DKK‑3 
and were partially restored by curcumin in the CHF‑cur group 
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compared with the CHF group. Yao et al (17) reported that 
curcumin may improve left ventricular function and remod-
eling in pressure overloaded rabbits by suppressing myocardial 
expression of TNF‑a and MMP‑2. Jeong et al (49) demonstrated 
that curcumin could attenuate cardiac remodeling in myocar-
dial ischemia/reperfusion (I/R) injury by inhibiting p38 and 
JNK pathways in vivo. In addition, curcumin pretreatment was 
also demonstrated to protect cardiac cells against I/R injury by 
reducing oxidative stress and inhibiting the phosphorylation of 
JNK in vitro, as demonstrated by Fiorillo et al (50). The present 
results are in accordance with previous studies and could serve 
as additional evidence for the cardioprotective potentials of 
curcumin in cardiac disease. Furthermore, a potential under-
lying mechanism was revealed in which curcumin may inhibit 
p38 and JNK signaling pathways in an ASK1‑dependent way 
via up‑regulation of DKK‑3 in a rabbit model of CHF. However, 
there are limitations in the present study for identifying whether 
knock‑out of the DKK‑3 gene affects the cardioprotective effect 
of curcumin and it would be worth further investigation by future 
studies. The present study proved that DKK‑3 upregulation 
mediates the cardioprotective effects of curcumin on chronic 
heart failure. Further studies should verify whether knock‑out of 
the DKK‑3 gene affects the cardioprotective effect of curcumin 
and overexpression experiments are needed in order to validate 
the present findings. Further studies with cardiospecific DKK‑3 
knockout and overexpression experiments are needed in order 
to validate the present findings.
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