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Abstract

Early-life adversity is a well-established risk factor for the development of depression later in life. 

Here we discuss the relationship between early-life adversity and depression, focusing specifically 

on effects of early-life caregiver deprivation on alterations in the neural and behavioral substrates 

of reward-processing. We also examine vulnerability to depression within the context of sensitive 

periods of neural development and the timing of adverse exposure. We further review the 

development of the ventral striatum, a limbic structure implicated in reward processing, and its 

role in depressive outcomes following early-life adversity. Finally, we suggest a potential 

neurobiological mechanism linking early-life adversity and altered ventral striatal development. 

Together these findings may help provide further insight into the role of reward circuitry 

dysfunction in psychopathological outcomes in both clinical and developmental populations.
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Introduction

Early-life stress can be defined as exposure to adverse events during childhood that 

negatively impact emotional or physical well-being to an extent that exceeds an individual’s 

ability to cope.1 Considerable evidence suggests that such negative experiences are 

associated with the development of depressive disorders.2–4 Specifically, early life seems to 

be particularly sensitive to environmental hardships that increase depression risk.5 Previous 

research indicates that exposure to early-life adversity may alter neurobiological 

development, including those regions that regulate responsiveness to reward, which may in 

turn influence depressive outcomes later in life.
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This review will examine the link between early-life adversity and depression. First, we will 

provide a brief overview of the epidemiology of early-life adversity and depression. Because 

timing of exposure to these stressors is critically important in depressive outcomes, we will 

also discuss the issue of sensitive periods, leading to a review of the main neurobiological 

indices of depression, including the critical role of reward-related neural circuitry and the 

development of this circuit. Thus, we will attempt to address the underlying neurobiological 

mechanisms relating early-life adversity to depressive outcomes, specifically as related to 

reward processing.

Early Adversity and Depression

Early-life adversity encompasses environmental exposure to abuse, neglect, distress, and 

negative family relations, among other negative experiences during the infancy/toddler 

period. These adverse exposures occur at every socioeconomic level, across ethnic and 

cultural lines, and at all levels of education. In the United States alone, more than 3,000,000 

reports of child abuse involving more than 6,000,000 youth are reported each year.6 While 

the U.S. has one of the highest rates of child maltreatment/neglect among industrialized 

nations, these numbers only reflect a fraction of domestic early-life adversity exposures. Of 

note, more than 33% of confirmed cases of maltreatment affect children under 4 years old, 

while 24% of cases are 4–7 years old, 18% of cases are 8–11 years old, and 16% of cases are 

12–15 years old.7 These statistics suggest that early-life adversity is not uncommon, 

particularly among young children—an important distinction, as early childhood may 

represent a period of heightened vulnerability to the negative effects of stress,1 and 

differential psychological outcomes may be dependent upon the specific timing of exposure.
8

The scientific literature overwhelmingly demonstrates an association between early-life 

adversity and depression.9–14 Though genetic factors have been shown to influence 

vulnerability for depression following early-life adversity,15 twin studies demonstrate that 

the effects of adverse environments play a substantial role in depressive outcomes beyond 

the influence of genetics.16,17 Clinical evidence highlights a dose-response relationship 

between early-life adversity and mental health in adulthood,18 specifically with regard to the 

severity of early-life adversity and lifetime chronic depression.9 For example, the risk of 

depression in persons with multiple early-life adverse experiences is 4 times that of a person 

who has not experienced early-life trauma.19 The results from these clinical studies support 

outcomes that have been reported in epidemiological research. A 17-year longitudinal study 

examining more than 750 randomly selected children found that adolescents and young 

adults with a history of childhood maltreatment were 3 times more likely to become 

depressed compared with individuals without such a history.10 Thus, vulnerability for 

depression may increase linearly with both the quantity and severity of adverse experiences, 

suggesting a possible causal link between early-life adversity and depression.20

According to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition 

(DSM-IV), depression is characterized by the presence of the majority of 9 symptoms: 

depressed mood, loss of interest or pleasure, disturbed sleep, disturbed appetite, anxiety, low 

energy, feelings of guilt or low self-worth, poor concentration, and thoughts about death.21 
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While categorical diagnostic systems remain a valuable tool, recent advances in the 

understanding of psychopathology have given rise to a new multidimensional framework for 

conceptualizing mental health. The dimensional approach of the Research Domain Criteria 

(RDoC) matrix,22 an integrative diagnostic system, suggests that the anhedonic aspects of 

depression (eg, loss of pleasure), which are a central feature of depression,23–25 are 

consistent with dysfunction of the positive valence system, which includes measures of 

behavioral and neural responsiveness to reward. Thus, alterations in the neural circuitry that 

supports reward processing may underlie the emergence of depression following early-life 

adversity.

Of note, early-life adversity is not limited only to vulnerability for depressive outcomes, but 

instead constitutes a major risk factor for the development of numerous psychological 

disorders.26–30 However the onset for the majority of these disorders occurs during 

childhood, and precedes the emergence of depressive symptoms not seen until the adolescent 

period.31–33 Therefore we will argue that the protracted emergence of depression following 

early-life adversity may implicate those neural regions that also demonstrate protracted 

developmental trajectories—one of which is the reward circuit.

The Role of Timing

Because adversity has been identified as a key experiential factor that programs and modifies 

brain development,34,35 a comprehensive understanding of the mechanisms involved in 

depressive outcomes following early-life adversity requires that we evaluate sensitive 

periods in neural development. Sensitive periods are characterized by periods of neural 

plasticity during which neural development may be especially vulnerable to environmental 

influence.36 Environmental influence may in turn have profound effects on physical, social, 

and emotional development36–38; the brain may be particularly vulnerable to negative 

experiences, allowing for exaggerated effects of these experiences on neural development.38 

Although childhood maltreatment encompasses a variety of behaviors, we will focus our 

discussion on caregiver deprivation (ie, maternal deprivation*)—an unfortunate, yet robust 

example of early-life adversity39 —which has been most studied in animal models to allow 

for translation across studies.

The potential negative impacts of caregiver deprivation are timing-specific. Each neural 

system has unique sensitive periods, and therefore, exposures to adversity at different ages 

should lead to differential neuro-behavioral phenotypes. Here we will address time-sensitive 

alterations in the hypothalamic–pituitary–adrenal (HPA) axis, one of the primary stress axes 

in mammals.40 The HPA axis displays altered function following early-life caregiver 

deprivation,41 and this dysfunction has been shown to increase vulnerability to depression.42 

Furthermore, HPA axis dysfunction is particularly prevalent in individuals with anhedonic 

depression,43–45 and thus early-life alterations in HPA function may represent one 

mechanism by which long-term alterations in neural reward circuitry may occur.

Timing of adverse environmental exposures, in the form of caregiver deprivation, and the 

function of the HPA axis have been well studied in nonhuman animals. Rodent research has 

shown that the effects of caregiver deprivation on HPA axis function are dependent on the 
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timing of exposure.46,47 Rodents separated on the third postnatal day (PND) demonstrated 

no immediate alterations in HPA function, whereas HPA responsiveness was markedly 

elevated in those separated on PND11. Additionally, examination of long-term alterations in 

stress reactivity indicated that rodents separated on PND3 and PND11 showed hyper and 

hypo HPA responsiveness, respectively, in adulthood.47 Related work in humans showed that 

separation from both parents during childhood was associated with increased HPA activation 

in adulthood, particularly if the separation occurred between ages 2 and 7.48 However, most 

human studies cannot conclude that their findings are specifically related to the timing of 

exposure to these adverse experiences. This may be due in part to the fact that most children 

exposed to early-life adversity continue to be exposed to adverse conditions throughout 

development. Therefore the unique contribution of early-life adversity to later mental health 

problems, after taking into account conditions such as family disruptions, persistent poverty, 

and broader patterns of social and emotional deprivation, remains unclear.49

* Note: Most animal models manipulate the presence/absence of the mother to examine 

caregiver deprivation. In humans, there is no evidence that this effect of the primary 

caregiver is specific to the mother, and therefore we will refer to caregiver deprivation when 

discussing the human literature.

One population that may better articulate the association between early-life adversity and 

depression is those who experience caregiving deprivation, by virtue of institutional care 

abroad, and then were adopted by families in the United States. Because previously 

institutionalized (PI) children often encounter numerous early adverse events followed by a 

supportive family environment, research on these children may provide information 

regarding the long-term psychosocial effects of a discrete period of early-life adversity. 

Youth exposed to this early institutional care exhibit a wide range of psychological outcomes 

with some children experiencing challenges and others not.50 Indeed, families of adopted 

post-institutionalized children have been shown to provide exceedingly high quality care, 

including optimal financial and educational resources, nurturing, and emotional support51 —

all of which are important familial features associated with resilience following early 

childhood adversity. However, this type of early caregiving experience significantly raises 

the odds for difficulties in emotional development.

Timing of adoption has emerged as an important variable when considering these outcomes. 

Pollak et al52 found that PI children who were adopted into families after their first birthday 

had more psychological difficulties, including deficits in learning, memory, and inhibitory 

control, than children adopted at an earlier age. Similarly, research has shown that PI 

children who were adopted into families at later ages were more likely to develop behavioral 

problems, both internalizing and externalizing, when compared to children adopted into 

families at earlier ages.50,53–55 Later age of adoption has also been associated with atypical 

structural development of limbic regions involved in emotion regulation (eg, the amygdala).
56,57 The timing of adversity is thus a critical variable when examining neurodevelopment, 

as outcomes can vary significantly depending on age.58–60
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Ventral Striatum Development, Depression, and Early Adversity

Despite early environmental insults, depression typically does not emerge until the 

adolescent period,60–63 a relatively late-emerging phenotype as compared to others 

discussed above. Therefore, deciphering the causal relationship between early-life 

experiences and later developing depression can prove difficult. By examining the 

neurodevelopmental mechanisms involved in both early-life adversity and depression, we 

may begin to develop a framework by which the relationship between early-life adversity 

and depression is better understood.

Evidence suggests that varied depressive symptoms (ie, poor concentration, thoughts of 

death) and subtypes (ie, melancholic, seasonal) are likely mediated by different 

neurochemical mechanisms and may or may not be present in any particular individual with 

depression.64–66 Research has long focused on symptoms of negative affect in depressive 

outcomes, which implicates dysfunction in neural regions that include the amygdala, 

hippocampus, anterior cingulate cortex, and prefrontal cortex67–70 —structures commonly 

associated with emotion regulation.71,72 While increased negative affect is an established 

characteristic of depressed individuals,73 a greater emphasis is now being placed on the 

anhedonic aspects, or atypical positive reward-related functioning, as an important aspect of 

depression.74–79 Thus, depression may represent dysfunction in regions implicated in 

emotion regulation and regions responsible for reward processing, the combined effect of 

which may reflect the depressive characteristic of concurrent high negative affect and low 

positive affect.73

Evidence for the role of atypical positive, or reward-related, processing in depression could 

implicate dysfunction in the responsiveness of mesolimbic dopamine circuits,80 which are 

stress-sensitive,81,82 as a potential underlying neural mechanism of depression.83 The 

ventral striatum, a neural structure within the reward circuit, serves as a primary target of 

dopamine neuron projections,84–87 and, as will be discussed in the following sections, 

reaches its developmental peak during adolescence. This peak in ventral striatal development 

coincides with the typical age of onset for depression following early-life adversity,55,88,89 

and previous research has shown that dysfunction in this region has been associated with 

depressive symptoms in this population.88,90 Indeed, research provides evidence for the role 

of the ventral striatum in reward learning and motivation,91–95 and ventral striatum 

dysfunction has been robustly associated with depression.80,96–99 Moreover the ventral 

striatum in healthy individuals has been shown to be highly modulated by the social 

environment100–102; notably, individuals with depression struggle with social behaviors.103 

Though the neural reward system is a highly complex and interconnected circuit involving a 

network of cortical and subcortical structures,86 given this evidence, we will focus our 

discussion on the role of the ventral striatum (comprising the nucleus accumbens, ventral 

caudate, and ventral putamen) within this circuit.

Ventral Striatal Functional Development

Though much of the brain develops before birth and during early childhood,104 the ventral 

striatum has been shown to develop in an inverted “U”-shaped pattern, such that the 
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functional development of the striatum peaks in adolescence and then decreases into early 

adulthood.105–109 This inverted “U”-shaped pattern seen in the development of the striatum 

is paralleled by behavioral patterns of increased reward sensitivity during adolescence.108 

Importantly, depressive symptoms most commonly emerge during the adolescent period.
60,62,110,111

As depression is being increasingly understood as arising from atypical maturational 

changes in the brain,62 adolescence may reflect one period during which neural regions 

implicated in depression are vulnerable to dysregulation as a consequence of their 

remodeling.62,76 Thus alterations in the development of reward-related circuitry may provide 

one explanation for the emergence of depression in adolescence.

Altered Ventral Striatum Function Following Early Adversity

Given the strong associations found between depression and hypofunctioning in the ventral 

striatum,112 we turn our focus to the ventral striatum’s role in depression following early 

adversity. In our own laboratory, we have observed that PI youth are at significantly higher 

risk for depressive behaviors; the risk increases between childhood and adolescence,88 and 

this finding is highly consistent with other laboratories.55,89 This increase in depressive 

behaviors was associated with hypoactivity in the ventral striatum in the PI adolescents88 —

a neural characteristic that has been demonstrated in other PI groups90.

There is strong evidence for the role of atypically low ventral striatum activity in depressive 

outcomes following early-life adversity exposure. Rodents exposed to early adverse 

experiences have demonstrated altered function of dopaminergic pathways,113–115 including 

alterations in the function of the ventral striatum115,116 and reduced responsiveness to 

reward.117 Corroborating studies in humans have found that individuals with a history of 

early-life maltreatment displayed dampened behavioral responsiveness to reward and 

reduced activation in striatal structures,118 and that children who experienced early-life 

adversity in the form of caregiver deprivation exhibit hyporesponsivity in the ventral 

striatum in response to reward during adolescence.90 We have similarly found reduced 

striatal activation to rewarding stimuli during adolescence in PI youth, which was associated 

with higher levels of depression.88

Potential Mechanisms Linking Early-Life Adversity and Altered Ventral 

Striatal Development

While the relationship between deficits in reward-related processing and depression is 

generally well understood, we know less about the precise neurobiological mechanism that 

underlies this relationship. One hypothesis suggests that the reduced ability to experience 

pleasure (anhedonia) is driven by reduced dopaminergic transmission, resulting in 

hypoactivation of reward-related neural circuits, which include the ventral striatum.119 

Indeed, there is considerable evidence that dopamine plays a core role in the neural reward 

system.120 Research in rodents and humans suggests that suppression of dopaminergic 

neurotransmission mediates the anhedonia of drug withdrawal in addiction,121–125 while 

other research has suggested that blunted dopamine transmission may serve as a unique 
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biological marker for anhedonia.126,127 Dopamine may also specifically mediate the hedonic 

properties of food, drugs, and other rewards.120,128,129 Importantly, there is also evidence 

suggesting that early-life caregiver deprivation alters dopamine function in the ventral 

striatum.130–132 Therefore it may be that alterations in dopamine transmission early in life 

influence later ventral striatum functioning, particularly during the sensitive adolescent 

period, which serves as the underlying mechanism in adolescent-emergent depression 

following early-life adversity.

Though the association between early-life adversity and altered function of the ventral 

striatum is well established,55,88,89 the neurochemical pathways by which early adversity 

alters ventral striatal development have not yet been well characterized. Nonetheless, there is 

some evidence that, for those who have experienced early-life adversity, striatal alterations 

may be the consequence of dysfunction in the HPA axis. Indeed emerging research has 

linked variation in HPA axis activity with functional and structural differences in striatal 

regions central to reward processing.133–135 As discussed earlier, much attention has focused 

on the ability of early-life adversity to atypically program the HPA axis.42,136 Following 

early adversity, dysregulation of the HPA axis results in persistent dysregulation of 

glucocorticoid secretion, which has been causally linked to depression.13,137,138 Of note, the 

psychosocial effects of HPA dysfunction differ across development. Research in rodents has 

demonstrated that early-life neglect–induced HPA alterations may result in numerous social 

behavior deficits, though specific depressive-like behaviors do not emerge until the 

adolescent period,63 which may reflect the delayed impact of these alterations on reward-

processing. That is, given the adolescent emergence of ventral striatum reactivity, we would 

anticipate the cascading effect of HPA axis dysregulation to be observed at that time.

Here we propose a potential mechanism by which HPA axis dysfunction following early-life 

adversity may in turn alter ventral striatum function in adolescence. In rodents, the effects of 

HPA dysfunction specific to striatal development have been investigated via exposure to 

both early-life adversity and direct glucocorticoid injection. Results showed that increased 

glucocorticoid exposure early in life resulted in volumetric reductions of the nucleus 

accumbens,139,140 asubstructure of the ventral striatum, as well as decreased density in 

mesolimbic dopamine receptors141,142 in the nucleus accumbens. Additionally, rodents 

exposed to early caregiver deprivation showed reduced dopamine function in the striatum 

during adulthood.143 The relationship between glucocorticoids and dysfunction of the 

striatum may also involve the activity of brain-derived neurotrophic factor (BDNF), the 

neurotrophin that serves as the key regulator of the mesolimbic dopamine pathway.144–146 It 

has been hypothesized that specific adverse effects of glucocorticoids may involve 

attenuation of BDNF expression or signaling.147 Indeed, caregiver deprivation has been 

shown to induce long-term changes in BDNF expression in the striatum,148 and reductions 

in BDNF have been strongly associated with depression in adulthood.149–154 Thus, it may be 

that early-life adversity results in HPA axis–induced glucocortiocoid secretion, which 

influences reductions in BNDF. These alterations in turn compromise the function of the 

mesolimbic dopamine system early in life, which results in hypoactivation of the ventral 

striatum to reward—a hallmark of anhedonic depression—during the adolescent period 

(Figure 1).

Goff and Tottenham Page 7

CNS Spectr. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

Previous research has established the role of stress, anhedonia, and dopamine on depressive 

outcomes,82,155 and has laid the groundwork for characterization of potential mechanistic 

links between early-life adversity and ventral striatal hypofunction during adolescence, 

which will be an important step toward understanding how early experiences increase the 

risk for later depression. While the antecedents of depression are complex and not fully 

understood, there is increasing evidence to suggest that the association between early-life 

adversity and depression in later life is largely mediated by stress-induced alterations to the 

ventral striatum. Due in part to sensitive periods in neural plasticity, evidence suggests that 

early life is a time of particular vulnerability, and the timing of adverse environmental 

experiences is critical for depressive outcomes. Neurobiological research indicates that 

changes in the development of neural mechanisms that influence reward processing may 

impact depression risk later in life. In adults, typical development of the reward circuit 

results in activation of the ventral striatum, serving to mediate balanced reward-seeking 

behaviors. However, in cases of atypical development of neural reward circuitry, imbalances 

in striatal activation may result in psychopathological outcomes, such as anhedonia, a 

common symptom seen in depressed individuals. These findings may help to further 

elucidate the mechanisms underlying dysfunction in this circuitry that may result in 

psychopathological outcomes in both clinical and developmental populations.
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Figure 1. 
Illustration of the proposed model demonstrating a neurobiological mechanism by which 

early-life adversity may result in adolescent depression.
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